Multilinear Maps over the Integers From Design to Security

Tancrède Lepoint CryptoExperts

The Mathematics of Modern Cryptography Workshop, July 10 th 2015

Timeline: The Hype Cycle of Multilinear Maps

Timeline
visibility
Timeline
time

1 "technology trigger"

Timeline

Timeline

Timeline

Timeline

visibility

time

3 "trough of disillusionment"
second candidate construction [CLT13]
first candidate construction [GGH13]

CRYPTOEXPERTS ${ }^{\text {Ia }}$

Timeline

visibility
令
\vdots
:...........
time
visibility
Today

visibility
Today

The CLT Scheme
Multilinear maps over the integers
[CoronL.Tibouchi'13'15]

The CLT Scheme

 Multilinear maps over the integersSecond candidate construction

The CLT Scheme

 Multilinear maps over the integersSecond candidate construction
Composite-order maps (different from [GGH13,GGH15])

The CLT Scheme

 Multilinear maps over the integersSecond candidate construction
Composite-order maps (different from [GGH13,GGH15])
Follow [GGH13] recipe

- Level by multiplicative mask
- Zero-testing by multiplication and "shortness"

The CLT Scheme Multilinear maps over the integers

Second candidate construction
Composite-order maps (different from [GGH13,GGH15])
Follow [GGH13] recipe

- Level by multiplicative mask
- Zero-testing by multiplication and "shortness"

Similar to FHE schemes based on Approximate-GCD

The CLT Scheme

 Multilinear maps over the integersSecond candidate construction
Composite-order maps (different from [GGH13,GGH15])
Follow [GGH13] recipe

- Level by multiplicative mask
- Zero-testing by multiplication and "shortness"

Similar to FHE schemes based on Approximate-GCD

Useful for many applications...

SWHE vs. MMAPs

 Computation over encrypted dataWe want to compute homomorphically over encrypted data

SWHE vs. MMAPs

 Computation over encrypted dataWe want to compute homomorphically over encrypted data encode a into [a] \longleftrightarrow encrypt a into [a] = Enc(a)

SWHE vs. MMAPs

 Computation over encrypted dataWe want to compute homomorphically over encrypted data
encode a into [a] \longleftrightarrow encrypt a into [a] = Enc(a) in both cases, computing low-degree polys of [aj]'s is possible, up to a degree k
... but we do not want the same information from the result than with HE

SWHE vs. MMAPs

 Computation over encrypted dataWe want to compute homomorphically over encrypted data
encode a into [a] \longleftrightarrow encrypt a into [a] = Enc(a)
in both cases, computing low-degree polys of [a; ${ }^{\text {] }}$'s is possible, up to a degree k
... but we do not want the same information from the result than with HE

MMAPS can test if it is zero, at level k (and hard to compute at degree $>k$)

SWHE vs. MMAPs Computation over encrypted data

We want to compute homomorphically over encrypted data
encode a into [a] \longleftrightarrow encrypt a into [a] = Enc(a)
in both cases, computing low-degree polys of [a; ${ }^{\text {] }}$'s is possible, up to a degree k
... but we do not want the same information from the result than with HE
MMAPS can test if it is zero, at level k (and hard to compute at degree $>k$)

SHWE no information on a from the result, except with secret key

Starting from Homomorphic Encryption SWHE over the integers [DGHV10,CMNT1,CNT12,CCKLLMTY13,CLT14]

Starting from Homomorphic Encryption SWHE over the integers [DGHV10,CMNT1,CNT12,CCKLLMTY13,CLT14]

Secret key prime p

Starting from Homomorphic Encryption SWHE over the integers [DGHV10,CMNT11,CNT12,CCKLLMTV13,CLT14]

Secret key prime p
Public key
$$
x_{0}=q_{0} \cdot p \quad \text { for very large (hard to factor) } q_{0}
$$

Starting from Homomorphic Encryption SWHE over the integers [DGHV10.CMNT11,CNT12,CCKLLMTV13,CLT14]

Secret key	prime p
Public key	$x_{0}=q_{0} \cdot p \quad$ for very large (hard to factor) q_{0}

Ciphertext of m

$$
\begin{aligned}
& c=q \cdot p+g \cdot r+m \\
& \text { for } q \leftarrow\left[0, q_{0}\right) \text { and } r \leftarrow \chi^{\prime \prime} \text { small" }
\end{aligned}
$$

Starting from Homomorphic Encryption SWHE over the integers [DGHV10,CMNT11,CNT12,CCKLLMTV13,CLT14]

Secret key prime p
Public key

$$
x_{0}=q_{0} \cdot p \quad \text { for very large (hard to factor) } q_{0}
$$

Ciphertext of m

$$
\begin{aligned}
& c=\text { CRT }_{q_{0}, p}\left(q^{\prime}, \quad g \cdot r+m\right) \\
& \text { for } q^{\prime} \leftarrow\left[0, q_{0}\right) \text { and } r \leftarrow \chi^{" s m a l l "}
\end{aligned}
$$

Starting from Homomorphic Encryption SWHE over the integers [DGHV10,CMNT11,CNT12,CCKLMTV13,CLT14]

Secret key
Public key

$$
x_{0}=q_{0} \cdot p_{1} \cdots p_{n} \quad \text { for very large (hard to factor) } q_{0}
$$

