
Securing Computation Workshop, Simons Institute Berkeley, June 12, 2015

How Fair is Your Protocol?
A Utility-based Approach to
Protocol Optimality

Juan Garay (Yahoo Labs)
Jonathan Katz (UMD)
Björn Tackmann (UCSD)
Vassilis Zikas (ETH Zürich)

[PODC 2015]

1

Two Coin-Toss Protocols
Protocol A Protocol B

1. Each party commits to a bit.
2. Both parties open their

commitments.
3. The result is the XOR.

2

Two Coin-Toss Protocols
Protocol A Protocol B

1. Each party commits to a bit.
2. Both parties open their

commitments.
3. The result is the XOR.

1. Each party commits to a bit.

2

Two Coin-Toss Protocols
Protocol A Protocol B

1. Each party commits to a bit.
2. Both parties open their

commitments.
3. The result is the XOR.

1. Each party commits to a bit.
2. They toss a coin i* ∈ {1,2}.

2

Two Coin-Toss Protocols
Protocol A Protocol B

1. Each party commits to a bit.
2. Both parties open their

commitments.
3. The result is the XOR.

1. Each party commits to a bit.
2. They toss a coin i* ∈ {1,2}.
3. p(3-i*) opens its commitment to pi*

2

Two Coin-Toss Protocols
Protocol A Protocol B

1. Each party commits to a bit.
2. Both parties open their

commitments.
3. The result is the XOR.

1. Each party commits to a bit.
2. They toss a coin i* ∈ {1,2}.
3. p(3-i*) opens its commitment to pi*

4. pi* opens its commitment to p(3-i*)

2

Two Coin-Toss Protocols
Protocol A Protocol B

1. Each party commits to a bit.
2. Both parties open their

commitments.
3. The result is the XOR.

1. Each party commits to a bit.
2. They toss a coin i* ∈ {1,2}.
3. p(3-i*) opens its commitment to pi*

4. pi* opens its commitment to p(3-i*)

5. The result is the XOR.

2

Fairness in SFE

x y

z = f(x,y)z z

Fairness:
• “if one party learns the output, the other party also learns it,”
• generally impossible in 2PC [Cleve, STOC’86].

3

Fairness in SFE
x y

z = f(x,y)z z

does not get z

gets z does not get z

gets z

does not get z

does not get z gets z

gets z

4

Possible outcomes (intuitively):

Fairness in SFE
x y

z = f(x,y)z z

does not get z

gets z does not get z

gets z

does not get z

does not get z gets z

gets z

4

Possible outcomes (intuitively): “Fairness”

good

bad

good

good

Fairness in SFE
x y

z = f(x,y)z z

does not get z

gets z does not get z

gets z

does not get z

does not get z gets z

gets z

4

Possible outcomes (intuitively): “Fairness”

good

bad

good

good

Utility

γ00

γ10

γ01

γ11

Fairness in SFE
x y

z = f(x,y)z z

does not get z

gets z does not get z

gets z

does not get z

does not get z gets z

gets z

4

Possible outcomes (intuitively): “Fairness”

good

bad

good

good

Utility

γ00

γ10

γ01

γ11

Fairness in SFE
x y

z = f(x,y)z z

does not get z

gets z does not get z

gets z

does not get z

does not get z gets z

gets z

Natural conditions: γ01 < γ00, γ11 and γ00, γ11 < γ10
4

Possible outcomes (intuitively): “Fairness”

good

bad

good

good

Utility

γ00

γ10

γ01

γ11

Fairness in SFE
x y

z = f(x,y)z z

does not get z

gets z does not get z

gets z

does not get z

does not get z gets z

gets z

Natural conditions: γ01 < γ00, γ11 and γ00, γ11 < γ10
4

Protocol comparison and optimality:

• the utilities for the individual outcomes
define an expected payoff for each
adversarial strategy,

• a protocol is better (fairer) if the expected
payoff of the best adversarial strategy is
smaller.

