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Before We Start

I'm going to talk about an exact algorithm. To
break crypto, you only need to approximate
SVP to within some polynomial factor.

(The fastest algorithm to provably break crypto runs in
20-4n time [Sch87, GNO8, LWXZ11].)
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Before We Start

This algorithm is easy to understand. It you
aren’t following, that is my fault. So, please
interrupt me frequently.
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| attices
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| attices

e L is a discrete set of vectors in R"
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| attices

e L is a discrete set of vectors in R"

e Specified by a basis bi,...,b,, linearly independent vectors
o C: {a1b1+°°°+anbn ‘ a; GZ}
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The Shortest Vector Problem
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The Shortest Vector Problem

* SVP(L) = shortest non-zero y € L
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The Shortest Vector Problem

* SVP(L) = shortest non-zero y € £
 NP-hard (even to approximate).
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The Shortest Vector Problem

* SVP(L) = shortest non-zero y € L

 NP-hard (even to approximate).
+ M(L) = [[SVP(L)]]
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Progress on SVP

Time Space
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Prcgress on SVP

Time Space

[Kan86] Oln
(Enumeration) n")
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Prcgress on SVP

Time Space
[Kan86] Oln
_____________ Enumeration) | 7™ poly(m)
[AKSO01] : y
_____________________ Sievingg | 20V 90
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Prcgress on SVP

Time Space
[Kan86] O(n
_____________ Enumeraiony | n7" poly(n)
[AKSO1] ] .
_____________________ Seving | 29" 20
[':\'n‘(,ofé:?(_’]g’ 02.465n+0(n)  o1.233n+0(n)
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Progress on SVP

Time Space
[Kan86] O(n
_____________ Emumerationy | 7" poly(n)
[AKSO01] } .
(Sieving) 20(n) 20 (n)

IMV10b]
(Voronoi cell, 92nto(n) | gn+to(n)
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Progress on SVP

[Kan86]
(Enumeration)

[AKSO01]
(Sieving)

[MV10b]
(Voronoi cell,

This work
(Discrete Gaussian
sampling)
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Time Space
nO ) poly(n)
QO(n) 20(n)
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Our Algorithm
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(Gaussian Distribution
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(Gaussian Distribution

Gauss(s) := Pr[x]| e~ IIxI%/s°
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(Gaussian Distribution

Gauss(s) := Pr[x] o lIxl1%/s®
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(Gaussian Distribution

GaUSS(S) s Pr[x] X €_||x||2/82

Aggarwal, Dadush, Regey, SVP from Discrete Gaussian Sampling



(Gaussian Distribution

GaUSS(S) s Pr[x] X €_||x||2/82
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Discrete Gaussian Distribution

DC,.S o — Pr[y] X e—”)’“2/32
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Discrete Gaussian Distribution

D/ s := Prly] « e~ IyI%/5°

)
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Discrete Gaussian Distribution

DL‘,,S — Pr[y] X €_||y||2/82
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Discrete Gaussian Distribution
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Discrete Gaussian Distribution

D. := Prly] oc e IWI7/5°
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Discrete Gaussian Distribution

D[,,s i— Pr[y] X e—||)’||2/82
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Discrete Gaussian Distribution

Dﬁ,s i— Pr[y] X e—||}’||2/82
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Discrete Gaussian Distribution

DC,.S o — Pr[y] X e—”)’“2/32

0.25

0.20

[f we can obtain “enough” samples from the discrete
Gaussian with the “right” (small) parameter, then we can
solve SVP,
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Discrete Gaussian Distribution

We need at most &~ 1.38" vectors with s = A\1(£)/v/n [KL78].
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D s is very well-studied for very high parameters s > A1 (L),
above the "smoothing parameter.”
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Discrete Gaussian Distribution

We need at most &~ 1.38" vectors with s = A\1(£)/v/n [KL78].

D s is very well-studied for very high parameters s > A1 (L),
above the "smoothing parameter.”

