> EPR ALIGNMENT OF REFERENCE FRAMES

> Giulio Chiribella, Rui Chao, and Yuxiang Yang Tsinghua University, Beijing

May 6th 2015, Quantum Hamiltonian Complexity Reunion, Simons Institute for the Theory of Computing.

Application of non-locality to precision measurements?

Non-locality has applications to a number of pure information-theoretic tasks.

Can we find applications to physical tasks, such as clock synchronization and direction alignment?
quantum reference frames:
Aharonov-Kaufherr PRD 1984,
Gisin-Popescu PRL 1998,
Peres-Scudo, 200i, ...
Bartlett-Rudolph-Spekkens RMP 2007

Gyroscopes

Classical gyroscope $=$ physical system whose angular momentum indicates a direction in space

large angular momentum
\longrightarrow more stable gyroscope

Quantum gyroscope = quantum system whose angular momentum indicates a direction in space
e.g. a spin-j particle

large j
\longrightarrow more precise gyroscope

Spin j degrees of freedom

$2 \mathrm{j}+1$ Hilbert space

Rotation of an angle φ around the axis $\mathbf{n}=\left(\begin{array}{l}n_{x} \\ n_{y} \\ n_{z}\end{array}\right)$:

$$
e^{-i \varphi \mathbf{n} \cdot \mathbf{J}}
$$

where J_{x}, J_{y}, J_{z} are the angular momentum operators

$$
\begin{aligned}
& {\left[j_{x}, j_{y}\right]=i j_{z} \quad\left[j_{y}, j_{z}\right]=i j_{x} \quad\left[j_{z}, j_{x}\right]=i j_{y}} \\
& j_{x}^{2}+j_{y}^{2}+j_{z}^{2}=j(j+1) I
\end{aligned}
$$

Quantifying the error

To find out the direction, one has to perform a measurement, mathematically described by a POVM $P(\mathrm{~d} \widehat{\mathbf{n}})$
whose outcome gives an estimate $\widehat{\mathbf{n}}$ of the unknown direction.

The error is quantified by the worst-case square distance

$$
\begin{gathered}
\left\langle d^{2}\right\rangle=\sup _{\mathbf{n}} \int p(\mathrm{~d} \widehat{\mathbf{n}} \mid \mathbf{n})\|\widehat{\mathbf{n}}-\mathbf{n}\|^{2} \\
p(\mathrm{~d} \widehat{\mathbf{n}} \mid \mathbf{n})=\operatorname{Tr}\left[P(\mathrm{~d} \widehat{\mathbf{n}}) \rho_{\mathbf{n}}\right]
\end{gathered}
$$

What was known: $j=1 / 2$

Gisin-Popescu PRL 1998:
is better than

GC et al PRL 2004, Bagan et al PRA 2004, Hayashi PLA 2006
is better than
entangling N particles reduces the error by N^{2} (instead of N)

The two-party scenario

Rudolph 1999 arXiv
Alice measures her spins along the z-axis, Bob tries to find out the direction.

Scaling up Gisin-Popescu result?

...not much

Deterministic strategies:

- $\mathrm{O}(\mathrm{I} / \mathrm{N})$ error with Rudolph's protocol
- $\mathrm{O}(\mathrm{I} / \mathrm{N})$ error with the optimal protocol

Probabilistic strategies:

- $O\left(1 / N^{2}\right)$ error with Rudolph's protocol + postselection
- $O\left(1 / N^{2}\right)$ error with the optimal protocol + postelection probability of success: $O\left(2^{-N}\right)$

USING
 ENTANGLED GYROSCOPES OF LARGER ANGULAR MOMENTUM

The error

Error
No h SCAIING .

spin j
gyroscope

classical gyroscope with angular momentum j, disturbed by a random force of fixed intensity, error due to precession.

Full Cartesian frames?

Irreducible error $\quad\left\langle d^{2}\right\rangle \geq$
No help from probabilistir

Classic:
Alice anu Bob have a pair of classical gyroscopes pointing in random, anti-correlated directions, up to an error $\mathrm{O}(\mathrm{I} / \mathrm{j})$

Alice

Bob

TWO EPR PAIRS WITH THE ASSISTANCE OF
 LOGICAL ENTANGLEMENT

The teleportation trick

EPR pair of spin-j gyroscopes

Log(2j+1) logical EPRpairs

Cofitection operation

MORE EPR PAIRS

Error for the full Cartesian frame

$$
\left\langle d^{2}\right\rangle=\frac{2}{3 j}+O\left(\frac{\log j}{j^{2}}\right)
$$

Again, classical explanation:

Probabilistic strategies

Bob's lab

Filter
Eavfaradrable case

Suppose that Bob uses a probabilistic filter, with two outcomes "yes" and "no"

