Securing Computation Workshop, Simons Institute Berkeley, June 12, 2015

How Fair i1s Your Protocol? | juan Garay (ahoo Labs)

s Jonathan Katz (UMD)
A Utlllty—b ased Appro ach to Bj6rn Tackmann (UCSD)
Protocol Optlmallty Vassilis Zikas (ETH Ziirich)

[PODC 2015]

Two Coin-Toss Protocols

Protocol A

. Each party commits to a bit.

. Both parties open their
commitments.

. The result is the XOR.

Protocol B

Two Coin-Toss Protocols

Protocol A

. Each party commits to a bit.

. Both parties open their
commitments.

. The result is the XOR.

Protocol B

1. Each party commits to a bit.

. The result is the XOR.

Two Coin-Toss Protocols

Protocol A Protocol B

: : 1. Each party commits to a bit.
. Each party commits to a bit. A,

; , 2. They toss a coin i* € {1,2}.
. Both parties open their

commitments.

Two Coin-Toss Protocols

Protocol A

. Each party commits to a bit.
. Both parties open their
commitments.

. The result is the XOR.

Protocol B

1. Each party commits to a bit.
2. They toss a coin i* € {1,2}.
3. p@-i» opens its commitment to p;-

Two Coin-Toss Protocols

Protocol A

. Each party commits to a bit.
. Both parties open their
commitments.

. The result is the XOR.

.

Protocol B

Each party commits to a bit.
They toss a coin i* € {1,2}.

p-i» opens its commitment to p;
pi» opens its commitment to p-i#

Two Coin-Toss Protocols

Protocol A

. Each party commits to a bit.
. Both parties open their
commitments.

. The result is the XOR.

ST G

Protocol B

Each party commits to a bit.
They toss a coin i* € {1,2}.

p(3-i*) opens 1ts commitment to p;
pi» opens its commitment to p-i#
The result is the XOR.

Fairness in SFE

I _
: 2= fixy) . (

Fairness:
* “if one party learns the output, the other party also learns it,”
 generally impossible in 2PC [Cleve, STOC'86].

Fairness in SFE

X
-*;i'__}l‘») > < y
@ z z = f(X,Y) =
< >
£ ¢ 3
Vo doesnotgetz =% does not get z
f V¥
& doesnotgetz =G getsz
r g
A@ gets z 7=\ does not get z
fL elis=z 7@;@ ets z
P ol a8

Fairness in SFE

il Z

Z
>

Possible outcomes (intuitively):

¢
does not get z ,;f:g does not get z

gets z G

2
fi does not get z g’;g gets z
&
fa

gets z Py getsz

Fairness in SFE

“Fairness”
Afi does not get z ,;f/ does not get z good
fi does not get z g’;g gets z bad
f& gets z ;i";, does not get z good
fi gets z ;?; gets z good

Fairness in SFE

“Fairness” Utility
Afi does not get z (;f/ does not get z good Yoo
fi does not get z g’;g gets z bad V10
f& gets z ;i";, does not get z good Vo1
fi gets z ;?; gets z good V11

Fairness in SFE

“Fairness” Utility
Afi does not get z (;f/ does not get z good Yoo
fi does not get z g’;g gets z bad V10
f& gets z ;i";, does not get z good Vo1
fi gets z ;?; gets z good V11

Natural conditions: V01 <00, Y11 and Y00, V11 <Y10
4

Fairness in SFE

Protocol comparison and optimality:

tility
the utilities for the imdividual outcomes
definelan expected payofiforieach Y00
adversatial stratesy,
aiprotocolisetiertairer) Nisthelexpected
payooRteYEsadVersarial sStrategyas Yol
seekzil e

V10

Vi1

Natural conditions: Y01 <00, 11 and Yoo, Y11 < V10
4

Other Relaxed Notions of Fairness

“Gradual Release”-type approaches [Goldwasser-Levin,
1990; Garay-MacKenzie-Prabhakaran-Yang, 2005; ...]

« Rational fairness [Asharov-Canetti-Hazay, 2011]
« 1/p-Security [Gordon-Katz, 2010; ...]