[GPV08] show how to sample in this regime in polynomial time.

(Previously could not do much better, even in exponential time.)
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Discrete Gaussian Distribution
Easy Hard
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Discrete Gaussian Distribution
Easy Hard

s> A (L) s~ M (L)/\/n

Can we use samples from the LHS to get samples from the RHS?
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Discrete Gaussian Distribution
Easy Hard

Our goal - e

s> A (L) s~ M (L)/\/n

Can we use samples from the LHS to get samples from the RHS?
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Converting Gaussian Vectors
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Converting Gaussian Vectors

x ~ Gauss(s)
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Converting Gaussian Vectors

x ~ Gauss(s)
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Converting Gaussian Vectors

X

X ~v Gauss(s) 5 N GaUSS(S/Q)
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Converting Gaussian Vectors
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Converting Gaussian Vectors
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Converting Gaussian Vectors

20
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Converting Gaussian Vectors
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Converting Gaussian Vectors
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Converting Gaussian Vectors

What if we condition on the result being in the lattice?
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Converting Gaussian Vectors

What if we condition on the result being in the lattice?

Pr [Z =05 | .4 C E] x e~ 4IIXII*/s?
yND[l,s 2 2
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Converting Gaussian Vectors

What if we condition on the result being in the lattice?

Pr [Z =05 | .4 C E] x e~ 4lIxII*/s?
yND[l,s 2 2

Progress!
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Converting Gaussian Vectors

What if we condition on the result being in the lattice?

Pr [Z =05 | .4 C E] x e~ 4lIxII*/s?
yND[,,S 2 2

Progress!

Unfortunately, this requires us to throw out a lot of vectors.
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Converting Gaussian Vectors

What if we condition on the result being in the lattice?

Pr [Z =05 | 4 C E] x e~ 4lIxII*/s?
yND[,,S 2 2

Progress!

Unfortunately, this requires us to throw out a lot of vectors.

We only keep one from every ~ 2™ vectors each time we do
this, leading to a very slow algorithm!
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Converting Gaussian Vectors
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Aggarwal, Dadush, Regey, SVP from Discrete Gaussian Sampling



Converting Gaussian Vectors

X1 + X2
2

x1 ~ Gauss(s) X ~ Gauss(s)

~ Gauss(s/v2)
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Converting Gaussian Vectors
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Converting Gaussian Vectors

N2~ DC,S
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Converting Gaussian Vectors
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0.002 0.002

0.001 0.001

N
i 1|||l‘ |I||

e
””“ljl ;Ill““
4 i

0.000 0.000

i
J.| i .ﬁ!l'hthll'll'.l'!l!

ey Ty,f,fy, oTly! hTy',v'v"

Aggarwal, Dadush, Regey, SVP from Discrete Gaussian Sampling



onverting Gaussian Vectors

N2~ D[,,s
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Converting Gaussian Vectors
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Converting Gaussian Vectors

What about the average of two discrete
Gaussian vectors conditioned on the result
being in the lattice”
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Converting Gaussian Vectors

1+
When do we have 4 > 4 c L7?
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Converting Gaussian Vectors

}’1;}’2 c 7

When do we have

y1 =aj1by +---+ay,by,
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Converting Gaussian Vectors

1+
When do we have 4 > 4 c L7?

¥l — al,lbl R EE ey al,nbn e — a2,1b1 R EE ey a2,nbn
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Converting Gaussian Vectors

1+
When do we have 4 > 4 c L7?

¥l — al,lbl R EE ey al,nbn e — a2,1b1 R EE ey a2,nbn

YiTY2 _ Q1,1 132 o By e o 0 o] s E M - by,
2 2 -
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Converting Gaussian Vectors

1+
When do we have 4 > 4 c L7?

¥l — al,lbl R EE ey al,nbn e — a2,1b1 R EE ey a2,nbn

Y1 +Y2 _ 1+ 02,1 o By o o 0 o Ain T 2, b,
> 2 2
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Converting Gaussian Vectors

1+
When do we have 4 > 4 c L7?

