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Timeline: The Hype Cycle of Multilinear Maps

first candidate construction [GGH13]
second candidate construction [CLT13]

weak DL [GGH13]break of CLT [CHLRS15]tentatives fixes for CLT [BWZ14,GGHZ14]break of previous fixes and extensions [CGHLMMRST15]break of (G)DDH in GGH [HJ15]
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Graph induced [GGH15]
New multilinear maps over integers [CLT15]
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The CLT SchemeMultilinear maps over the integers [CoronL.Tibouchi’13’15]

Second candidate constructionComposite-order maps (different from [GGH13,GGH15])
Follow [GGH13] recipe
I Level by multiplicative mask
I Zero-testing by multiplication and “shortness”

Similar to FHE schemes based on Approximate-GCD

Useful formany applications...
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SWHE vs. MMAPsComputation over encrypted data
We want to compute homomorphically over encrypted data

encode a into [a] ←→ encrypt a into [a] = Enc(a)in both cases, computing low-degree polys of [ai ]’s is possible, up to a degree k

. . . but we do not want the same information from the result than with HE

MMAPS can test if it is zero, at level k (andhard to compute at degree > k )
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. . . but we do not want the same information from the result than with HE
MMAPS can test if it is zero, at level k (andhard to compute at degree > k )
SHWE no information on a from the result,except with secret key
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Starting from Homomorphic EncryptionSWHE over the integers [DGHV10,CMNT11,CNT12,CCKLLMTY13,CLT14]

Secret key
Public key for very large (hard to factor) q0

Ciphertext of

for q ← [0, q0) and ← χ “small”
+

×
×
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Adding Sharp LevelsUsing multiplicative mask [GGH13,CLT13]

Let z ← [0, x0) be a random (invertible) multiplicative mask
Encoding of ~m ∈ Zg1 × · · · × Zgn at level j :

[~m]j = c/z j mod x0 =
CRTq,p1,...,pn(q′, r1 · g1 + m1, . . . , rn · gn + mn)

z j mod x0

Operations over Zx0 :Addition [~m]j + [~m′]j ' [~m + ~m′]jMultiplication [~m]j1 × [~m′]j2 ' [~m · ~m′]j1+j2
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Main Ingredient: Testing for ZeroUsing the “shortness” of the noise [GGH13,CLT13]

How to test whether two degree-k encodings are equal?
[~m]k ' [~̀]k (i.e. ~m = ~̀) ⇐⇒ [~m − ~̀]k ' [~0]k

What is an encoding of ~m = ~0?
[~0]k =

CRTq,p1,...,pn(q′, r1 · g1, . . . , rn · gn)

zk mod x0

Idea of [GGH13]: multiply by an element which will cancel zk and when the ri ’sare small (rigi � pi ), yield something small compared to x0.
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Simplifications for Zero-Testing

[~0]k =
∑

i

gi ri · (p∗i
−1/zk mod pi) · p∗i + (

∏
pj) · q′′ mod x0

where p∗i =
∏

j 6=i pj

The random value q′′ makes difficult to obtain something small... except if weare working modulo∏ pj

In the following x0 =
∏

pj , and
[~m]j = c/z j mod x0 =

CRTp1,...,pn(r1 · g1 + m1, . . . , rn · gn + mn)

z j mod x0
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Zero-Testing Procedure
Multiply by the public element (where hi � pi )

pzt =
∑

i

hi · (g−1
i zk mod pi) · p∗i mod x0

[~m]k = c/zk mod x0 =
CRTp1,...,pn(r1 · g1 + m1, . . . , rn · gn + mn)

zk mod x0

therefore
[~m]k · pzt =

∑
i

(ri + mig−1
i ) · hi · p∗i mod x0

We have (we prove equivalence whp when many pzt ’s are given)
~m = ~0 ⇒ |[~m]k · pzt mod x0| � x0
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Hardness Assumptions

GDDH: Given (k + 1) elements [ ~mi ]1 and [ ~m′]k , determinewhether ~m′ '∏k+1
i=1 ~mi .