Other Relaxed Notions of Fairness

❖ “Gradual Release”-type approaches [Goldwasser-Levin,
1990; Garay-MacKenzie-Prabhakaran-Yang, 2005; …]

❖ Rational fairness [Asharov-Canetti-Hazay, 2011]

❖ 1/p-Security [Gordon-Katz, 2010; …]

5

Rational Protocol Design

[Garay-Katz-Maurer-T-Zikas, FOCS 2013]

Protocol Designer Attacker

Protocol 𝛑

Adversary strategy for 𝛑

• Two-move “meta” game,
• zero-sum: uD = -uA,

• 𝜀-subgame-perfect equilibrium.

6

Rational Protocol Design

F

7

Rational Protocol Design

FStep 1: Relax functionality

7

Rational Protocol Design

FStep 1: Relax functionality

7

Rational Protocol Design

FStep 1: Relax functionality

Ss.t. ∃ S:

7

Rational Protocol Design

FStep 1: Relax functionality

Ss.t. ∃ S:Step 2: Define events in ideal

7

Rational Protocol Design

FStep 1: Relax functionality

Ss.t. ∃ S:Step 2: Define events in ideal
Event:

Ideal adversary
exploits fault.

7

Rational Protocol Design

FStep 1: Relax functionality

Ss.t. ∃ S:Step 2: Define events in ideal
Event:

Ideal adversary
exploits fault.

Step 3: Define payoff

7

Rational Protocol Design

FStep 1: Relax functionality

Ss.t. ∃ S:Step 2: Define events in ideal
Event:

Ideal adversary
exploits fault.

Step 3: Define payoff

Assign a payoff
to each event.

7

Rational Protocol Design

FStep 1: Relax functionality

Ss.t. ∃ S:Step 2: Define events in ideal
Event:

Ideal adversary
exploits fault.

Step 3: Define payoff

Payoff(A) = min
"good" S

payoff(S)

Assign a payoff
to each event.

7

Defining Fairness (1)

Ffair-sfe

1. Get inputs x and y
2. Compute z = f(x,y)
3. Possibly: Output z to p1

and p2

x

z

y

z

8

Defining Fairness (2)

Funfair-sfe

1. Get inputs x and y
2. Compute z = f(x,y)
3. Output z to p1 and p2

x y

z

BREAK!

9

Step 1:

Defining Fairness (3)
The protocol 𝛑 realizes Funfair-sfe, i.e., there is S:

Funfair-sfe

1. Get inputs x and y
2. Compute z = f(x,y)
3. Output z to p1 and p2

S

𝛑

≣

10

Defining Fairness (4)

Step 2: Define events in the ideal execution:

(a) Neither party gets the output: E00, payoff γ00

(b) Only honest party gets the output: E01, payoff γ01

(c) Only corrupted party gets the output: E10, payoff γ10

(d) Both parties get the output: E11, payoff γ11

Natural conditions: γ01 < γ00, γ11 and γ00, γ11 < γ10

11

Defining Fairness (5)
Step 3: Define the expected payoff for each S:

payoff(S) = Pr(Eij) ⋅γ ij
i, j∈{0,1}
∑

The payoff of an adversary is the expected payoff of the best simulator:

Payoff(A) = min
"good" S

payoff(S)

12

Optimal Protocol for Two Party SFE

❖ The protocol achieves .

❖ This is optimal (see next slide).

γ 10 + γ 11
2

1. In an unfair SFE:
(a) choose i* ∈ {1,2}
(b) compute a sharing of the

output value
(c) output i* and one share to

each party
2. in case of abort, restart with

default input for other party
3. p(3-i*) sends its share to pi*

4. pi* sends its share to p(3-i*)
13

Optimal Protocol for Two Party SFE

❖ The protocol achieves .

❖ This is optimal (see next slide).

γ 10 + γ 11
2

1. In an unfair SFE:
(a) choose i* ∈ {1,2}
(b) compute a sharing of the

output value
(c) output i* and one share to

each party
2. in case of abort, restart with

default input for other party
3. p(3-i*) sends its share to pi*

4. pi* sends its share to p(3-i*)

Proof idea:

• secure w/o fairness (based on
underlying SFE and repeat
before leaking output)

• the simulator chooses i*
uniformly at random

13

Optimal Protocol for Two Party SFE

Round 1
Round 2

Round n
…

There exist functions such that...

