
12015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party
Computation

Thomas Schneider

joint work with
Daniel Demmler and Michael Zohner

published at NDSS 2015

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Secure Two-Party Computation

2

Here we consider only semi-honest (passive) adversaries.

ff(x,y)

x

f(x,y)

y

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Privacy-Preserving Applications

Auctions [Naor-Pinkas-Sumner99], ...

Biometric Identification [Erkin-Franz-Guajardo- 
Katzenbeisser-Langendijk-Toft09], …

Machine Learning 
[Bost-Popa-Tu-Goldwasser15], …

Private Set Intersection [Meadows86], ...

3

etc.

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

An Application Developer’s Perspective

Function f

Boolean
Circuits

Arithmetic
Circuits

GMWYao

Application

Representation

Protocol

Optimizations Point-and- 
permute Free-XOR

Fixed-Key 
Garbling Half-Gates

DGK Paillier

. . .

4

DGK: Damgård-Geisler-Krøigaard, GMW: Goldreich-Micali-Wigderson

PaillierDGKDGK

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Motivating Example for Mixed Protocols:  
Minimum Euclidean Distance

Function f

Boolean
Circuits

Arithmetic
Circuits

GMW. . .

•Application: biometric matching (face-recognition, fingerprint, …)
•Server holds database S1, …, Sn, client holds query C
•Minimum Euclidean Distance: f = min(∑d

i=1(S1,i – Ci)2, …, ∑d
i=1 (Sn,i – Ci)2)

5

Yao

- Some functionalities are particularly expensive in one representation
● Addition: Boolean circuit: O(ℓ𝓁) gates vs. Arithmetic circuit: 1 gate
● Multiplication: Boolean circuit: O(ℓ𝓁2) gates vs. Arithmetic circuit: 1 gate

- TASTY [Henecka-Kögl-Sadeghi-S-Wehrenberg10] combines 
 Paillier (Arithmetic) and Yao (Boolean)

- Multiplication and conversion previously used expensive PK operations
● Yao is often more efficient than Paillier [Kerschbaum-S-Schröpfer14]

● Our goal: completely avoid PK operations &  
use Beaver multiplication triples to precompute symmetric crypto!

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Mixed-Protocol Secure Computation

YaoPaillier

6

A B
pk Epk(x)

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Roadmap / Our Contributions

7

Function f

Boolean
Circuits

Arithmetic
Circuits

GMWYaoDGK Paillier

2.ABY

1.OT-ext.

3.Conversion

1) OT-based multiplication is substantially faster than using PK crypto

2) Mixed-protocol framework ABY

3) Efficient conversions using OT only

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

1) Multiplication using OT [Gilboa99]

Schoolbook Multiplication z = x * y with x=x2x1x0 and y=y2y1y0: 
z = x*y0 + 2x*y1 + 4x*y2

(r0, r0+x)
OT

y0
s0 = r0+x*y0

(r1, r1+2x)
OT

y1
s1= r1+2x*y1

(r2, r2+4x)
OT

y2
s2= r2+4x*y2

[z]A= -∑2
i=0 ri [z]B=∑2

i=0 si = ∑2
i=0 ri + ∑2

i=02ix*yi

z = [z]A+[z]B= x * y

r0 ∈R Z26

r1 ∈R Z26

r2 ∈R Z26

8

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

8 16 32 64
0

500
1000
1500
2000
2500
3000

Communication

Bit-Length of Values

C
om

m
un

ic
at

io
n

(B
yt

es
)

8 16 32 64
1

10

100

1000

10000

100000
Run-Time

Paillier (WAN)
DGK (WAN)
Paillier (LAN)
DGK (LAN)
OT-Ext (WAN)
OT-Ext (LAN)

Bit-Length of Values

R
un

-ti
m

e
(μ

s)

1) Multiplication using OT Benchmarks

Instantiate OT efficiently with OT extension [Ishai-Kilian-Nissim-Petrank03,
Asharov-Lindell-S-Zohner13]

Compare one amortized multiplication using Paillier, DGK, and OT extension

Communication and run-time for 1 multiplication in LAN and WAN for long-term security

9

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

2) The ABY framework

Combine:
● Arithmetic sharing
● Boolean sharing (GMW)
● Yao's garbled circuits

 
Efficient conversions between schemes
 

Implement using state-of-the-art optimizations:
● batch pre-compute crypto operations
● use strong assumptions for maximum efficiency
● use fixed-key AES where possible (with AES-NI instruction set)

A

B Y

10

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

2) The ABY framework

 rithmetic sharing: v = a + b mod 2ℓ𝓁
● Free addition / cheap multiplication (1 msg)
● Good for multiplication

 oolean sharing: v = a ⊕ b
● Free XOR / 1 online msg per AND
● Good for multiplexing (using 2 OTs)

 ao's garbled circuits: A: k0,k1; B: kv
● Free XOR / no interaction per AND
● Good for comparisons

Benchmark primitive operations (+,*,>,=,...)