Ciphertext of \vec{m}
primes p_{1}, \ldots, p_{n}

$$
\begin{aligned}
& c=\operatorname{CRT}_{q_{0}, p_{1}, \ldots, p_{n}}\left(q^{\prime}, \quad g_{1} \cdot r_{1}+m_{1}, \ldots, g_{n} \cdot r_{n}+m_{n}\right. \\
& \text { for } q^{\prime} \leftarrow\left[0, q_{0}\right) \text { and } r_{1}, \ldots, r_{n} \leftarrow \chi^{\prime \prime} \text { small" }
\end{aligned}
$$

Starting from Homomorphic Encryption

 SWHE over the integers [DGHV10,CMNT1,CNT12,CCKLLMTV13,CLTT4]Secret key
Public key

Ciphertext of \vec{m}
primes p_{1}, \ldots, p_{n}

$$
x_{0}=q_{0} \cdot p_{1} \cdots p_{n} \quad \text { for very large (hard to factor) } q_{0}
$$

$$
\begin{aligned}
& c=\operatorname{CRT}_{q_{0}, p_{1}, \ldots, p_{n}}\left(q^{\prime}, \quad g_{1} \cdot r_{1}+m_{1}, \ldots, g_{n} \cdot r_{n}+m_{n}\right. \\
& \text { for } q^{\prime} \leftarrow\left[0, q_{0}\right) \text { and } r_{1}, \ldots, r_{n} \leftarrow \chi^{\prime \prime} \text { small" }
\end{aligned}
$$

Adding Sharp Levels Using multiplicative mask

Adding Sharp Levels Using multiplicative mask

Let $z \leftarrow\left[0, x_{0}\right)$ be a random (invertible) multiplicative mask

Adding Sharp Levels Using multiplicative mask

Let $z \leftarrow\left[0, x_{0}\right)$ be a random (invertible) multiplicative mask
Encoding of $\vec{m} \in \mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$ at level j :

$$
[\vec{m}]_{j}=c / z^{j} \bmod x_{0}=\frac{\operatorname{CRT}_{q, p_{1}, \ldots, p_{n}}\left(q^{\prime}, r_{1} \cdot g_{1}+m_{1}, \ldots, r_{n} \cdot g_{n}+m_{n}\right)}{z^{j}} \bmod x_{0}
$$

Adding Sharp Levels
 Using multiplicative mask

Let $z \leftarrow\left[0, x_{0}\right)$ be a random (invertible) multiplicative mask
Encoding of $\vec{m} \in \mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$ at level j :

$$
[\vec{m}]_{j}=c / z^{j} \bmod x_{0}=\frac{C R T_{q, p_{1}, \ldots, p_{n}}\left(q^{\prime}, r_{1} \cdot g_{1}+m_{1}, \ldots, r_{n} \cdot g_{n}+m_{n}\right)}{z^{j}} \bmod x_{0}
$$

Operations over $\mathbb{Z}_{x_{0}}$:

Addition
Multiplication

$$
\begin{array}{ll}
{[\vec{m}]_{j}+\left[\vec{m}^{\prime}\right]_{j}} & \simeq\left[\vec{m}+\vec{m}^{\prime}\right]_{j} \\
{[\vec{m}]_{j_{1}} \times\left[\vec{m}^{\prime}\right]_{j_{2}}} & \simeq\left[\vec{m} \cdot \vec{m}^{\prime}\right]_{j}+j_{2}
\end{array}
$$

CRYPTOEXPGRTS ${ }^{\text {Biq }}$

Main Ingredient: Testing for Zero Using the "shortness" of the noise

Main Ingredient: Testing for Zero Using the "shortness" of the noise

How to test whether two degree-k encodings are equal?

$$
[\vec{m}]_{k} \simeq[\vec{\ell}]_{k}(\text { i.e. } \vec{m}=\vec{\ell}) \Longleftrightarrow\left[\vec{m}-\vec{\ell}_{k} \simeq[\overrightarrow{0}]_{k}\right.
$$

Main Ingredient: Testing for Zero Using the "shortness" of the noise

How to test whether two degree-k encodings are equal?

$$
[\vec{m}]_{k} \simeq\left[\vec{l}_{k}(\text { i.e. } \vec{m}=\vec{\ell}) \Longleftrightarrow[\vec{m}-\vec{l}]_{k} \simeq[\overrightarrow{0}]_{k}\right.
$$

What is an encoding of $\vec{m}=\overrightarrow{0}$?

$$
[\overrightarrow{0}]_{k}=\frac{\text { CRT }_{q, p_{1}, \ldots, p_{n}}\left(q^{\prime}, r_{1} \cdot g_{1}, \ldots, r_{n} \cdot g_{n}\right)}{z^{k}} \bmod x_{0}
$$

Main Ingredient: Testing for Zero Using the "shortness" of the noise

How to test whether two degree-k encodings are equal?

$$
[\vec{m}]_{k} \simeq[\vec{l}]_{k}(\text { i.e. } \vec{m}=\vec{\ell}) \Longleftrightarrow[\vec{m}-\vec{l}]_{k} \simeq[\overrightarrow{0}]_{k}
$$

What is an encoding of $\vec{m}=\overrightarrow{0}$?

$$
[\overrightarrow{0}]_{k}=\frac{C R T}{q, p_{1}, \ldots, p_{n}}\left(q^{\prime}, r_{1} \cdot g_{1}, \ldots, r_{n} \cdot g_{n}\right)\left(\operatorname{zod} x_{0}\right.
$$

Idea of [GGH13]: multiply by an element which will cancel z^{k} and when the $r_{i}^{\prime} \mathrm{s}$ are small $\left(r_{i} g_{i} \ll p_{i}\right)$, yield something small compared to x_{0}.

