Quantum Hamiltonian Complexity Reunion Workshop
Berkeley, CA 5/4/2015

Quantum information theory with overlapping qubits

\[\mathcal{H} = (\mathbb{C}^2)^{\otimes n} \]
Problem:
How to “pull apart” qubits that are almost in tensor product...?

qubits: $X, Y, Z \quad X, Y, Z \quad X, Y, Z
\quad X, Y, Z \quad X, Y, Z$

Motivation:

Goal: Establish substantial entanglement (with structure and control) between two untrusted devices—by giving them black-box tests.
Approach: Repeated CHSH games

- If devices pass the tests (w.h.p.), then they must share lots of entanglement, which they measure in a very particular way.

Main Theorem: [R., Unger, Vazirani '18]

\[
\begin{array}{ccccccc}
\times & \times & \times & \times & \times & \times & \times \\
n \text{games} & n \text{ games} & n \text{ games} & \ldots & n \text{ games}
\end{array}
\]

- If: \(\Pr[\text{win} \geq w - \epsilon \text{ of games}] \geq 1-\epsilon \)

- Then: At the beginning of a random block of \(n \) games,

 Alice & Bob's strategy \(\approx \) Ideal strategy \(\begin{pmatrix} 100 \end{pmatrix}, \begin{pmatrix} 111 \end{pmatrix} \) for those games

 pair \(j \) for game \(j \)

Proof Idea:
Start with arbitrary shared state, arbitrary strategy.

- Find subsequence of sequential games so
$y_j, \quad P\{\text{win game } j \} = w^*$
regardless of games 1 to $j-1$

(2) Find near-EPR pairs,
move them into tensor product,
glu together history dependence,
replace with perfect EPR pairs,

Big picture:

(Operational, approximate)

Indepedence assumption \[\rightarrow \] EPR pairs in tensor product

\[
\begin{align*}
\text{unstructured } & \mathcal{H} \\
\rightarrow & \quad \emptyset \otimes \emptyset \otimes \emptyset \otimes \emptyset \otimes \emptyset
\end{align*}
\]

This gives lots of entanglement, in a very nice form
but inefficiently: $N = \text{poly}(n)$,
final error $= \varepsilon^r$.

Open question:
• Make the test more efficient:
 Can we determine a tensor-product structure even starting with a constant noise rate?

Outline:
State-independent separation
State-dependent separation

State independent:
\[X, Y, Z \]
\[X, Y, Z \]
\[X, Y, Z \]

State dependent:
\[add \ 147 \]

(State-independent)
Separation of overlapping qubit operators
Given: Pauli operators
\[\sigma_x', \sigma_z', \ldots, \sigma_x^n, \sigma_z^n \]
almost commuting:
\[\| [\sigma_x^i, \sigma_z^j] \| < \varepsilon \]

Goal: Find nearby operators (possibly on an extended space) so
\[[\tilde{\sigma}_x^i, \tilde{\sigma}_z^j] = 0, \]
i.e., operators for qubits in tensor product.

Claim: \(\Theta(n \varepsilon)\) movement is sufficient & necessary.

Nearby = \(\Theta(n \varepsilon)\)

Remark: Related work (more sophisticated)

Lin '95: almost-commuting Hermitian pairs close to commuting Hermitians

if \(\| [A, B] \| < \varepsilon\), \exists \(A' \approx A, B' \approx B \) Hermitian, Hermitian, \([A', B'] = 0\)

Hastings '10: \(\delta = \Theta(\varepsilon^{1/6}) \) dimension-independent!
Hastings 10: $d = O(\epsilon^{-\epsilon})$. dimension-independent!

- false for almost-commuting unitary pairs
- false for almost-commuting Hermitian triples
 (no dimension-independent bound)
- but Paulis have much more structure
 Hermitian & unitary \Rightarrow e-values ± 1

Upper bound: $O(n\epsilon)$ is enough.

Proof: * 2 qubits

\[\sigma_2^{\pm} = \text{SWAP}_{0,1}, \sigma_2^{\pm} \text{SWAP}_{1,2} \approx \sigma_2^{\pm} \]

* n qubits
 - $\text{SWAP}_{0,1}$ to fix qubits 2 to n
 - $\text{SWAP}_{0,2}$ to fix qubits 3 to n
 - $\text{SWAP}_{0,3}$ for qubits 4 to n
 \[\ldots \]
 \[\sigma_2^{\pm} = \text{SWAP}_{0,1} \sigma_2^{\pm} \text{SWAP}_{1,2} \ldots \text{SWAP}_{n-1,n} \approx \sigma_2^{\pm} \]
\[\sigma_2^z = \text{SWAP}_0, \sigma_2^z \text{ SWAP}_0, \text{ \checkmark \ commutator} \Rightarrow \sigma_3 \]

\[\Rightarrow \sigma^n \text{ moves } n \text{E total } \checkmark \]

Lower bound: \(\Omega(nE) \) is sometimes required

Idea:

\[e \text{ overlaps } \eta/2 \quad \eta/2 \]

Proposal 1: \(\ln (\mathbb{C}^2)^{\otimes \eta} \)

\[\bullet \times \bullet \times \bullet \text{ usual qubits} \]

\[U \bullet \times \bullet \times \bullet \text{ } U^\dagger \text{ same, conjugated by a random unitary} \]

Intuition: Overlap \[\| [\sigma^z_2, \sigma^z_\beta] \| \approx \frac{1}{\sqrt{\eta/2}} \] ??