A

B

Y
32-bit Multiplication (amortized)
Protocol Yao Y➝A➝Y
LAN [ms] 1.1 0.1
Comm.
[KB]

100 5

#Msg 0 5

z=x*y

z=x*y

11

x,y z

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

3) Efficient Conversions

12

A. Overview and Our Contributions

In this work we present ABY(for Arithmetic, Boolean, and
Yao sharing), a novel framework for developing highly efficient
mixed-protocols that allows a flexible design process. We design
ABY using several state-of-the-art techniques in secure com-
putation and by applying existing protocols in a novel fashion.
We optimize sub-routines and perform a detailed benchmark
of the primitive operations. From these results we derive new
insights for designing efficient secure computation protocols.
We apply these insights and demonstrate the design flexibility
of ABY by implementing three privacy-preserving applications:
modular exponentiation, private set intersection, and biometric
matching. We give an overview of our framework and describe
our contributions in more detail next. ABY is intended as a
base-line on the performance of privacy-preserving applications,
since it combines several state-of-the-art techniques and best
practices in secure computation. The source code of ABY is
freely available online at http://encrypto.de/code/ABY.

The ABY Framework. On a very high level, our frame-
work works like a virtual machine that abstracts from the
underlying secure computation protocols (similar to the Java
Virtual Machine that abstracts from the underlying system
architecture). Our virtual machine operates on data types of
a given bit-length (similar to 16-bit short or 32-bit long
data types in the C programming language). Variables are
either in Cleartext (meaning that one party knows the value
of the variable, which is needed for inputs and outputs of
the computation) or secret shared among the two parties
(meaning that each party holds a share from which it cannot
deduce information about the value). Our framework currently
supports three different types of sharings (Arithmetic, Boolean,
and Yao) and allows to efficiently convert between them,
cf. Fig. 1. The sharings support different types of standard
operations that are similar to the instruction set of a CPU such
as addition, multiplication, comparison, or bitwise operations.
Operations on shares are performed using highly efficient secure
computation protocols: for operations on Arithmetic sharings
we use protocols based on Beaver’s multiplication triples [4],
for operations on Boolean sharings we use the protocol of
Goldreich-Micali-Wigderson (GMW) [34], and for operations
on Yao sharings we use Yao’s garbled circuits protocol [74].

Flexible Design Process. A main goal of our framework
is to allow a flexible design of secure computation protocols.

1) We abstract from the protocol-specific function represen-
tations and instead use standard operations. This allows to mix
several protocols, even with different representations, and allows
the designer to express the functionality in form of standard
operations as known from high-level programming languages
such as C or Java. Previously, designers had to manually
compose (or automatically generate) a compact representation
for the specific protocol, e.g., a small Boolean circuit for
Yao’s protocol. As we focus on standard operations, high-level
languages can be compiled into our framework and it can be
used as backend in several existing secure computation tools,
e.g., L1 [44], [71], [72], SecreC [11], [12], or PICCO [75].

2) By mixing secure computation protocols, our framework
is able to tailor the resulting protocol to the resources available
in a given deployment scenario. For example, the GMW
protocol allows to pre-compute all cryptographic operations, but

A (§III-A)

C

B (§III-B) Y (§III-C)

A2Y (§IV-C)B2A (§IV-E)

Y2B (§IV-A)

B2Y (§IV-B)

(§III-A1)

(§II
I-B

1) (
§III-C1)

Fig. 1: Overview of our ABY framework that allows efficient
conversions between Cleartexts and three types of sharings:
Arithmetic, Boolean, and Yao.

the online phase requires several rounds of interaction (which
is bad for networks with high latency), whereas Yao’s protocol
has a constant number of rounds, but requires symmetric
cryptographic operations in the online phase.