Simplifications for Zero-Testing

Simplifications for Zero-Testing

$$
\left[\overrightarrow{0}_{k}=\sum_{i} g_{i} r_{i} \cdot\left(p_{i}^{*-1} / z^{k} \bmod p_{i}\right) \cdot p_{i}^{*}+\left(\prod p_{j}\right) \cdot q^{\prime \prime} \bmod x_{0}\right.
$$

where $p_{i}^{*}=\prod_{j \neq i} p_{j}$

Simplifications for Zero-Testing

$$
[0]_{k}=\sum_{i} g_{i} r_{i} \cdot\left(p_{i}^{*-1} / z^{k} \bmod p_{i}\right) \cdot p_{i}^{*}+\left(\prod p_{j}\right) \cdot q^{\prime \prime} \bmod x_{0}
$$

where $p_{i}^{*}=\prod_{j \neq i} p_{j}$

The random value $q^{\prime \prime}$ makes difficult to obtain something small... except if we are working modulo $\prod p_{j}$

Simplifications for Zero-Testing

$$
[\overrightarrow{0}]_{k}=\sum_{i} g_{i} r_{i} \cdot\left(p_{i}^{*-1} / z^{k} \bmod p_{i}\right) \cdot p_{i}^{*}+\left(\prod p_{j}\right) \cdot q^{\prime \prime} \bmod x_{0}
$$

where $p_{i}^{*}=\prod_{j \neq i} p_{j}$

The random value $q^{\prime \prime}$ makes difficult to obtain something small... except if we are working modulo $\prod p_{j}$

In the following $x_{0}=\prod p_{j}$, and

$$
[\vec{m}]_{j}=c / z^{j} \bmod x_{0}=\frac{\mathrm{CRT}_{p_{1}, \ldots, p_{n}}\left(r_{1} \cdot g_{1}+m_{1}, \ldots, r_{n} \cdot g_{n}+m_{n}\right)}{z^{j}} \bmod x_{0}
$$

Zero-Testing Procedure

Multiply by the public element (where $h_{i} \ll p_{i}$)

$$
p_{z t}=\sum_{i} h_{i} \cdot\left(g_{i}^{-1} z^{k} \bmod p_{i}\right) \cdot p_{i}^{*} \bmod x_{0}
$$

Zero-Testing Procedure

Multiply by the public element (where $h_{i} \ll p_{i}$)

$$
p_{z t}=\sum_{i} h_{i} \cdot\left(g_{i}^{-1} z^{k} \bmod p_{i}\right) \cdot p_{i}^{*} \bmod x_{0}
$$

$$
[\vec{m}]_{k}=c / z^{k} \bmod x_{0}=\frac{\operatorname{CRT}_{p_{1}, \ldots, p_{n}}\left(r_{1} \cdot g_{1}+m_{1}, \ldots, r_{n} \cdot g_{n}+m_{n}\right)}{z^{k}} \bmod x_{0}
$$

therefore

$$
[\vec{m}]_{k} \cdot p_{z t}=\sum_{i}\left(r_{i}+m_{i} g_{i}^{-1}\right) \cdot h_{i} \cdot p_{i}^{*} \bmod x_{0}
$$

Zero-Testing Procedure

Multiply by the public element (where $h_{i} \ll p_{i}$)

$$
p_{z t}=\sum_{i} h_{i} \cdot\left(g_{i}^{-1} z^{k} \bmod p_{i}\right) \cdot p_{i}^{*} \bmod x_{0}
$$

$$
[\vec{m}]_{k}=c / z^{k} \bmod x_{0}=\frac{C R T_{p_{1}, \ldots, p_{n}}\left(r_{1} \cdot g_{1}+m_{1}, \ldots, r_{n} \cdot g_{n}+m_{n}\right)}{z^{k}} \bmod x_{0}
$$

therefore

$$
[\vec{m}]_{k} \cdot p_{z t}=\sum_{i}\left(r_{i}+m_{i} g_{i}^{-1}\right) \cdot h_{i} \cdot p_{i}^{*} \bmod x_{0}
$$

We have (we prove equivalence whp when many $p_{z t}$'s are given)

$$
\vec{m}=\overrightarrow{0} \quad \Rightarrow \quad\left|[\vec{m}]_{k} \cdot p_{z t} \bmod x_{0}\right| \ll x_{0}
$$

Hardness Assumptions

Hardness Assumptions

GDDH: Given $(k+1)$ elements $\left[\vec{m}_{]_{1}}\right.$ and $\left[\vec{m}^{\prime}\right]_{k}$, determine whether $\vec{m}^{\prime} \simeq \prod_{i=1}^{k+1} \vec{m}_{i}$.

Hardness Assumptions

GDDH: Given $(k+1)$ elements $\left[\vec{m}_{i}\right]_{1}$ and $\left[\overrightarrow{m^{\prime}}\right]_{k}$, determine whether $\vec{m}^{\prime} \simeq \prod_{i=1}^{k+1} \vec{m}_{i}$.