Ratonal Protocol Design

Protocol 7

Protocol Designer Attacker

* Two-move “meta” game,
* Zero-sum: Up = -uy,
¢ e-subgame-perfect equilibrium.

P |Garay-Katz-Maurer-T-Zikas, FOCS 2013]

Ratonal Protocol Design

Ratonal Protocol Design

Step 1: Relax functionality

Ratonal Protocol Design

Step 1: Relax functionality 2

Ratonal Protocol Design

Step 1: Relax functionality 2

Ratonal Protocol Design

Step 1: Relax functionality _(g__g _

Step 2: Define events in ideal e l 2 I

Ratonal Protocol Design

Step 1: Relax functionality

Event:

! Aeidey AT
Step 2: Define events in ideal 4 I S \ [elenl adversaey
exploitsiauits

Ratonal Protocol Design

Step 1: Relax functionality ik ”
-
Eyvent:
; . Ty S =S S [deal adversar:
Step 2: Define events in ideal l I ploits fault

Step 3: Define payott

Ratonal Protocol Design

Step 1: Relax functionality

Step 2: Define events in ideal

Step 3: Define payott

Event:

Idealiadversary

Assign a payoftf
toeach event.

Ratonal Protocol Design

Step 1: Relax functionality

- Event:
S e T [dealladversary
s exploitsiauits

Step 2: Define events in ideal

Step 3: Define payoft
Payoff(4) = min payoff(§)

Hgood" S

7

Defining Fairness (1)

(o 2

Tfair—sfe

z 1. Getinputs x and y 7

22 Gempulez—=l 1))

3. Possibly: Output z to ps
and p>

w 7

Defining Fairness (2)

/

LG

1. Getinputs x and y

>
2e ComipliteZ = {lr=y)
3. Outputztop
BREAK

=

Eanfair—sfe 5 Y

Defining Fairness (3)

The protocol &t realizes Funfair-ste, i.€., there is S:

B
* O

6:5 Tunfair—sfe
r’ G < > S < >

1. Getinputs x and y

2o Complitey ==l
6 Output z to p;;%.d 2 /

Defining Fairness (4)

Step 2: Define events in the ideal execution:

(a) Neither party gets the output: Egy, payoff yoo

(b) Only honest party gets the output: E¢:, payoff yo

(c) Only corrupted party gets the output: E1g, payoff y10
(d) Both parties get the output: E11, payoff y1;

Natural conditions: Y01 < Vo0, Y11 and yoo, V11 < V10

11

Defining Fairness (5)

Step 3: Define the expected payoff for each S:

payoff(S)= Y, Pr(E,)-y,

1,je 0,1}

The payoff of an adversary is the expected payoff of the best simulator:

Payoff(4") = min payoff(S)

"good'

12

Optimal Protocol for Two Party SKFE

* The protocol achieves

* This is optimal (see next slide).

7/10 pE ?/11

2

1k

t 1. In an unfair SFE: ",
| (a) choose i* e {1,2} :
(b) compute a sharing of the

output value
(c) output i* and one share to "
each party |
2. in case of abort, restart with
| default input for other party
. 3. pe-iv sends its share to pi- |
| 4. pisends its share to pg.i+]

Optimal Protocol for Two Party SKFE

* The protocol achieves

* This is optimal (see next slide).

Proof idea:

Y 2=

2

secure w0 fairness (based on

undedyineShEEandirepeat
betoreleakinsioutput)
HesSTMUlatorcHO0SesE
wieriteyeent by zie ezinielejeni

5

t 1. In an unfair SFE: |

e a () output 1 *and one share to "

L 2. in case of abort, restart with

,‘ . pi+ sends its share to p@.i |

(a) choose i* € {1,2} |
(b) compute a sharing of the }
output value

each party

default input for other party
. pi-i7 sends its share to p;-

Optimal Protocol for Two Party SKFE
There exist functions such that...

8

a

' \ ¢ punoy \ [punoy

u punoy| ‘

14

Optimal Protocol for Two Party SKFE

There exist functions such that...