¥l — al,lbl R EE ey al,nbn e — a2,1b1 R EE ey a2,nbn

Y1 +Y2 _ 1+ 02,1 o By o o 0 o Ain T 2, b,
> 2 2

<— y; =y, mod 2L
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Converting Gaussian Vectors

}’1;}’2 c 7

When do we have

Y1 = Q1 We have 2212 ¢ 1 ifand onlyif Y1,¥Y2 arein the - a9 by,
2 same coset of 2.

Y1 b,

(Note that there are 9™ cosets.)
T —

V1 TY2
2

c L <— a1, = a2 mod 2

< V1 =YV2 mod 2L
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Converting Gaussian Vectors

What about the average of two discrete Gaussian
vectors conditioned on the result being in the lattice”
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Converting Gaussian Vectors

L X% £
& © © © © © ©

QCQIQQQ

\4

What about the average of two discrete Gaussian
vectors conditioned on the result being in the lattice”
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Converting Gaussian Vectors
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What about the average of two discrete Gaussian
vectors conditioned on the result being in the lattice”
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Converting Gaussian Vectors
£ XL

CCQ?

What about the average of two discrete Gaussian
vectors conditioned on the result being in the lattice”
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Converting Gaussian Vectors
D

\4

What about the average of two discrete Gaussian
vectors conditioned on the result being in the lattice”
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Converting Gaussian Vectors

LT o— {(Yla}’Z) L V1 = Yo (mod 2£)}
& & &

- & & & -

\4

What about the average of two discrete Gaussian
vectors conditioned on the result being in the lattice”
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Converting Gaussian Vectors

LT .= {(Y1a)’2) : y1=y2 (mod Qﬁ)}

@ T e

What about the average of two discrete Gaussian
vectors conditioned on the result being in the lattice”
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Converting Gaussian Vectors
& T &

. + .
& l &

What about the average of two discrete Gaussian
vectors conditioned on the result being in the lattice”
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Converting Gaussian Vectors

rotate(L) = V2L x V2L
@ T @
— @ —+— —9—
@ Lo
|

What about the average of two discrete Gaussian
vectors conditioned on the result being in the lattice”
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Converting Gaussian Vectors

rotate(L1) = V2L x V2L
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Converting Gaussian Vectors

rotate(L1) = V2L x V2L

(Y'layQ) ™~ DLZT,S =7 rOtate(Y'bY‘Z) ™~ D\/ﬁﬁ,x\/ﬁﬁ,s
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Converting Gaussian Vectors

rotate(L1) = V2L x V2L

(¥1,¥2) ~ Dt s = rotate(y1,¥2) ~ D srx/ac.s

Y1 1Y Y1—YQ>

rotate(y,ys) := ( B ' 5
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Converting Gaussian Vectors

rotate(L1) = V2L x V2L

(¥1,¥2) ~ Dt s = rotate(y1,¥2) ~ D srx/ac.s

Y1 TY2 }’1—}’2)

rotate(y,ys) := ( 7% 7

V1 . e Yo Y1 — V2 B rOtate(yla YZ) D
( 2 . 2 ) — \/§ ~ [:X[:,S/\/i
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Converting Gaussian Vectors

rotate(L1) = V2L x V2L

(¥1,¥2) ~ Dt s = rotate(y1,¥2) ~ D srx/ac.s

- (Y1t Y2 Y12
rotate(y1, y2) += NG Progress!

yi1+y2 y1 —y2\ rotate(yi,y2) D l
( 9 a 9 ) — \/5 T D)
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Converting Gaussian Vectors

rotate(L1) = V2L x V2L

(Yla YZ) ™~ DL:T,S =7 rOtate(Y'la YZ) ™~ D\/§£X\/§£’S
If we sample ¥1,¥2 ~ Dr.s
then their average will be distributed as D ¢,./3, ygress!
it we condition on the result being in the lattice. '
(Y1 — Y1 — }’2) B rotate(y1,y2) l
2 7 2

o \/§ NDﬁXﬁ,s/\/ﬁ
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Sampling from the
Conditional Distribution
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Sampling from the
Conditional Distribution