At the heart of the multipartite key echange protocol

Hardness Assumptions

GDDH: Given $(k+1)$ elements $\left[\vec{m}_{i}\right]_{1}$ and $\left[\overrightarrow{m^{\prime}}\right]_{k}$, determine whether $\vec{m}^{\prime} \simeq \prod_{i=1}^{k+1} \vec{m}_{i}$.

At the heart of the multipartite key echange protocol Assumed to be hard (no reduction to Approx.-GCD)

Hardness Assumptions

GDDH: Given $(k+1)$ elements $\left[\vec{m}_{i}\right]_{1}$ and $\left[\overrightarrow{m^{\prime}}\right]_{k}$, determine whether $\vec{m}^{\prime} \simeq \prod_{i=1}^{k+1} \vec{m}_{i}$.

At the heart of the multipartite key echange protocol
Assumed to be hard (no reduction to Approx.-GCD)
Asymptotic parameters obtained from numerous attacks orthogonal lattice attack on encodings GCD attack on zero-testing hidden subset sum attack on zero-testing attacks on the inverse zero-testing matrix brute-force on the noises, ...

But... Zeroizing Attack Eurocrypt 2015 best paper

Cryptanalysis of the Multilinear Map over the Integers

Jung Hee Cheon ${ }^{1}$, Kyoohyung Han ${ }^{1}$, Changmin Lee ${ }^{1}$, Hansol Ryu ${ }^{1}$, Damien Stehlé ${ }^{2}$
Seoul National University (SNU), Republic of Korea
${ }^{2}$ ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), France.

Abstract. We describe a polynomial-time cryptanalysis of the (approximate) multilinear map of Coron, Lepoint and Tibouchi (CLT). The attack relies on an adaptation of the so-called zeroizing attack against the Garg, Gentry and Halevi (GGH) candidate multilinear map. Zeroiz-

The Zeroizing Attack on CLT13 Exploiting the (bi)linearity of the zero-testing procedure

The Zeroizing Attack on CLT13 Exploiting the (bi)linearity of the zero-testing procedure

$$
[\overrightarrow{0}]_{k} \cdot p_{z t}=\sum_{i} r_{i} \cdot\left(h_{i} \cdot p_{i}^{*}\right) \in \mathbb{Z}
$$

The Zeroizing Attack on CLT13 Exploiting the (bi)linearity of the zero-testing procedure

$$
[\overrightarrow{0}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{c}]_{1} \cdot p_{z t}=\sum_{i} r_{i} \cdot \hat{b}_{i} \cdot \hat{c}_{i} \cdot\left(h_{i} \cdot p_{i}^{*}\right) \in \mathbb{Z}
$$

The Zeroizing Attack on CLT13

 Exploiting the (bi)linearity of the zero-testing procedure$$
[\overrightarrow{0}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{c}]_{1} \cdot p_{z t}=\sum_{i} r_{i} \cdot \hat{b}_{i} \cdot \hat{c}_{i} \cdot\left(h_{i} \cdot p_{i}^{*}\right) \in \mathbb{Z}
$$

The Zeroizing Attack on CLT13 Exploiting the (bi)linearity of the zero-testing procedure

$$
[\overrightarrow{0}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{c}]_{1} \cdot p_{z t}=\sum_{i} r_{i} \cdot \hat{b}_{i} \cdot \hat{c}_{i} \cdot\left(h_{i} \cdot p_{i}^{*}\right) \in \mathbb{Z}
$$

The Zeroizing Attack on CLT13 Inversion over \mathbb{Q}

Let's do it with many $[\overrightarrow{0}]_{k-2},[\vec{c}]_{1}$ and two targets $[\vec{b}]_{1},\left[\overrightarrow{b^{\prime}}\right]_{1}$

The Zeroizing Attack on CLT13 Inversion over \mathbb{Q}

Let's do it with many $[\overrightarrow{0}]_{k-2},[\vec{c}]_{1}$ and two targets $[\vec{b}]_{1},[\vec{b}]_{1}$

The Zeroizing Attack on CLT13 Inversion over \mathbb{Q}

Let's do it with many $[\overrightarrow{0}]_{k-2},[\vec{c}]_{1}$ and two targets $[\vec{b}]_{1},[\vec{b}]_{1}$

The Zeroizing Attack on CLT13 Inversion over \mathbb{Q}

Let's do it with many $[\overrightarrow{0}]_{k-2},[\vec{c}]_{1}$ and two targets $[\vec{b}]_{1},[\vec{b}]_{1}$

The Zeroizing Attack on CLT13

Computing eigenvalues

Consider the target encodings

$$
[\vec{b}]_{1}=\operatorname{CRT}_{p_{i}}\left(\hat{b}_{i}\right) / z, \quad\left[\vec{b}^{\prime}\right]_{1}=\operatorname{CRT}_{p_{p}}\left(\hat{b}_{i}^{\prime}\right) / z
$$

The Zeroizing Attack on CLT13
 Computing eigenvalues

Consider the target encodings

$$
[\vec{b}]_{1}=\operatorname{CRT}_{p_{p}}\left(\hat{b}_{i}\right) / z, \quad\left[\vec{b}^{\prime}\right]_{1}=\operatorname{CRT}_{p_{p}\left(\hat{b}_{i}^{\prime}\right) / z}
$$

Compute the eigenvalues $\beta_{i} / \beta_{i}^{\prime}=\hat{b}_{i} / \hat{b}_{i}^{\prime}$