The yes case

The filter implements the transformation

$$
\left|S_{j, g}\right\rangle^{\otimes 2}=\bigoplus_{k=0}^{2 j} \sqrt{\frac{2 k+1}{2 j+1}}\left|S_{k, g}\right\rangle
$$

$$
\left|\Phi_{j, g}^{\mathrm{yes}}\right\rangle=\bigoplus_{k=0}^{2 j} \frac{\sin \frac{\pi(k+1)}{2(j+1)}}{\sqrt{j+1}}\left|S_{k, g}\right\rangle
$$

= optimal state for transmitting a Cartesian frame (GC, D'Ariano, Perinotti, Sacchi PRL 2004, Bagan et al PRA 2004, Hayashi PLA 2006)

$$
\Longrightarrow\left\langle d^{2}\right\rangle=\frac{\pi^{2}}{6 j^{2}}+O\left(\frac{1}{j^{3}}\right)
$$

Probabilistic super-activation

In the classical model, Alice and Bob cannot align their axes with an error smaller than $O(1 / j)$
"Probabilistic super-activation"
...what is the probability of seeing it?

The no case

In the unfavorable instance, the error is $\left\langle d^{2}\right\rangle \approx \frac{1.189}{j}$
Of course, no gain on average

$$
\begin{aligned}
\left\langle d^{2}\right\rangle_{\text {average }} & \approx p_{\text {yes }}^{\mathrm{opt}} \frac{\pi^{2}}{6 j^{2}}+\left(1-p_{\text {yes }}^{\mathrm{opt}}\right) \frac{1.189}{j} \\
& \approx\left(1-p_{\mathrm{yes}}^{\mathrm{opt}}\right) \frac{1.189}{j} \\
& \approx \frac{0.668}{j} \geq \frac{0.666}{j}=\frac{2}{3 j}
\end{aligned}
$$

BUT i) almost same average performance
2) the quadratic improvement is heralded

MORE
 EPR PAIRS

Deterministic super-activation

2N EPR pairs \longrightarrow Heisenberg scaling with probability

$$
p_{\mathrm{yes}} \geq 1-(0,561)^{N} \quad \text { (brute force repetition) }
$$

In fact, the optimal strategy can do much better: for 4 pairs the Heisenberg scaling is achieved deterministically

Quasi-Heisenberg scaling

 for 3 EPR pairs4 EPR pairs are the minimum to achieve the Heisenberg scaling deterministically.

Still, if Alice and Bob have only 3 pairs, they can still beat the classical scaling. The optimal strategy yields:
$\left\langle d^{2}\right\rangle \times 8 j^{2}-\ln j$

$\left\langle d^{2}\right\rangle=\frac{\ln j}{8 j^{2}}+O\left(\frac{1}{j^{2}}\right)$
(quasi-Heisenberg scaling)

A CAUTIONARY TALE ABOUT THE
 QUANTUM CRAMÈR-RAO BOUND IN
 NON-ASYMPTOTIC SCENARIOS

Cramèr-Rao bound

State parametrization $\left|S_{j, \boldsymbol{\theta}}\right\rangle=\left(e^{-i \boldsymbol{\theta} \cdot \mathbf{j}} \otimes I\right)\left|S_{j}\right\rangle \quad \boldsymbol{\theta}=\left(\begin{array}{c}\theta_{x} \\ \theta_{y} \\ \theta_{z}\end{array}\right)$
Quantum Fisher Information matrix $\quad F_{Q}=\frac{4 j(j+1)}{3}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Quantum Cramèr-Rao bound $V_{\boldsymbol{\theta}} \geq F_{Q}^{-1}=\frac{3}{4 j(j+1)}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ achievable in the asymptotic regime of large number of copies

Caveat

A naive application of the CRB would promise Heisenberg scaling of the error:

$$
V_{\boldsymbol{\theta}} \approx O\left(\frac{1}{j^{2}}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \Longrightarrow \quad\left\langle d^{2}\right\rangle \approx O\left(\frac{1}{j^{2}}\right)
$$

in contradiction with the analytical results for 1,2 and 3 pairs

For spin-j singlets,
the CRB is not achievable in the finite-copy regime

Asymptotic achievability of CRB

To achieve the CRB, the number of copies must be large. But how large?

Hopefully not large compared to j^{2}...

Covariance matrix for the optimal measurement:

$$
V_{\boldsymbol{\theta}, n}^{\mathrm{opt}}=\frac{3}{4 n j(j+1)} I+O\left(\max \left\{n^{-3 / 2} j^{-3}, n^{-2} j^{-2}\right\}\right)
$$

CRB achieved whenever $n \gg 1$, uniformly in j

CONCLUSIONS

Conclusions

Super activation of quantum gyroscopes:
I EPR pair \longrightarrow no scaling with the size
2 EPR pairs \longrightarrow Heisenberg scaling with non-vanishing prob.
3 EPR pairs \longrightarrow quasi-Heisenberg
≥ 4 EPR pairs \longrightarrow Heisenberg with certainty

The moral:

- not having a pre-defined direction helps
- two spin-j particles are more useful than a single spin-(2j) particle
- logical qubits help
- ...be careful using the quantum CRB in non-asymptotic scenarios!

THANKYOU
 ATTENTION!