Pr —
ylay?.NDL:,s e 2

e, 4 ” _
Y1 T ¥2 y‘}’12}’2€£
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Sampling from the
Conditional Distribution

Y1+ Yo yi+y2 .
Pr — ‘ e L
ylayl?.NDE,s X 2 y 2

yi1+yo |
X E Pr[D, s € c]?- Pr = ) 1,¥2 €C
[ £ ] y1,¥2~Dgc s | 2 2 [ )

coset ¢
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Sampling from the
Conditional Distribution

Pr —
ylaY‘ZNDC,s 5 2

e, 4 ” _
Y1 T ¥2 y‘}’12}’2€£

Y1+ Yo -
X E Pr[D, s € c]?- Pr = | 1,¥2 €C
[ £ ] y1,¥2~Dgc s | 2 2 [ )

coset ¢

Input: ~ 2" samples from D/ ¢
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Sampling from the
Conditional Distribution

Py }’1+YQ:y‘}’1+Y2€£
ylay?.NDL:,s 2 2

. pu—

y1+ Yo
6 Pr[D, , € c]*- Pr :y|y1y2€c
COS;C [ ° ] yleyQNDﬁ,s i 2 : 1

Input: ~ 2" samples from D/ ¢

1. Separate the vectors into “buckets” according to their coset.
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Sampling from the
Conditional Distribution

Py Y1+}’2:y‘}’1+}’2€£
ylayQNDL:,s 2 2

. pu—

yV1+yo2
X Pr|D, € cl?- Pr :y|y1 Ya & C
CC§C [ ° ] ylayQNDﬁ,s i 2 ’ 1

Input: ~ 2" samples from D/ ¢

1. Separate the vectors into “buckets” according to their coset.
2. Pair a number of vectors from each coset proportional to [{y € c}\2
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Sampling from the
Conditional Distribution

Y1ty 1 +Yy:
Pr Y1 }’z:y‘}ﬁ y2€£
ylayQNDC,s X 2 2 B
yV1+yo2 -

X Z Pr[D;s €c]*- Pr

ylayQNDC,S 2
coset ¢ -

ZY|ylay2€C

Input: ~ 2" samples from D/ ¢

1. Separate the vectors into “buckets” according to their coset.
2. Pair a number of vectors from each coset proportional to [{y € c}\2
3. Output the averages of the pairs.
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Sampling from the
Conditional Distribution

V1 + Yo y1+ yo y
Pr = ‘ c L
yiya~De .| 2 Y >

.

_ 19 - [y1+yo
), Pr[Dend Y|YIaY2€C
coset ¢ Output will be Dr,s/vz!!! i

———

Input: ~ 2" samples from D/ ¢

1. Separate the vectors into “buckets” according to their coset.
2. Pair a number of vectors from each coset proportional to [{y € c}\2
3. Output the averages of the pairs.
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How Many Vectors Do We Get”?
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How Many Vectors Do We Get”?

# of output vectors = T - Z {y € c}|?
C

Aggarwal, Dadush, Regey, SVP from Discrete Gaussian Sampling



How Many Vectors Do We Get”?

2
# of output vectors =T - ; {y € c}|2 = HE;L{I}{I;ECEJH
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How Many Vectors Do We Get”?

M := # input vectors

2
# of output vectors =T - ; {y € c}|2 = HE;L{I}{I;ECEJH
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How Many Vectors Do We Get”?

M := # input vectors

2
# of output vectors =T - ; {y € c}|2 = HE;L{I}{I;ECEJH

> .Pr[D, , € c]?

~ M -
max. Pr[Dg s € c]
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How Many Vectors Do We Get”?
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2
# of output vectors =T - zc: {y € (:}|2 = HE;L{I}{I}’GECEJH

> .Pr[D, , € c]?