The Zeroizing Attack on CLT13
 Computing eigenvalues

Consider the target encodings

$$
[\vec{b}]_{1}=\operatorname{CRT}_{p_{i}}\left(\hat{b}_{i}\right) / z, \quad\left[\vec{b}^{\prime}\right]_{1}=\operatorname{CRT}_{p_{p}}\left(\hat{b}_{i}^{\prime}\right) / z
$$

Compute the eigenvalues $\beta_{i} / \beta_{i}^{\prime}=\hat{b}_{i} / \hat{b}_{i}^{\prime}$
We have that

$$
p_{i} \mid\left(\beta_{i}^{\prime} \cdot[\vec{b}]_{1}-\beta_{i} \cdot\left[\overrightarrow{b^{\prime}}\right]_{1}\right)
$$

The Zeroizing Attack on CLT13
 Computing eigenvalues

Consider the target encodings

$$
[\vec{b}]_{1}=\operatorname{CRT}_{p_{i}}\left(\hat{b}_{i}\right) / z, \quad\left[\vec{b}^{\prime}\right]_{1}=\operatorname{CRT}_{p_{p}}\left(\hat{b}_{\dot{i}}^{\prime}\right) / z
$$

Compute the eigenvalues $\beta_{i} / \beta_{i}^{\prime}=\hat{b}_{i} / \hat{b}_{i}^{\prime}$
We have that

$$
p_{i} \mid\left(\beta_{i}^{\prime} \cdot[\vec{b}]_{1}-\beta_{i} \cdot\left[\vec{b}^{\prime}\right]_{1}\right)
$$

Compute

$$
p_{i}=\operatorname{gcd}\left(\beta_{i}^{\prime} \cdot[\vec{b}]_{1}-\beta_{i} \cdot\left[\overrightarrow{b^{\prime}}\right]_{1}, x_{0}\right)
$$

Generalizing the Zeroizing Attack on CLT13

 Zeroizing without low-level zeroes
Generalizing the Zeroizing Attack on CLT13 Zeroizing without low-level zeroes

Breaks early tentative fixes [BWZ14,GGHZ14] using zero-testing as a black-box

Generalizing the Zeroizing Attack on CLT13

 Zeroizing without low-level zeroesBreaks early tentative fixes [BWZ14,GGHZ14] using zero-testing as a black-box Don't need $[\overrightarrow{0}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{c}]_{1}$ but $[\vec{a}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{C}]_{1} \simeq[\overrightarrow{0}]_{k}$

Generalizing the Zeroizing Attack on CLT13 Zeroizing without low-level zeroes

Breaks early tentative fixes [BWZ14,GGHZ14] using zero-testing as a black-box

Don't need $[\overrightarrow{0}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{c}]_{1}$ but $[\vec{a}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{C}]_{1} \simeq[\overrightarrow{0}]_{k}$

Can be diagonal per block. Instead of computing eigenvalues use characteristic polynomial.

Thwarting Cheon et al. Attack? Can we remove this linearity?

CRYPTOEXPGRTS ${ }^{\text {吅 }}$

Thwarting Cheon et al. Attack? Can we remove this linearity?

The encodings look like DGHV ciphertexts

Thwarting Cheon et al. Attack?
 Can we remove this linearity?

The encodings look like DGHV ciphertexts
Even without the randomness q, their form should not be an issue

Thwarting Cheon et al. Attack?
 Can we remove this linearity?

The encodings look like DGHV ciphertexts
Even without the randomness q, their form should not be an issue

In [CoronL.Tibouchi15], we revisit the zero-testing procedure itself

Thwarting Cheon et al. Attack?
 Can we remove this linearity?

The encodings look like DGHV ciphertexts
Even without the randomness q, their form should not be an issue

In [CoronL.Tibouchi1 5], we revisit the zero-testing procedure itself

In a nutshell:

- the zero-testing is done modulo a new prime modulus N;
- x_{0} is no longer public.

Inherent randomness in current encodings

Inherent randomness in current encodings

Current form of encodings

$$
[\vec{m}]_{k}=\operatorname{CRT} T_{p_{i}}\left(m_{i}+g_{i} r_{i}\right) / z^{k} \bmod x_{0}
$$

Inherent randomness in current encodings

Current form of encodings

$$
\begin{aligned}
& {[\vec{m}]_{k}=\operatorname{CRT}_{p_{i}}\left(m_{i}+g_{i} r_{i}\right) / z^{k} \bmod x_{0}} \\
& {[\vec{m}]_{k}=\sum_{i}\left(m_{i} g_{i}^{-1}+r_{i} \bmod p_{i}\right) \cdot u_{i}+a \cdot x_{0} \quad \text { over } \mathbb{Z}}
\end{aligned}
$$

with $u_{i}=\left(g_{i} p_{i}^{*-1} z^{-k} \bmod p_{i}\right) p_{i}^{*}$.

Inherent randomness in current encodings

Current form of encodings

$$
\begin{aligned}
& {[\vec{m}]_{k}=\operatorname{CRT}_{p_{i}}\left(m_{i}+g_{i} r_{i}\right) / z^{k} \bmod x_{0}} \\
& {[\vec{m}]_{k}=\sum_{i}\left(m_{i} g_{i}^{-1}+r_{i} \bmod p_{i}\right) \cdot u_{i}+a \cdot x_{0} \quad \text { over } \mathbb{Z}}
\end{aligned}
$$

with $u_{i}=\left(g_{i} p_{i}^{*-1} z^{-k} \bmod p_{i}\right) p_{i}^{*}$.