14

Optimal Protocol for Two Party SFE

Round 1
Round 2

Round n
… Run the honest protocol as follows.

In each round:
• receive the honest party’s message,
• check whether the honest protocol

would generate output,
• if so, then abort,
• otherwise, send the honestly

computed message for this round

There exist functions such that...

14

Optimal Protocol for Two Party SFE

Round 1
Round 2

Round n
… Run the honest protocol as follows.

In each round:
• receive the honest party’s message,
• check whether the honest protocol

would generate output,
• if so, then abort,
• otherwise, send the honestly

computed message for this round

In each round:

• p1 receives the output first, or
• p2 receives the output first, or
• both receive the output.

There exist functions such that...

14

Optimal Protocol for Two Party SFE

Round 1
Round 2

Round n
… Run the honest protocol as follows.

In each round:
• receive the honest party’s message,
• check whether the honest protocol

would generate output,
• if so, then abort,
• otherwise, send the honestly

computed message for this round

In each round:

• p1 receives the output first, or
• p2 receives the output first, or
• both receive the output.

Proof idea:
• a protocol can be improved by

never outputting to both in the
same round

• at least one party is first with
probability at least 1/2

There exist functions such that...

14

The Multi-Party Case

15

The Multi-Party Case

15

The Multi-Party Case

15

The Multi-Party Case

Ffair-sfe

1. Get inputs x1, x2, ..., xn

2. Compute z = f(x1, x2, ..., xn)
3. Possibly: Output z to p1, p2, ...,

pn

16

The Multi-Party Case

Ffair-sfe

1. Get inputs x1, x2, ..., xn

2. Compute z = f(x1, x2, ..., xn)
3. Possibly: Output z to p1, p2, ...,

pn

BREAK!

Give o
utput o

nly to
 m

e!

16

Multi-Party Fairness
Step 2: Define events in the ideal execution:

A. No party gets the output: E00, payoff γ00

B. Exactly all honest parties get the output: E01, payoff γ01

C. Not all honest parties, but some corrupted party gets the
output: E10, payoff γ10

D. All honest parties and some corrupted party get the
output: E11, payoff γ11

Here: stronger condition γ01 < γ00 < γ11 < γ10.

17

Multi-Party Fairness
pa

yo
ff

corrupted partiesn/2

18

Multi-Party Fairness
pa

yo
ff

corrupted parties

Standard SFE protocols

n/2

18

Multi-Party Fairness
pa

yo
ff

corrupted parties

Standard SFE protocols

n/2

“release to random party”

18

Multi-Party Fairness
pa

yo
ff

corrupted parties

Standard SFE protocols

n/2

“release to random party”

18

Rough idea:
Give the output to some party,

let him distribute.

Other Relaxed Notions of Fairness
❖ “Gradual Release”-type approaches [Goldwasser-Levin, 1990;

Garay-MacKenzie-Prabhakaran-Yang, 2005, …]

❖ Rational fairness [Asharov-Canetti-Hazay, 2011]

❖ Not closely related, after all…

❖ 1/p-Security [Gordon-Katz, 2010]

❖ Similar (quantitative) guarantee,

❖ protocols for functions with small domain or range,

❖ formally more relaxed definition.

19

Rational Protocol Design

❖ General framework (beyond fairness),

❖ supports composition (via the underlying framework),

❖ generalizes to reactive functionalities (follow-up).

cf. Ranjit’s talk

20

Rational Protocol Design
“Rational” commitment*:

Fcommit

1. Get input x

2. Output x

x

“open”

“received value”

x

* as mentioned by Rosario on Monday.21

Rational Protocol Design
“Rational” commitment*:

Fcommit

1. Get input x

2. Output x

x

“open”

“received value”

x
BREAK!

y

* as mentioned by Rosario on Monday.21

Rational Protocol Design
“Rational” commitment*:

Fcommit

1. Get input x

2. Output x

x

“open”

“received value”

x

BREAK!

x

BREAK!

y

* as mentioned by Rosario on Monday.21

Summary

❖ RPD is a general framework capturing incentives,

❖ idea: build the best protocol w.r.t. the incentives,

❖ we showed optimal protocols for fairness in SFE.

❖ Follow-up: Reactive functionalities.

22