At the heart of the multipartite key echange protocolAssumed to be hard (no reduction to Approx.-GCD)
Asymptotic parameters obtained from numerous attacksorthogonal lattice attack on encodingsGCD attack on zero-testinghidden subset sum attack on zero-testingattacks on the inverse zero-testing matrixbrute-force on the noises, . . .
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But... Zeroizing AttackEurocrypt 2015 best paper [CHLRS15]
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The Zeroizing Attack on CLT13Exploiting the (bi)linearity of the zero-testingprocedure

[~0]k · pzt =
∑

i ri · (hi · p∗i ) ∈ Z[~0]k−2 · [~b]1 · [~c ]1 · pzt =
∑

i ri · b̂i · ĉi · (hi · p∗i ) ∈ Z

ri

b̂i · (hi · p∗i )
ĉiri

b̂i · (hi · p∗i )
ĉi
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The Zeroizing Attack on CLT13Inversion over Q
Let’s do it with many [~0]k−2, [~c ]1 and two targets [~b]1, [~b′]1

ri
b̂i · (hi · p∗i )

ĉi ×

=

ri
b̂i/b̂′i

(ri)−1
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The Zeroizing Attack on CLT13Computing eigenvalues
Consider the target encodings

[~b]1 = CRTpi (b̂i)/z , [~b′]1 = CRTpi (b̂
′
i)/z

ri
b̂i/b̂′i

(ri)−1

Compute the eigenvalues βi/β
′
i = b̂i/b̂′iWe have that

pi | (β′i · [~b]1 − βi · [~b′]1)

Compute
pi = gcd(β′i · [~b]1 − βi · [~b′]1, x0)
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Generalizing the Zeroizing Attack on CLT13Zeroizing without low-level zeroes [CGHLMMRST15]

Breaks early tentative fixes [BWZ14,GGHZ14] using zero-testing as a black-box
Don’t need [~0]k−2 · [~b]1 · [~c ]1 but [~a]k−2 · [~b]1 · [~c ]1 ' [~0]k

Can be diagonal per block. Instead of computing eigenvalues use
characteristic polynomial.

ri
b̂i · (hi · p∗i )

ĉi
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Thwarting Cheon et al. Attack?Can we remove this linearity? [CLT15]

The encodings look like DGHV ciphertextsEven without the randomness q, their form should not be an issue

In [CoronL.Tibouchi15], we revisit the zero-testing procedure itself
In a nutshell:
I the zero-testing is done modulo a new prime modulus N ;
I x0 is no longer public.
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Inherent randomness in current encodings

Current form of encodings
[~m]k = CRTpi (mi + gi ri)/zk mod x0

[~m]k =
∑

i

(mig−1
i + ri mod pi) · ui + a · x0 over Z

with ui = (gip∗i
−1z−k mod pi)p∗i .

The element a is highly non-linear in the ri ’sThe element a is different from the random q′ we had before when adaptingDGHV (~m = ~0↔ a is small)
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New Zero-Test Parameter
Pick a random, large prime N � x0. We want to generate a new zero-testvalue αzt such that

|[~m]k · αzt mod N| � N ⇐⇒ ~m = 0

In particular, we have
[~m]k · αzt mod N

=
∑

i

(mig−1
i + ri mod pi) · (ui · αzt) + a · x0 · αzt mod N

so we want |αzt · ui mod N| � N and |αzt · x0 mod N| � N
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How To Generate αzt?
Given N , the generation of αzt ∈ ZN such that for all i , |uiαzt mod N| and
|x0αzt mod N| are small is not obvious.

The problem amounts to finding a relatively short vector in a lattice
1 u1 · · · un x0

N . . .
N

N


Use LLL? (we can tolerate an exponential approx. factor over SVP), but typically
n ≥ 105
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How To Generate αzt?Using the structure of the ui ’s

Remember that N � x0 and ui = (gip∗i
−1zk mod pi)p∗i

First note that p−1
j ui mod N is small for all i 6= jOnly p−1

j uj mod N is not a priori small
Let us find αj such that αj · p−1

j uj mod N is smallAs before it amounts to finding a short vector in(
dN/Be p−1

j uj

N

)

21 / 30



How To Generate αzt?Using the structure of the ui ’s
Remember that N � x0 and ui = (gip∗i

−1zk mod pi)p∗i

First note that p−1
j ui mod N is small for all i 6= jOnly p−1

j uj mod N is not a priori small
Let us find αj such that αj · p−1

j uj mod N is smallAs before it amounts to finding a short vector in(
dN/Be p−1

j uj

N

)

21 / 30



How To Generate αzt?Using the structure of the ui ’s
Remember that N � x0 and ui = (gip∗i

−1zk mod pi)p∗i

First note that p−1
j ui mod N is small for all i 6= j

Only p−1
j uj mod N is not a priori small

Let us find αj such that αj · p−1
j uj mod N is smallAs before it amounts to finding a short vector in(
dN/Be p−1

j uj

N

)