~ M -
max. Pr[Dg s € c]

M
/2

This can be as bad as after a single step!
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# of output vectors ~ M -
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How Many Vectors Do We Get”?

ZC PI‘[DE,S = C]2
max¢ Pr[Dg s € c]

# of output vectors ~ M -

2 _ Ps(ET)
pS(L)z
_ ps(V2L x V2L)
 ps(L)?
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ZC PI‘[DE,S = C]2
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B ,03/\/5(5)2
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ps/\/ﬁ(c)z
ps(L)? maxe Pr[D, s € c

# of output vectors ~ M -
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How Many Vectors Do We Get”?

f M Pepval L
tput vectors ~ M -
# of output vectors ps(L£)2 maxe Pr[Dy , € c]
Psva(£)"
= M -
ps(ﬁ)ps(QE)
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How Many Vectors Do We Get”?

f M Pepval L
# of output vectors =~ : ps(ﬁ)QmaXc Pr[Dc,s - C]
=M - Ps/va(L)"
ps(ﬁ)ps(QE)
- M- Ps/v3(L)°
Ps(ﬁ)/)s/Q(L)
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/ , 2
p . zizl (E)
# of output vectors after ¢ steps ~ M - | | 2 2
=0 pQ_%s(L)'OQ_ i22 S(E)
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For s (£)
# of output vectors after ¢ steps ~ M - H 2
=0 Pa4 .\ L)P,- sz (L)
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=M 3 e
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/ , 2
For s (£)
# of output vectors after ¢ steps ~ M - H 2
=0 Pa4 .\ L)P,- sz (L)

| ps/\/ﬁ(ﬁ) | ,02_@1 (ﬁ)

=M 3 e
ps(L) P2_%ﬁs(£)
Z M . 2—n/2

Setting M ~ 2" gives # output vectors ~ 2™/2
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How Many Vectors Do We Get”?

/

p,-iz1 (L)’
# of output vectors after ¢ steps ~ M - H 2
e i)

i (L)p,_i2 (L)

£). .oy

Recall that we only need 1.38™ samples to solve SVP!

ps(L) p,_exz (L)

Z M . 2—n/2

Setting M ~ 2" gives # output vectors ~ 2™/2
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How Many Vectors Do We Get”?

/

p,-iz1 (L)’
# of output vectors after ¢ steps ~ M - H 2
e i)

i (L)p,_i2 (L)

£). .oy

Recall that we only need 1.38™ samples to solve SVP!

D ——

%i
ps(L) Po—tf2 (£)

Z M . 2—n/2

Setting M ~ 2" gives # output vectors ~ 2™/2
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~Final Algorithm

SVPSolver(L)

1. Use GPV to get ~ 2™ samples from Dr.s with s > A\ (L) .

2. Run the (“squaring”) discrete Gaussian combiner on the

result repeatedly.

3. Output a 27/2 samples from D, , with s = A\ (L)/vV/n .

4. We can then simply output a shortest non-zero vector from
our samples.
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Summary of Results

Discussed in this talk
« 9n+o(n) algorithm for SVP.
« We actually can sample 9™/2 vectors from D,c,s for any s in
time Qnto(n)
Additional results from this work
- 9n/2+0(n)_time algorithm for sampling 2™/2 vectors above
smoothing.
1.93-GapSVP.
- .422-BDD.
: \/n logn -SIVP
Recent addition
» Sampling from D,  reduces to SVP. [S15, preprint]
(Not equivalence because the reduction in the other direction
requires 1.38" samples.)
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Open Questions/Future Work

e Other uses for discrete Gaussian sampling at
arbitrary parameters”

» Faster discrete Gaussian sampling”

* |s centered discrete Gaussian sampling NP-hard?
(Conjecture: No. Can we prove it?)

* Lower bounds for CVP/SVP assuming SETH (or
something similar)?
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