Efficient Instantiation and Improvements. Each of the
secure computation techniques is implemented using most
recent optimizations and best practices such as batch pre-
computation of expensive cryptographic operations [19], [27],
[69]. For Arithmetic sharing (§III-A4) we generate multiplica-
tion triples via Paillier with packing [62], [66] or DGK with
full decryption [22], [32], for Boolean sharing (§III-B) we use
the multiplexer of [54] and OT extension [1], [41], and for Yao
sharing (§III-C) we use fixed-key AES garbling [7]. As novel
contributions and advances over state-of-the-art techniques for
efficient protocol design, we combine existing approaches in a
novel way. For Arithmetic sharing, we show how to multiply
values using symmetric key cryptography which allows faster
multiplication by one to three orders of magnitude (§III-A5).
We outline how to efficiently convert from Boolean respectively
Yao sharing to Arithmetic sharing (§IV-E and §IV-F), and show
how to combine Boolean and Yao sharing to achieve better run-
time compared to a pure Boolean or Yao instantiation (§VI-B).
Finally, we outline how to modify the fixed-key AES garbling
of [7] to achieve better performance in OT extension (§V-A).

Feedback on Efficient Protocol Design. We perform
benchmarks of our framework from which we derive new
best-practices for efficient secure computation protocols. We
show that for multiplications it is more efficient to use
OT extensions for pre-computing multiplication triples than
homomorphic encryption (§V-C). With our OT-based conversion
protocols, converting between different share representations
is considerably cheaper than the methods used in previous
works, e.g., [35], [44], and scales well with increasing security
parameter. In fact, on a low latency network, the conversion
costs between different share representations are so cheap that
already for a single multiplication it pays off to convert into
a more suited representation, perform the multiplication, and
convert back into the source representation.

2

A

B Y

B2A A2Y

Y2B

B2Y

P
Y2B: for free -
permutation
bits of 
Yao sharing
are Boolean
sharing

B2Y: obliviously send 
Yao key via OT

A2Y: convert shares
to Yao and evaluate 
addition circuit with Yao

B2A: similar to  
multiplication via OT

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

3) Efficient Conversions

13

}OT

Conversion Computation
[#symm]

Communication
[bits]

#Msg

Y2B 0 0 0
P2A, P2B, *2P 0 ℓ𝓁 1

P2YA ℓ𝓁 ℓ𝓁𝜅 1
B2A 6ℓ𝓁 ℓ𝓁𝜅+(ℓ𝓁2+ℓ𝓁)/2 2

B2Y, P2YB 6ℓ𝓁 2ℓ𝓁𝜅 2
A2Y 12ℓ𝓁 6ℓ𝓁𝜅 2

Conversion of ℓ𝓁-bit values for symmetric security parameter 𝜅

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Application 1: Minimum Euclidean Distance

dist min LAN
[s]

WAN
[s]

Comm
[MB]

#Msg

Y Y 2.55 24.62 147.7 2
B B 2.43 39.41 99.9 129
A Y 0.19 3.42 5.0 8
A B 0.21 26.41 4.6 101

14

Minimum Euclidean Distance: min(∑d
i=1(S1,i – Ci)2, …, ∑d

i=1 (Sn,i – Ci)2)

LAN: Two standard PCs connected via Gigabit Ethernet.
WAN: Two Amazon EC2 c3.large instances - one located at US east cost and the other one in Japan.

Minimum Euclidean distance for n = 512 values of 32-bit length and d = 4.

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Application 2: Private Set Intersection

Sort +  
Compare

Shuffle LAN
[s]

WAN
[s]

Comm
[MB]

#Msg

Y Y 4.3 34.0 247 2
B B 2.6 34.1 163 123
Y B 3.3 30.0 182 27

15

PSI using Sort-Compare-Shuffle Circuit of [Huang-Evans-Katz12]

contains many multiplexers ⇒ benefits from Boolean sharing

PSI on 4096 elements of length 32 bit

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Summary

ABY = framework for mixed-protocol secure computation

Abstract from details of underlying secure computation protocol

Use only fast symmetric key crypto

Code is available on GitHub: http://encrypto.de/code/ABY

16

http://encrypto.de/code/ABY

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Future Work

Use ABY framework for further applications

Automatically assign operations to sharing types

Extend mixed protocols to stronger adversaries

17

2015-06 | Securing Computation Workshop | ABY: Mixed-Protocol Secure Computation | Thomas Schneider | Slide

Contact: http://encrypto.de  
Code: http://encrypto.de/code/ABY

ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party
Computation

Thanks!
 
Questions?

18

http://encrypto.de/