21 / 30



How To Generate αzt?Using the structure of the ui ’s
Remember that N � x0 and ui = (gip∗i

−1zk mod pi)p∗i

First note that p−1
j ui mod N is small for all i 6= jOnly p−1

j uj mod N is not a priori small

Let us find αj such that αj · p−1
j uj mod N is smallAs before it amounts to finding a short vector in(
dN/Be p−1

j uj

N

)

21 / 30



How To Generate αzt?Using the structure of the ui ’s
Remember that N � x0 and ui = (gip∗i

−1zk mod pi)p∗i

First note that p−1
j ui mod N is small for all i 6= jOnly p−1

j uj mod N is not a priori small
Let us find αj such that αj · p−1

j uj mod N is smallAs before it amounts to finding a short vector in(
dN/Be p−1

j uj

N

)
21 / 30



How To Generate αzt?Using the structure of the ui ’s
(
dN/Be p−1

j uj

N

)

We chose B such that LLL finds a short vector
(αj · dN/Be, βj)

where |αj | ≤
√

pj and |βj = αj · p−1
j uj mod N| ≤ N/

√
pj .

New zero-testing element:
αzt =

∑
j

hj · αj · p−1
j mod N
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How To Generate αzt?Using the structure of the ui ’s
New zero-testing element (sizes to keep in mind N ≈ x0 · pj , αj ≈

√
pj ):

αzt =
∑

j

hj · αj · p−1
j mod N

When applied on an encoding [~m]k :
[~m]k · αzt mod N

=
∑

i

(mig−1
i + ri mod pi) · (ui · αzt) + a · x0 · αzt mod N
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An Important CaveatCannot work directly modulo x0

x0 cannot be made public, contrary to [CLT13]However, define v0 = x0 · αzt mod N , and

([~0]k · αzt mod N) mod v0

= (
∑

i

ri · (hiβi +
∑
j 6=i

hjαj · ui/pj) + a · v0 ∈ Z) mod v0

=
∑

i

ri · (hiβi +
∑
j 6=i

hjαj · ui/pj) mod v0

We can apply Cheon et al. attack modulo v0
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An Important CaveatA Ladder of encodings

Making x0 secret is somewhat inconvenient:when we add or multiply encodings, we cannot reduce them modulo x0anymore to keep them of the same size
Solution (taken from [DGHV10]): publish a ladder of encodings of 0 ofincreasing size
I encodings

X (j)
i = (CRTpi (rigi)/z j mod x0) + qi · x0

with qi ← [0, 2i) for i = 1, . . . , log(x0)

I do the operation over Z, and remove X (j)
i for decreasing i ’s
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Concrete Attempt

Consider u = [~0]k−2 · [~b]1 · [~c ]1Apply the ladder to reduce its size to the size of x0:
u′ = u +

∑
siX

(k)
i

Write u′ over Z:
u′ =

∑
i

(ri · b̂i · ĉi + si · rX ,i ,k) · ui − a · x0

All si ’s and a come up in the way of Cheon et al. attack
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Proof-of-concept Implementation
https://github.com/tlepoint/new-multilinear-maps

Instantiation λ κ n η ∆ ρ γ = n · η pp size
Small 52 6 540 1679 23 52 0.9 · 106 27 MBMedium 62 6 2085 1989 45 62 4.14 · 106 175 MBLarge 72 6 8250 2306 90 72 19.0 · 106 1.2 GBExtra 80 6 25305 2619 159 85 66.3 · 106 6.1 GB

Setup Publish KeyGen

5.9 s 0.10 s 0.17 s36 s 0.33 s 1.06 s583 s 2.05 s 6.17 s4528 s 7.8 s 23.9 s
27 / 30
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Conclusion

The CLT scheme has many interesting features:composite order maps,assumed hardness of GDDH but also of DLIN & SubM
Concrete targets to attack in practice if desiredSame efficiency as original CLT13
Open problems for CLT15:
I Analyze the reparation
I Improve the efficiency
I Adapt the technique to [GGH13]?
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Thank YouQuestions & Discussion
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Discussion
1. Design

I public encoding space / inversion
2. Attacks
3. Assumptions

I what sort of assumptions can be made?
I base multilinear maps on well-known problems

4. Applications
I something that look different from obfuscation
I what can you do with a small number of levels?
I relation between 2-multilinear maps / pairings in applications
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