The element a is highly non-linear in the $r_{i}^{\prime} \mathrm{s}$
The element a is different from the random q^{\prime} we had before when adapting DGHV $(\vec{m}=\overrightarrow{0} \leftrightarrow a$ is small $)$

New Zero-Test Parameter

Pick a random, large prime $N \gg x_{0}$. We want to generate a new zero-test value $\alpha_{z t}$ such that

$$
\left|[\vec{m}]_{k} \cdot \alpha_{z t} \bmod N\right| \ll N \Longleftrightarrow \vec{m}=0
$$

New Zero-Test Parameter

Pick a random, large prime $N \gg x_{0}$. We want to generate a new zero-test value $\alpha_{z t}$ such that

$$
\left|[\vec{m}]_{k} \cdot \alpha_{z t} \bmod N\right| \ll N \Longleftrightarrow \vec{m}=0
$$

In particular, we have

$$
\begin{aligned}
& {[\vec{m}]_{k} \cdot \alpha_{z t} \bmod N} \\
& =\sum_{i}\left(m_{i} g_{i}^{-1}+r_{i} \bmod p_{i}\right) \cdot\left(u_{i} \cdot \alpha_{z t}\right)+a \cdot x_{0} \cdot \alpha_{z t} \bmod N
\end{aligned}
$$

New Zero-Test Parameter

Pick a random, large prime $N \gg x_{0}$. We want to generate a new zero-test value $\alpha_{z t}$ such that

$$
\left|[\vec{m}]_{k} \cdot \alpha_{z t} \bmod N\right| \ll N \Longleftrightarrow \vec{m}=0
$$

In particular, we have

$$
\begin{aligned}
& {[\vec{m}]_{k} \cdot \alpha_{z t} \bmod N} \\
& =\sum_{i}\left(m_{i} g_{i}^{-1}+r_{i} \bmod p_{i}\right) \cdot\left(u_{i} \cdot \alpha_{z t}\right)+a \cdot x_{0} \cdot \alpha_{z t} \bmod N
\end{aligned}
$$

so we want $\left|\alpha_{z t} \cdot u_{i} \bmod N\right| \ll N$ and $\left|\alpha_{z t} \cdot x_{0} \bmod N\right| \ll N$

How To Generate $\alpha_{z t}$?

Given N, the generation of $\alpha_{z t} \in \mathbb{Z}_{N}$ such that for all $i,\left|u_{i} \alpha_{z t} \bmod N\right|$ and $\left|x_{0} \alpha_{z t} \bmod N\right|$ are small is not obvious.

How To Generate $\alpha_{z t}$?

Given N, the generation of $\alpha_{z t} \in \mathbb{Z}_{N}$ such that for all $i,\left|u_{i} \alpha_{z t} \bmod N\right|$ and $\left|x_{0} \alpha_{z t} \bmod N\right|$ are small is not obvious.

The problem amounts to finding a relatively short vector in a lattice

$$
\left(\begin{array}{ccccc}
1 & u_{1} & \cdots & u_{n} & x_{0} \\
& N & & & \\
& & \ddots & & \\
& & & N & \\
& & & & N
\end{array}\right)
$$

How To Generate $\alpha_{z t}$?

Given N, the generation of $\alpha_{z t} \in \mathbb{Z}_{N}$ such that for all $i_{,}\left|u_{i} \alpha_{z t} \bmod N\right|$ and $\left|x_{0} \alpha_{z t} \bmod N\right|$ are small is not obvious.

The problem amounts to finding a relatively short vector in a lattice

$$
\left(\begin{array}{ccccc}
1 & u_{1} & \cdots & u_{n} & x_{0} \\
& N & & & \\
& & \ddots & & \\
& & & N & \\
& & & & N
\end{array}\right)
$$

Use LLL? (we can tolerate an exponential approx. factor over SVP), but typically $n \geq 10^{5}$

How To Generate $\alpha_{z t}$?
 Using the structure of the u_{i}^{\prime} s

How To Generate $\alpha_{z t}$?
 Using the structure of the $u_{i}^{\prime} \mathrm{S}$

Remember that $N \gg x_{0}$ and $u_{i}=\left(g_{i} p_{i}^{*-1} z^{k} \bmod p_{i}\right) p_{i}^{*}$

How To Generate $\alpha_{z t}$?
 Using the structure of the $u_{i}^{\prime} \mathrm{S}$

Remember that $N \gg x_{0}$ and $u_{i}=\left(g_{i} p_{i}^{*-1} z^{k} \bmod p_{i}\right) p_{i}^{*}$
First note that $p_{j}^{-1} u_{i} \bmod N$ is small for all $i \neq j$

How To Generate $\alpha_{z t}$?
 Using the structure of the $u_{i}^{\prime} \mathrm{S}$

Remember that $N \gg x_{0}$ and $u_{i}=\left(g_{i} p_{i}^{*-1} z^{k} \bmod p_{i}\right) p_{i}^{*}$
First note that $p_{j}^{-1} u_{i} \bmod N$ is small for all $i \neq j$
Only $p_{j}^{-1} u_{j} \bmod N$ is not a priori small

