Communication complexity of sparse set disjointness and exists-equal

Mert Sağlam (U. Washington) and

Gábor Tardos (Rényi Institute, Budapest)

Model considered

• 2-party

Alice and Bob computing f(x,y)

 randomized with joint random source

 $\forall x,y$: Pr[output = f(x,y)] > 3/4

Model considered

2-party

Alice and Bob computing f(x,y)

 m_k

 randomized with joint random source

 $\forall x,y$: Pr[output = f(x,y)] > 3/4

Goals

- 1. Minimize total communication: $|m_1| + |m_2| + ... + |m_k|$
- 2. Minimize # of rounds: k

tradeoff?

output

• Set disjointness D_n : $x,y \subseteq H$; $x \cap y = \emptyset$? |H| = n

Can we meet next week?

- Set disjointness D_n : $x,y \subseteq H$; $x \cap y = \emptyset$? |H| = n
- Equality $E_n: x,y \in \{0,1\}^n; x = y$?

Are our copies of Harry Potter and the Sourcerer's Stone identical?

- Set disjointness D_n : $x,y \subseteq H$; $x \cap y = \emptyset$?
- Equality $E_n: x,y \in \{0,1\}^n; x = y$?

Well understood:

- D_n requires $\Omega(n)$ bits of communication (Kalyanasundaram-Schnitger)
- 2 bits / 1 round enough for E_n

- Set disjointness D_n : $x,y \subseteq H$; $x \cap y = \emptyset$?
- Equality $E_n: x,y \in \{0,1\}^n; x = y$?

Well understood:

- D_n requires $\Omega(n)$ bits of communication (Kalyanasundaram-Schnitger)
- 2 bits / 1 round enough for E_n

We consider variants of these problems

set disjointness

 $D_n: x,y \subseteq H; \quad x \cap y = \emptyset ? \mid H \mid = n$

sparse set disjointness

 $SD_{k,n}: x,y \subseteq H; \quad x \cap y = \emptyset ? \quad |H| = n; \quad |x|, |y| \le k; \quad k << n$

sparse set disjointness

$$SD_{k,n}: x,y \subseteq H; \quad x \cap y = \emptyset ? \quad |H| = n; \quad |x|, |y| \le k; \quad k << n$$

containments:

$$D_k \leq SD_{k,n} \leq D_n$$

Complexity of $SD_{k,n}$ is $\Omega(k)$, O(n), $O(k \log n)$, $O(k \log k)$.

sparse set disjointness

$$SD_{k,n}: x,y \subseteq H; \quad x \cap y = \emptyset ? \quad |H| = n; \quad |x|, |y| \le k; \quad k << n$$

containments:

$$D_k \leq SD_{k,n} \leq D_n$$

Complexity of $SD_{k,n}$ is $\Omega(k)$, O(n), $O(k \log n)$, $O(k \log k)$.

Thm [Håstad-Wigderson (2007)]: It is $\Theta(k)$.

- O(k) bits (optimal)
- O(log *k*) rounds
- constant error proved

- O(k) bits (optimal)
- O(log *k*) rounds
- constant error proved

Sağlam - T improvement

O(k) bits

log* k rounds

exponentially small error

- O(k) bits (optimal)
- O(log *k*) rounds
- constant error proved
- 0/1 output

Sağlam - T improvement

O(k) bits

log* k rounds

exponentially small error

outputs the actual intersection of the input sets

- O(k) bits (optimal)
- O(log *k*) rounds
- constant error proved
- 0/1 output

r times iterated log

Sağlam - T improvement

O(k) bits
log* k rounds
exponentially small error
outputs the actual
intersection of the
input sets

+ r-round $O(k \log^{(r)} k)$ bit protocol for $r < \log^* k$

+ optimality proof for all *r*

A. picks random S_0 with $x \subseteq S_0 \subseteq H$

Alice sends S_0

" $x \cap y \subseteq S_0$ "

 $x \subseteq H$

A. picks random S_0 with $x \subseteq S_0 \subseteq H$

Alice sends S_0

" $x \cap y \subseteq S_0$ "

$$y \subseteq H$$

 $x \cap y \subseteq y \cap S_0$

 $x \subseteq H$

A. picks random S_0 with $x \subseteq S_0 \subseteq H$

Alice sends S_0

"
$$x \cap y \subseteq S_0$$
"

$$y \subseteq H$$

 $x \cap y \subseteq y \cap S_0$

B. picks random S_1 with $y \cap S_0 \subseteq S_1 \subseteq H$

Bob sends S_1

"
$$x \cap y \subseteq S_1$$
"

