

Giulio Chiribella, Rui Chao, and Yuxiang Yang Tsinghua University, Beijing

May 6th 2015, Quantum Hamiltonian Complexity Reunion, Simons Institute for the Theory of Computing.

National Natural Science Foundation of China

Application of non-locality to precision measurements?

Non-locality has applications to a number of pure information-theoretic tasks.

Can we find applications to physical tasks, such as clock synchronization and direction alignment?

quantum reference frames: Aharonov-Kaufherr PRD 1984, Gisin-Popescu PRL 1998, Peres-Scudo, 2001, ... Bartlett-Rudolph-Spekkens RMP 2007

Gyroscopes

Classical gyroscope = physical system whose angular momentum indicates a direction in space

large angular momentum

> more stable gyroscope

Quantum gyroscope = quantum system whose angular momentum indicates a direction in space

e.g. a spin-j particle

large j

more precise gyroscope

Spin j degrees of freedom

2j+1 Hilbert space

Rotation of an angle φ around the axis $\mathbf{n} = \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix}$: $e^{-i\varphi \mathbf{n} \cdot \mathbf{J}}$

where J_x , J_y , J_z are the angular momentum operators $[j_x, j_y] = i j_z$ $[j_y, j_z] = i j_x$ $[j_z, j_x] = i j_y$ $j_x^2 + j_y^2 + j_z^2 = j(j+1) I$

Quantifying the error

To find out the direction, one has to perform a measurement,

mathematically described by a POVM $P(d\hat{\mathbf{n}})$

whose outcome gives an estimate $\widehat{\mathbf{n}}$ of the unknown direction.

The error is quantified by the worst-case square distance

$$\langle d^2 \rangle = \sup_{\mathbf{n}} \int p \left(d\widehat{\mathbf{n}} \, | \, \mathbf{n} \right) \, \| \widehat{\mathbf{n}} - \mathbf{n} \|^2$$
$$p \left(d\widehat{\mathbf{n}} \, | \, \mathbf{n} \right) = \operatorname{Tr} \left[P \left(d\widehat{\mathbf{n}} \right) \, \rho_{\mathbf{n}} \right]$$

What was known: j = 1/2

Gisin-Popescu PRL 1998:

GC et al PRL 2004, Bagan et al PRA 2004, Hayashi PLA 2006

is better than

entangling N particles reduces the error by N^2 (instead of N)

The two-party scenario

Rudolph 1999 arXiv Alice measures her spins along the z-axis, Bob tries to find out the direction.

Scaling up Gisin-Popescu result?

...not much

Deterministic strategies:

- O(I/N) error with Rudolph's protocol
- O(I/N) error with the optimal protocol

Probabilistic strategies:

- $O(1/N^2)$ error with Rudolph's protocol + postselection
- $O(1/N^2)$ error with the optimal protocol + postselection LOW PROBABILITY LOW PROBABILITY

probability of success: $O(2^{-N})$

USING ENTANGLED GYROSCOPES OF LARGER ANGULAR MOMENTUM

$$|S_j\rangle = \frac{1}{\sqrt{2j+1}} \sum_{m=-j}^{j} (-1)^m |j,m\rangle \otimes |j,-m\rangle$$
$$J_z |j,m\rangle = m |j,m\rangle$$

optimal state for alignment

spin j gyroscope classical gyroscope with angular momentum j, disturbed by a random force of fixed intensity, error due to precession.

solid angle

lever t

Full Cartesian frames?

Irreducible error $\langle d^2 \rangle \ge \frac{4}{3}$

 $\forall j$

No help from probabilistic

Classica Alice Alice and Bob have a pair of classical gyroscopes pointing in random, anti-correlated directions, up to an error O(1/j)

Bob

Alice

TWO EPR PAIRS WITH THE ASSISTANCE OF LOGICAL ENTANGLEMENT

The teleportation trick

MORE EPR PAIRS

Error for the full Cartesian frame

$$\left\langle d^2 \right\rangle = \frac{2}{3j} + O\left(\frac{\log j}{j^2}\right)$$

Again, classical explanation:

Probabilistic strategies

Suppose that Bob uses a probabilistic filter, with two outcomes "yes" and "no"

The filter implements the transformation

$$|S_{j,g}\rangle^{\otimes 2} = \bigoplus_{k=0}^{2j} \sqrt{\frac{2k+1}{2j+1}} |S_{k,g}\rangle$$
$$\bigvee_{j,g}^{2j} = \bigoplus_{k=0}^{2j} \frac{\sin \frac{\pi(k+1)}{2(j+1)}}{\sqrt{j+1}} |S_{k,g}\rangle$$

= optimal state for transmitting a Cartesian frame (GC, D'Ariano, Perinotti, Sacchi PRL 2004, Bagan et al PRA 2004, Hayashi PLA 2006)

Probabilistic super-activation

In the classical model, Alice and Bob cannot align their axes with an error smaller than $\,O(1/j)\,$

"Probabilistic super-activation" ...what is the probability of seeing it?