How To Generate $\alpha_{z t}$?
 Using the structure of the $u_{i}^{\prime} s$

Remember that $N \gg x_{0}$ and $u_{i}=\left(g_{i} p_{i}^{*-1} z^{k} \bmod p_{i}\right) p_{i}^{*}$
First note that $p_{j}^{-1} u_{i} \bmod N$ is small for all $i \neq j$
Only $p_{j}^{-1} u_{j} \bmod N$ is not a priori small
Let us find α_{j} such that $\alpha_{j} \cdot p_{j}^{-1} u_{j} \bmod N$ is small As before it amounts to finding a short vector in

$$
\left(\begin{array}{cc}
\lceil N / B\rceil & p_{j}^{-1} u_{j} \\
& N
\end{array}\right)
$$

How To Generate $\alpha_{z t}$?
 Using the structure of the u_{i}^{\prime} 's

$$
\left(\begin{array}{cc}
\lceil N / B\rceil & p_{j}^{-1} u_{j} \\
& N
\end{array}\right)
$$

How To Generate $\alpha_{z t}$?

Using the structure of the $u_{i}^{\prime} \mathrm{S}$

$$
\left(\begin{array}{cc}
\lceil N / B\rceil & p_{j}^{-1} u_{j} \\
& N
\end{array}\right)
$$

We chose B such that LLL finds a short vector

$$
\left(\alpha_{j} \cdot\lceil N / B\rceil, \beta_{j}\right)
$$

where $\left|\alpha_{j}\right| \leq \sqrt{p_{j}}$ and $\left|\beta_{j}=\alpha_{j} \cdot p_{j}^{-1} u_{j} \bmod N\right| \leq N / \sqrt{p_{j}}$.

How To Generate $\alpha_{z t}$?

Using the structure of the $u_{i}^{\prime} s$

$$
\left(\begin{array}{cc}
\lceil N / B\rceil & p_{j}^{-1} u_{j} \\
& N
\end{array}\right)
$$

We chose B such that LLL finds a short vector

$$
\left(\alpha_{j} \cdot\lceil N / B\rceil, \beta_{j}\right)
$$

where $\left|\alpha_{j}\right| \leq \sqrt{p_{j}}$ and $\left|\beta_{j}=\alpha_{j} \cdot p_{j}^{-1} u_{j} \bmod N\right| \leq N / \sqrt{p_{j}}$.
New zero-testing element:

$$
\alpha_{z t}=\sum_{j} h_{j} \cdot \alpha_{j} \cdot p_{j}^{-1} \bmod N
$$

How To Generate $\alpha_{z t}$?
 Using the structure of the $u_{i}^{\prime} \mathrm{S}$

New zero-testing element (sizes to keep in mind $\quad N \approx x_{0} \cdot p_{j}, \quad \alpha_{j} \approx \sqrt{p_{j}}$):

$$
\alpha_{z t}=\sum_{j} h_{j} \cdot \alpha_{j} \cdot p_{j}^{-1} \bmod N
$$

When applied on an encoding $[\vec{m}]_{k}$:

$$
\begin{aligned}
& {[\vec{m}]_{k} \cdot \alpha_{z t} \bmod N} \\
& =\sum_{i}\left(m_{i} g_{i}^{-1}+r_{i} \bmod p_{i}\right) \cdot\left(u_{i} \cdot \alpha_{z t}\right)+a \cdot x_{0} \cdot \alpha_{z t} \bmod N
\end{aligned}
$$

How To Generate $\alpha_{z t}$?
 Using the structure of the $u_{i}^{\prime} \mathrm{S}$

New zero-testing element (sizes to keep in mind $\quad N \approx x_{0} \cdot p_{j}, \quad \alpha_{j} \approx \sqrt{p_{j}}$):

$$
\alpha_{z t}=\sum_{j} h_{j} \cdot \alpha_{j} \cdot p_{j}^{-1} \bmod N
$$

When applied on an encoding $[\vec{m}]_{k}$:

$$
\begin{aligned}
& {[\vec{m}]_{k} \cdot \alpha_{z t} \bmod N} \\
& =\sum_{i}\left(m_{i} g_{i}^{-1}+r_{i} \bmod p_{i}\right) \cdot\left(h_{i} \beta_{i}+\sum_{j \neq i} h_{j} \alpha_{j} \cdot u_{i} / p_{j}\right) \\
& +a \cdot x_{0} \cdot \alpha_{z t} \bmod N
\end{aligned}
$$

An Important Caveat Cannot work directly modulo x_{0}

An Important Caveat Cannot work directly modulo x_{0}

x_{0} cannot be made public, contrary to [CLT13]

An Important Caveat Cannot work directly modulo x_{0}

x_{0} cannot be made public, contrary to [CLT13] However, define $v_{0}=x_{0} \cdot \alpha_{z t} \bmod N$, and

$$
\begin{aligned}
& \left([\overrightarrow{0}]_{k} \cdot \alpha_{z t} \bmod N\right) \bmod v_{0} \\
& =\left(\sum_{i} r_{i} \cdot\left(h_{i} \beta_{i}+\sum_{j \neq i} h_{j} \alpha_{j} \cdot u_{i} / p_{j}\right)+a \cdot v_{0} \in \mathbb{Z}\right) \bmod v_{0} \\
& =\sum_{i} r_{i} \cdot\left(h_{i} \beta_{i}+\sum_{j \neq i} h_{j} \alpha_{j} \cdot u_{i} / p_{j}\right) \bmod v_{0}
\end{aligned}
$$