B

=
=
Gl
Sy
7
e
&=
=
Q.
N
Run the honest protocol as follows.
In each round:
* receive the honest party’s message,
7J
= * check whether the honest protocol
= would generate output,
Q. 5 I
= * if so, then abort,
* otherwise, send the honestly
14 computed message for this round

Optimal Protocol for Two Party SKFE

There exist functions such that...

D
3 P
=
=
Gl
—
I b e :
| O |
. = .
I =) 1
: = :
I N I
/\ Run the honest protocol as follows.
In each round: In each round:
5 * receive the honest party’s message,
* p1receives the output first, or = * check whether the honest protocol
=7 receives the Olltpllt ﬁI'St, or a would generate Output,
* both receive the output. = e if so, then abort,
* otherwise, send the honestly
14 computed message for this round

Optimal Protocol for Two Party SKFE

There exist functions such that...

punoy

Proofidea:
* a protocolicanbermproved by
neveroutputtingtobotiimnithe

samerouna ocol as follows.
R At easone P AT LS TS AWILI

In each round:

| . party’s message,
* P1receives the Uuipud aaiioy v - cieck wieuter the honest pl‘OtOCOl

=
* p, receives the output first, or a would generate output,
* both receive the output. = e if so, then abort,

* otherwise, send the honestly
14 computed message for this round

T'he Mulu-Party Case

15

Party Case

The Multi-

Party Case

The Multi-

T'he Mulu-Party Case

= 2

Tfair—sfe

le=Getinpliision o =
2= Gomplitoss a0 we i)
3. Possibly: Output z to ps1, p2, ...,

Dn

= -

16

T'he Mulu-Party Case

z 2

Tfair—sfe

llessGetinpilltsia o =1,
2= Gomplitoss —fleaas s)
5= PessiblyOutput zito 7y, ...,

Mula-Party Fairness

Step 2: Define events in the ideal execution:
A. No party gets the output: Epy, payoff oo
B. Exactly all honest parties get the output: E¢;, payoff vo;

C. Not all honest parties, but some corrupted party gets the
output: Eqg, payoftf Y10

D. All honest parties and some corrupted party get the
output: E;, payoft y1

Here: stronger condition o1 < Y00 <11 < Y10

174

payoff

Mula-Party Fairness

>
/52 # corrupted parties

18

payoff

Mula-Party Fairness

Standard SFE protocols

>
/52 # corrupted parties

18

payoff

Mula-Party Fairness

4 Standard SFE protocols

>

/52 # corrupted parties

18

payoft

Mula-Party Fairness

Standard SFE protocols

Rough idea:

Give the output to some party,
lethiimidistribute:

18

Other Relaxed Notions of Fairness

* “Gradual Release”-type approaches [Goldwasser-Levin, 1990;
Garay-MacKenzie-Prabhakaran-Yang, 2005, ...]

* Rational fairness [Asharov-Canetti-Hazay, 2011]

“ Not closely related, after all...

* 1/p-Security [Gordon-Katz, 2010]

» Similar (quantitative) guarantee,

protocols for functions with small domain or range,

“ formally more relaxed definition.

12,

Ratonal Protocol Design

“ General framework (beyond fairness),
« supports composition (via the underlying framework),

* generalizes to reactive functionalities (follow-up).

20

Ratonal Protocol Design

“Rational” commitment™:

e

~

Tcommit
P “received value”
EEESG etinpn ey >
Ilopenll x
> >
2. Output x

e >

3 * as mentioned by Rosario on Monday.

Ratonal Protocol Design

“Rational” commitment™:

i

1. Getinput x

Tcommit

~

“received value”
>

2

* as mentioned by Rosario on Monday.

Ratonal Protocol Design

“Rational” commitment™:

BREAK!

“receivedalue”

3 * as mentioned by Rosario on Monday.

Summary

“ RPD is a general framework capturing incentives,

* idea: build the best protocol w.r.t. the incentives,

* we showed optimal protocols for fairness in SFE.

“ Follow-up: Reactive functionalities.

22