The no case

In the unfavorable instance, the error is $\langle d^2 \rangle \approx \frac{1.189}{j}$ Of course, no gain on average

$$\begin{split} \left\langle d^2 \right\rangle_{\text{average}} &\approx p_{\text{yes}}^{\text{opt}} \frac{\pi^2}{6j^2} + \left(1 - p_{\text{yes}}^{\text{opt}}\right) \frac{1.189}{j} \\ &\approx \left(1 - p_{\text{yes}}^{\text{opt}}\right) \frac{1.189}{j} \\ &\approx \frac{0.668}{j} \ge \frac{0.666}{j} = \frac{2}{3j} \end{split}$$

BUT 1) almost same average performance2) the quadratic improvement is heralded

MORE EPR PAIRS

Deterministic super-activation

 $_{2N EPR pairs} \longrightarrow$ Heisenberg scaling with probability

 $p_{\rm yes} \ge 1 - (0, 561)^N$ (brute force repetition)

In fact, the optimal strategy can do much better: for 4 pairs the Heisenberg scaling is achieved deterministically

Quasi-Heisenberg scaling for 3 EPR pairs

4 EPR pairs are the minimum to achieve the Heisenberg scaling deterministically.

Still, if Alice and Bob have only 3 pairs, they can still beat the classical scaling. The optimal strategy yields:

 $\left\langle d^2 \right\rangle = \frac{\ln j}{8j^2} + O\left(\frac{1}{j^2}\right)$

(quasi-Heisenberg scaling)

A CAUTIONARY TALE ABOUT THE QUANTUM CRAMÈR-RAO BOUND IN **NON-ASYMPTOTIC SCENARIOS**

Cramèr-Rao bound

State parametrization
$$|S_{j,\theta}\rangle = \left(e^{-i\theta \cdot \mathbf{j}} \otimes I\right) |S_j\rangle \quad \boldsymbol{\theta} = \begin{pmatrix} \theta_x \\ \theta_y \\ \theta_z \end{pmatrix}$$

101

Quantum Fisher Information matrix $F_Q = \frac{4j(j+1)}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Quantum Cramèr-Rao bound $V_{\theta} \ge F_Q^{-1} = \frac{3}{4j(j+1)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

achievable in the asymptotic regime of large number of copies

Caveat

A naive application of the CRB would promise Heisenberg scaling of the error:

$$V_{\theta} \approx O\left(\frac{1}{j^2}\right) \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \implies \langle d^2 \rangle \approx O\left(\frac{1}{j^2}\right)$$

in contradiction with the analytical results for 1,2 and 3 pairs

For spin-j singlets, the CRB is not achievable in the finite-copy regime

Asymptotic achievability of CRB

To achieve the CRB, the number of copies must be large. But how large?

Hopefully not large compared to j^2 ...

Covariance matrix for the optimal measurement:

$$V_{\theta,n}^{\text{opt}} = \frac{3}{4nj(j+1)} I + O\left(\max\left\{n^{-3/2}j^{-3}, n^{-2}j^{-2}\right\}\right)$$

CRB achieved whenever $n \gg 1$, uniformly in j

CONCLUSIONS

Conclusions

Super-activation of quantum gyroscopes:

- $I EPR pair \longrightarrow$ no scaling with the size
- $2 \text{ EPR pairs} \longrightarrow$ Heisenberg scaling with non-vanishing prob.
- $3 \text{ EPR pairs } \rightarrow \text{ quasi-Heisenberg}$
- $\ge_4 \text{EPR pairs} \longrightarrow \text{Heisenberg with certainty}$

The moral:

- not having a pre-defined direction helps
- two spin-j particles are more useful than a single spin-(2j) particle
- logical qubits help
- ... be careful using the quantum CRB in non-asymptotic scenarios!

THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU