Securing Computation Workshop, Simons Institute Berkeley, June 12, 2015

How Fair is Your Protocol? A Utility-based Approach to Protocol Optimality

Juan Garay (Yahoo Labs) Jonathan Katz (UMD) <u>Björn Tackmann</u> (UCSD) Vassilis Zikas (ETH Zürich)

[PODC 2015]

Protocol A

- 1. Each party commits to a bit.
- 2. Both parties open their commitments.
- 3. The result is the XOR.

Protocol A

- 1. Each party commits to a bit.
- 2. Both parties open their commitments.
- 3. The result is the XOR.

Protocol B

1. Each party commits to a bit.

Protocol A

- 1. Each party commits to a bit.
- 2. Both parties open their commitments.
- 3. The result is the XOR.

- 1. Each party commits to a bit.
- 2. They toss a coin $i^* \in \{1,2\}$.

Protocol A

- 1. Each party commits to a bit.
- 2. Both parties open their commitments.
- 3. The result is the XOR.

- 1. Each party commits to a bit.
- 2. They toss a coin $i^* \in \{1,2\}$.
- 3. $p_{(3-i^*)}$ opens its commitment to p_{i^*}

Protocol A

- 1. Each party commits to a bit.
- 2. Both parties open their commitments.
- 3. The result is the XOR.

- 1. Each party commits to a bit.
- 2. They toss a coin $i^* \in \{1,2\}$.
- 3. $p_{(3-i^*)}$ opens its commitment to p_{i^*}
- 4. p_{i^*} opens its commitment to $p_{(3-i^*)}$

Protocol A

- 1. Each party commits to a bit.
- 2. Both parties open their commitments.
- 3. The result is the XOR.

- 1. Each party commits to a bit.
- 2. They toss a coin $i^* \in \{1,2\}$.
- 3. $p_{(3-i^*)}$ opens its commitment to p_{i^*}
- 4. p_{i^*} opens its commitment to $p_{(3-i^*)}$
- 5. The result is the XOR.

Fairness:

- "if one party learns the output, the other party also learns it,"
- generally impossible in 2PC [Cleve, STOC'86].

Natural conditions: $\gamma_{01} < \gamma_{00}$, γ_{11} and γ_{00} , $\gamma_{11} < \gamma_{10}$

Protocol comparison and optimality:

^Jtility

 γ_{00}

 γ_{10}

 γ_{01}

 γ_{11}

 the utilities for the individual outcomes define an expected payoff for each adversarial strategy,

7 = f(x 1)

 a protocol is *better* (fairer) if the expected payoff of the *best* adversarial strategy is smaller.

Natural conditions: $\gamma_{01} < \gamma_{00}$, γ_{11} and γ_{00} , $\gamma_{11} < \gamma_{10}$

Other Relaxed Notions of Fairness

- "Gradual Release"-type approaches [Goldwasser-Levin, 1990; Garay-MacKenzie-Prabhakaran-Yang, 2005; ...]
- Rational fairness [Asharov-Canetti-Hazay, 2011]
- * 1/p-Security [Gordon-Katz, 2010; ...]

Protocol π

Adversary strategy for π

Protocol Designer

- Two-move "meta" game,
- zero-sum: $u_D = -u_{A_i}$
- *ε*-subgame-perfect equilibrium.

Attacker

Step 1: Relax functionality

Step 1: Relax functionality

Step 1: Relax functionality

Step 1: Relax functionality

Step 2: Define events in *ideal*

Step 1: Relax functionality

Step 2: Define events in *ideal*

Step 1: Relax functionality

Step 2: Define events in *ideal*

Step 3: Define payoff

Step 1: Relax functionality

Step 2: Define events in *ideal*

Step 3: Define payoff

Step 1: Relax functionality

Step 2: Define events in *ideal*

Step 3: Define payoff

$$Payoff(\mathcal{A}) = \min_{\text{"good" }S} payoff(S)$$

Defining Fairness (1)