An Important Caveat Cannot work directly modulo x_{0}

x_{0} cannot be made public, contrary to [CLT13] However, define $v_{0}=x_{0} \cdot \alpha_{z t} \bmod N$, and

$$
\begin{aligned}
& \left([\overrightarrow{0}]_{k} \cdot \alpha_{z t} \bmod N\right) \bmod v_{0} \\
& =\left(\sum_{i} r_{i} \cdot\left(h_{i} \beta_{i}+\sum_{j \neq i} h_{j} \alpha_{j} \cdot u_{i} / p_{j}\right)+a \cdot v_{0} \in \mathbb{Z}\right) \bmod v_{0} \\
& =\sum_{i} r_{i} \cdot\left(h_{i} \beta_{i}+\sum_{j \neq i} h_{j} \alpha_{j} \cdot u_{i} / p_{j}\right) \bmod v_{0}
\end{aligned}
$$

An Important Caveat A Ladder of encodings

An Important Caveat A Ladder of encodings

Making x_{0} secret is somewhat inconvenient: when we add or multiply encodings, we cannot reduce them modulo x_{0} anymore to keep them of the same size

An Important Caveat A Ladder of encodings

Making x_{0} secret is somewhat inconvenient:
when we add or multiply encodings, we cannot reduce them modulo x_{0} anymore to keep them of the same size

Solution (taken from [DGHV10]): publish a ladder of encodings of 0 of increasing size

- encodings

$$
X_{i}^{(j)}=\left(\operatorname{CRT}_{p_{i}}\left(r_{i} g_{i}\right) / z^{j} \bmod x_{0}\right)+q_{i} \cdot x_{0}
$$

with $q_{i} \leftarrow\left[0,2^{i}\right)$ for $i=1, \ldots, \log \left(x_{0}\right)$

- do the operation over \mathbb{Z}, and remove $X_{i}^{(j)}$ for decreasing i's

Concrete Attempt

Concrete Attempt

Consider $u=[\overrightarrow{0}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{c}]_{1}$

Concrete Attempt

Consider $u=[\overrightarrow{0}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{c}]_{1}$
Apply the ladder to reduce its size to the size of x_{0} :

$$
u^{\prime}=u+\sum s_{i} X_{i}^{(k)}
$$

Concrete Attempt

Consider $u=[\overrightarrow{0}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{c}]_{1}$
Apply the ladder to reduce its size to the size of x_{0} :

$$
u^{\prime}=u+\sum s_{i} X_{i}^{(k)}
$$

Write u^{\prime} over \mathbb{Z} :

$$
u^{\prime}=\sum_{i}\left(r_{i} \cdot \hat{b}_{i} \cdot \hat{c}_{i}+s_{i} \cdot r_{X, i, k}\right) \cdot u_{i}-a \cdot x_{0}
$$

Concrete Attempt

Consider $u=[\overrightarrow{0}]_{k-2} \cdot[\vec{b}]_{1} \cdot[\vec{c}]_{1}$
Apply the ladder to reduce its size to the size of x_{0} :

$$
u^{\prime}=u+\sum s_{i} X_{i}^{(k)}
$$

Write u^{\prime} over \mathbb{Z} :

$$
u^{\prime}=\sum_{i}\left(r_{i} \cdot \hat{b}_{i} \cdot \hat{c}_{i}+s_{i} \cdot r_{X, i, k}\right) \cdot u_{i}-a \cdot x_{0}
$$

All si's and a come up in the way of Cheon et al. attack

Proof-of-concept Implementation

https://github.com/tlepoint/new-multilinear-maps

Instantiation	λ	κ	n	η	Δ	ρ	$\gamma=n \cdot \eta$	pp size
Small	52	6	540	1679	23	52	$0.9 \cdot 10^{6}$	27 MB
Medium	62	6	2085	1989	45	62	$4.14 \cdot 10^{6}$	175 MB
Large	72	6	8250	2306	90	72	$19.0 \cdot 10^{6}$	1.2 GB
Extra	80	6	25305	2619	159	85	$66.3 \cdot 10^{6}$	6.1 GB

Setup	Publish	KeyGen
5.9 s	0.10 s	0.17 s
36 s	0.33 s	1.06 s
583 s	2.05 s	6.17 s
4528 s	7.8 s	23.9 s

Conclusion

Conclusion

The CLT scheme has many interesting features:
composite order maps, assumed hardness of GDDH but also of DLIN \& SubM

Conclusion

The CLT scheme has many interesting features:
composite order maps,
assumed hardness of GDDH but also of DLIN \& SubM
Concrete targets to attack in practice if desired Same efficiency as original CLT13

Conclusion

The CLT scheme has many interesting features:
composite order maps,
assumed hardness of GDDH but also of DLIN \& SubM
Concrete targets to attack in practice if desired Same efficiency as original CLT13

Open problems for CLT15:

- Analyze the reparation
- Improve the efficiency
- Adapt the technique to [GGH13]?

Thank You Questions \& Discussion

CRYPTOEXPGRTS ${ }^{\text {吅 }}$

Discussion

1. Design

- public encoding space / inversion

2. Attacks
3. Assumptions

- what sort of assumptions can be made?
- base multilinear maps on well-known problems

4. Applications

- something that look different from obfuscation
- what can you do with a small number of levels?
- relation between 2-multilinear maps / pairings in applications