Wrong! **Fact:** \(\ln (\mathbb{C}^2)^{\otimes \eta} \), for random unitary \(U \),

\[\| [\sigma^z_2, U \sigma^z_\beta U^\dagger] \| \approx 2 \text{ (maximal)} \]

Moral: Qubit overlap is not "monogamous."
Moral: Qubit overlap is not monogamous.

huge overlaps ⇒ need more structure

Proposal 2: \(\ln \left(\mathbb{C}^2 \right)^{\otimes n} \)

perturb, eg., by \(e^{-i \epsilon H}, \quad H = \frac{\sqrt{2}}{j=1} X_j \)

\(\Rightarrow \tilde{X}_j = X_j, \quad \tilde{Z}_j \approx Z_j + \epsilon \sum_{\ell=1}^{n/2} X_\ell \)

Track total commutator

\[
C = \sum_{i \neq j} \| [\tilde{Z}_i, \sigma_\ell] \|_F
\]

\(\approx (\frac{n}{2}) \times \epsilon \) initially

Claim: Move qubit by \(\delta \) (spectral norm)

\(\Rightarrow C \) changes by \(O(\delta) \).

\(\Rightarrow \Omega(n^2 \epsilon) \) total change needed to make \(C = 0 \).

Proof:

\[
\sum_{i=1}^{n/2} \left\| \left[Z_k + \epsilon \sum_{\ell=1}^{n/2} X_\ell + \Delta, Z_i \right] \right\|_F
= \sum_{i \in \mathcal{M}_k} \left\| \left[\epsilon \sum_{\ell=1}^{n/2} X_\ell, Z_i \right] + [\Delta, Z_i] \right\|_F
\]
(State-dependent)

Separation of overlapping qubits

Goal: Understand error accumulation in analysis

\[\Delta = \frac{-f}{n} \sum_{i \leq n/2} X_i \]
\[\approx n(\varepsilon - \frac{f}{n}) = n\varepsilon - f \]
Possible theorem statements

Must we lose a factor of n?

Does fixing one qubit help/hurt the others?

General problem:

Given: $\text{Tr}_A 14 \times 41 = \rho^*$
$\text{Tr}_B 14 \times 41 = \rho^*$
$\text{Tr}_C 14 \times 41 = \rho^*$

Goal: Understand effect of "fixing" 147 so (changing state, not qubits)
Example: \(\rho^* = \text{EPR pair } |10\rangle + |11\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \)

Toy problem: Depolarizing qubits

\[\rho^* = \frac{1}{2} |0\rangle \langle 0| \] maximally mixed state

"Fixing" a qubit in \(|1\rangle \) \(\rightarrow \) depolarize it

Question:
Does depolarizing one qubit help or hurt the others?

Intuition?: Adding noise on one qubit can only make overlapping qubits more noisy.

Claim:
\[|1\rangle \] \(\rightarrow \) \(\frac{1}{2} |0\rangle \langle 0| \) initially

Depolarize \(|1\rangle \) qubits

\[|1\rangle = 10\rangle \] finally
Moral: Adding noise to some qubits can purify others.

Proof:

\[|\Psi\rangle = |00\rangle + |11\rangle, \quad \bigcirc = \text{first qubit} \]

1) Depolarize \(\bigcirc \)

\[
\begin{align*}
Z_L &= 1 \\
X_L &= \frac{1}{2} \\
= & \frac{1}{2} \langle 00| + \frac{1}{2} \langle 11|
\end{align*}
\]

\[
\begin{align*}
ev_{\langle 00|} &= \frac{1}{2} \\
ev_{\langle 11|} &= \frac{1}{2}
\end{align*}
\]

\[
|\Psi\rangle = \frac{1}{2} |00\rangle \otimes |00\rangle + \frac{1}{2} |11\rangle \otimes |11\rangle
\]

2) (Generalized) Zeno effect:

\[
\begin{align*}
\text{Any state } &\frac{1}{2}, \frac{1}{2}, 0, 0 \\
\rightarrow & \text{slowly rotating depolarizations}
\end{align*}
\]

\[
\begin{align*}
\text{Any other } &\frac{1}{2}, \frac{1}{2}, 0, 0 \\
\rightarrow & \text{pure measurements dephasing}
\end{align*}
\]

More problems:

- Extend analysis to more states
- Connect to operational assumptions, e.g., parallel CHSH games with constant noise