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Problems and LPs
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Approximation Problems

An (max or min problem):
S: set of feasible solutions
F: set of considered objective functions (for simplicity: nonnegative)

F*: approximation guarantees, f* € Rforeach f € F

satisfying
measxf(s) < f* (max problem) or melgl f(s) = f* (min problem)
S S

(exact min Vertex Cover): Given a graph G
S: all vertex covers of graph G (i.e., subsets of nodes covering all edges)

F: all nonnegative weight vectors on vertices
F*: define f* := min f(s)

SES
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LPs capturing Approximation Problems

Model of [Chan, Lee, Raghavendra, Steurer 13] and [Braun, P, Zink 14]

An is a linear program
Ax < b with x € R% and realizations:

a) Feasible solutions: for every s € S we have x5 € R? with

Ax3> < b foralls €S, (relaxation conv(x® | s € §))

b) Objective functions: for every f € F we have an affine w/: R% — R with

w!/ (x%) = f(s) foralls €S, (linearization that is exact on S)

c) Achieving approximation: for every f € F
f=max{w/(x) |Ax < b} < f*

f < Kk whenever measg f(s)<tforf€EF
S
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Formulation Complexity

Slack matrix of LP factorization
problem M=T-U+pu-1
M(f,s)=f"—f(s) (restr. NMF)

Let P = (S, F,F*) be a problem and M slack matrix of P
fc(P) = rank; p(M)

x =0  with encodings
x® = Us w/(x) = f*—u(f) —Tp-x

generalization of extension complexity
Independent of P vs. NP
Independent of a specific polyhedral representation
= Minimum extension complexity over all possible linear encodings
Do not lift given representation but construct the optimal LP from factorization
In fact: LP is trivial. Construct optimal encoding from factorization
Restricted notion of nonnegative matrix factorization to support approximations
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Optimal LPs

non-optimal
optimal for all f
for some f /

x =0

>
.

w'2(x) = f; — u(fy) — Tp,x

wh(x) = fif —u(fy) — Tpx

A
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Information Theory + LPs
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Information Theory: Summary

H[X,Y] = H[X] + H[Y|X]

IX;Y] = H[X] - H[X|Y],

(how much information about X is leaked by observing Y)
I[X,Y); 2] = 1|1X; Z] + I|Y; Z| X]

Z = (Z4,...,Z;) be a mutually independent
1[X; 7] = Z 11X; Z,]
ie[n]

[14, I1, distributions
K2y, M) = 1= ) PIT, = ] - P, = 7]
YA
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NMF and Information Theory

Let (F,S) ~ M/ ||M||1 and M =Y. f.sI with f,, s, = 0.

NMF => writing complicated distribution as mix of product distributions

M nonnegative matrix, Z conditional [Wyner, 1975]
CIM|Z] = inf I[F,S;I1| Z].
I1:NMF of M
MLZ|F,S

M nonnegative matrix

CIM|Z] < H:Nl\lxlr}l?fofMH[H | Z] < logrk, (M)
ML1Z|F,S
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NMF and Information Theory

M nonnegative matrix, I, , :=II|A =a,B =b
M50 M(fs5) (1= W21, 55T ) )
= VM1, 53) - My, (1= B2 (T, 50T, )

1 1
1 0

0=1- (1 — h? (Hf1;52; Hf2;51)) < hz(nfpsz; Hf2;51) =1

(f1,52) and (f5, s1) cannot be in the same rank-1 factor.
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NMF and Information Theory
Let M be a slack matrix. Bound I[F, S;I1 | Z] for all possible II:

1. Identify a conditional Z decomposing I[F, S; Il | Z] via direct sum theorem:

I[F,S;11|Z] = Z I[F,S;|Z] =1 mlnI[Fl,Sl,H|Z]
i=1,..,1
where for each i we have a smaller sub-problem.

2. Lower bound I[F;, S;; I1 | Z] via polyhedral/inf-theoretic argument:
I[Fi,Si; I1 | Z] > C

This then suffices:

= fc(P) = rk, (M) > 24¢

We automatically get inapproximability results (due to continuity).
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Correlation Polytope
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The correlation polytope

Forany b € {0,1}"
fo(0) = (1 - xTh)?

For any x € {0,1}"

Associated M, (x,b) = (1 — xTh)?

=> Contains UDISJ matrix as submatrix

Polyhedral equivalent is
COR(n) = conv{xx” | x € {0,1}"}}
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The correlation polytope

UDISJ submatrix as Forsomec >0

C ifanb =0
c(1—¢) iflanb|=1

P[A=a,B=b]={
Decomposing

1. C=(Cy,...,C,) independent fair coins

Ai lfCl — O

2. NewRVsD = (Dy,...,D,) with D; = {B- 0 =1
i i~

=> Conditioning on D = 0, C ensures {(4;,B;) : i € [n]} are independent

With this conditional (for minimal I1):

log k(M) = I[A,B;T1| D = 0,C] = z I[A,B;T1|D=0,C]>¢/8 n

i€[n]
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Thecasen =1

Consider the term:

I[A1,B; 11| Ay = 0] + I[A4, B; 11| By = 0]

I[Al,Bl,HlD:O,C]: 2

With Il , =11 | A = a, B = b we have (Lemma by Bar-Yossef et al.)

I[A1,By; 11| A; = 0]
I[A1,By; 11| By = 0]

Not a smart idea though: h?(I1yo; [151) = O possible as 00,01 can be in the same
rank-1 factor. (Similarly for h?(I1yo; IT1,) = 0)
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Simultaneous estimation via CS and A-inequality

I[A1»B1J M| A; = 0] + 1[A1;B1? M| B; = 0] > hz(nooi r[01) + hz(nooi r[10)
2 B 2

S (h(Iyg; My1) + A(Mgg; M10))?
o 4

h? (M 11
> ( 10 01)

= 4
Apply
M(0,0) - M(1,1) £ 1 1
2 . _ — — —
h*(Tl1g; 1) = 1 \/M(O,l)-M(l,O)Zl V1 822 1 |1—¢
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Average case hardness for COR(n)

&
Theorem. Any LP approximating COR(n) within a factor n1~¢ is of size 25",

Note: same result was obtained earlier by [Braverman, Moitra 13] (see talk)

However, common information captures all types of average case hardness:

Perturbation __Logrk, > | Remarks

uDISJ 6_3i°g3 (optimal estimation)
Shifts of UDIS) $ n (p — 1)-shift
Sets of fixed size % + 0(n'~%) % n—0m=9)
Random 2(1—®)n x 2(1-f)n (% —a—fF)n In expectation

1
Adversarial (1 —a) 2" x (1 —pB) 2" (5 —a— ,B) n—1log3  Removal of fraction per size
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The matching problem —a much more complicated case

Via a generalization of Razborov’s technique:

[Rothvoss 14] Any LP formulation of the matching polytope is of
exponential size.

This is very special and important:
1. Matching can be solved in polynomial time
2. Yet any LP capturing it is of exponential size

=> Separates the power of P from polynomial size LPs
With common information: ruling out the existence of FPTAS-type LP formulations

[Braun, P. 14] For some & > 0 any LP approximating the Matching
Polytope within a factor 1 + % is of exponential size.
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Thank you!
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