Defining Fairness (2)

Step 1:

Defining Fairness (3)

The protocol π realizes $\mathcal{F}_{unfair-sfe}$, i.e., there is *S*:

Defining Fairness (4)

Step 2: Define events in the *ideal* execution: (a) Neither party gets the output: E_{00} , payoff γ_{00} (b) Only honest party gets the output: E_{01} , payoff γ_{01} (c) Only corrupted party gets the output: E_{10} , payoff γ_{10} (d) Both parties get the output: E_{11} , payoff γ_{11} Natural conditions: $\gamma_{01} < \gamma_{00}$, γ_{11} and γ_{00} , $\gamma_{11} < \gamma_{10}$

Defining Fairness (5)

Step 3: Define the expected payoff for each *S*:

$$payoff(S) = \sum_{i,j \in \{0,1\}} Pr(E_{ij}) \cdot \gamma_{ij}$$

The payoff of an adversary is the expected payoff of the *best* simulator:

$$Payoff(\mathcal{A}) = \min_{\text{"good" } S} payoff(S)$$

- * The protocol achieves $\frac{\gamma_{10} + \gamma_{11}}{2}$.
- * This is optimal (see next slide).
- 1. In an *unfair* SFE:
 - (a) choose $i^* \in \{1, 2\}$
 - (b) compute a sharing of the output value
 - (c) output *i** and one share to each party
- 2. in case of abort, restart with default input for other party
- 3. $p_{(3-i^*)}$ sends its share to p_{i^*}
- 4. p_{i^*} sends its share to $p_{(3-i^*)}$

- * The protocol achieves $\frac{\gamma_{10} + \gamma_{11}}{2}$.
- * This is optimal (see next slide).

Proof idea:

- secure w/o fairness (based on underlying SFE and repeat before leaking output)
- the simulator chooses *i** uniformly at random

There exist functions such that...

.

Round 1
Round 2
:
Round n

There exist functions such that...

Run the honest protocol as follows.

In each round:

- receive the honest party's message,
- check whether the honest protocol would generate output,
- if so, then abort,
- otherwise, send the honestly
 - computed message for this round

- 1. Get inputs $x_1, x_2, ..., x_n$
- 2. Compute $z = f(x_1, x_2, ..., x_n)$
- 3. Possibly: Output z to $p_1, p_2, ...,$

 p_n

Step 2: Define events in the *ideal* execution:

- A. No party gets the output: E_{00} , payoff γ_{00}
- B. Exactly all honest parties get the output: E_{01} , payoff γ_{01}
- C. Not all honest parties, but some corrupted party gets the output: E_{10} , payoff γ_{10}
- D. All honest parties and some corrupted party get the output: E_{11} , payoff γ_{11}

Here: stronger condition $\gamma_{01} < \gamma_{00} < \gamma_{11} < \gamma_{10}$.

Multi-Party Fairness

n/2

corrupted parties

Other Relaxed Notions of Fairness

- * "Gradual Release"-type approaches [Goldwasser-Levin, 1990; Garay-MacKenzie-Prabhakaran-Yang, 2005, ...]
- * Rational fairness [Asharov-Canetti-Hazay, 2011]
 - * Not closely related, after all...
- * 1/p-Security [Gordon-Katz, 2010]
 - * Similar (quantitative) guarantee,
 - * protocols for functions with small domain or range,
 - * formally more relaxed definition.

- * General framework (beyond fairness),
- supports composition (via the underlying framework),
- * generalizes to reactive functionalities (follow-up).

cf. Ranjit's talk

"Rational" commitment*:

* as mentioned by Rosario on Monday.

"Rational" commitment*:

* as mentioned by Rosario on Monday.

"Rational" commitment*:

* as mentioned by Rosario on Monday.

Summary

- * RPD is a general framework capturing incentives,
- idea: build the best protocol w.r.t. the incentives,
- * we showed optimal protocols for fairness in SFE.
- * Follow-up: Reactive functionalities.