 $x \subseteq H$

A. picks random S_0 with $x \subseteq S_0 \subseteq H$

Alice sends S_0

"
$$x \cap y \subseteq S_0$$
"

$$y \subseteq H$$

 $x \cap y \subseteq y \cap S_0$

B. picks random S_1 with $y \cap S_0 \subseteq S_1 \subseteq H$

Bob sends S_1

"
$$x \cap y \subseteq S_1$$
"

 $x \cap y \subseteq x \cap S_1$

 $x \subseteq H$

A. picks random S_0 with $x \subseteq S_0 \subseteq H$

Alice sends S_0

"
$$x \cap y \subseteq S_0$$
"

$$y \subseteq H$$

 $x \cap y \subseteq y \cap S_0$

B. picks random S_1 with $y \cap S_0 \subseteq S_1 \subseteq H$

Bob sends S_1

"
$$x \cap y \subseteq S_1$$
"

 $x \cap y \subseteq x \cap S_1$

A. picks random S_2 with $x \cap S_1 \subseteq S_2 \subseteq H$

Alice sends S_2

 $x \subseteq H$

A. picks random S_0 with $x \subseteq S_0 \subseteq H$

Alice sends S_0

"
$$x \cap y \subseteq S_0$$
"

$$y \subseteq H$$

 $x \cap y \subseteq y \cap S_0$

B. picks random S_1 with $y \cap S_0 \subseteq S_1 \subseteq H$

Bob sends S_1

"
$$x \cap y \subseteq S_1$$
"

 $x \cap y \subseteq x \cap S_1$

A. picks random S_2 with $x \cap S_1 \subseteq S_2 \subseteq H$

Alice sends S₂

etc.

Alice sends S_0

Bob sends S₁

Alice sends S₂

etc.

Alice sends S_0

Bob sends S_1

Alice sends S₂

etc.

e.g. $x \cap \bigcap S_i$

Stop and output "disjoint" if current set is empty,

otherwise output "intersect" when the $O(\log k)$ rounds or O(k) bits are used up.

How to send a random set containing x?

```
w_1, w_2,... random sets from joint random source
Send index min\{j \mid w_j \supseteq x\}.
E[\# \text{ of bits sent}] \approx |x|
```

How to send a random set containing x?
 w₁, w₂,... random sets from joint random source
 Send index min{j|w_j ⊇ x}.
 E[# of bits sent] ≈ |x|

1-sided error (no error for intersecting sets).

How to send a random set containing x?
 w₁, w₂,... random sets from joint random source
 Send index min{j|w_j ⊇ x}.
 E[# of bits sent] ≈ |x|

- 1-sided error (no error for intersecting sets).
- If x and y are disjoint, then size of current set halves in expectation in every round.

How to send a random set containing x?
 w₁, w₂,... random sets from joint random source
 Send index min{j|w_j ⊇ x}.
 E[# of bits sent] ≈ |x|

- 1-sided error (no error for intersecting sets).
- If x and y are disjoint, then size of current set halves in expectation in every round.

Current set will be empty in $O(\log k)$ expected rounds. Expected total # of bits sent: O(k).

protocol with fewer rounds

- biased random sets: contains each element independently with probability p << 1/2
- small p: quicker decrease in set size: k → pk
 longer message for a random
 set containing x: |x|log(1/p)

protocol with fewer rounds

- biased random sets: contains each element independently with probability p << 1/2
- small p: quicker decrease in set size: k → pk
 longer message for a random
 set containing x: |x|log(1/p)
- optimal tradeoff:

$$1/p_{i+1} = 2^{1/p_i}$$

Protocol for finding the intersection

Problem: "current set" x_i contains the true intersection $x \cap y$ — remains large throughout protocol Sending random set containing x_i is infeasible

Protocol for finding the intersection

Problem: "current set" x_i contains the true intersection $x \cap y$ — remains large throughout protocol Sending random set containing x_i is infeasible

Good: $|x_i - (x \cap y)|$ is expected to decrease just as fast, $x_i - x_{i+2} = x_i - S_{i+1}$ probably very small

Protocol for finding the intersection

Problem: "current set" x_i contains the true intersection $x \cap y$ — remains large throughout protocol Sending random set containing x_i is infeasible

Good: $|x_i - (x \cap y)|$ is expected to decrease just as fast, $x_i - x_{i+2} = x_i - S_{i+1}$ probably very small

Solution: no need for Bob to give full message S_{i+1} , enough to send a few bits — Alice chooses S_{i+1} to minimize $|x_i-S_{i+1}|$

Equality problem

Is
$$x = y$$
?

O(1) bits enough in single round (with joint random source)

Exists-equal problem

$$X_1, X_2, ..., X_k$$

Is
$$x_1 = y_1$$
 or

$$x_2 = y_2$$
 or

• • •

$$x_k = y_k$$
?

Exists-equal problem

$$X_1, X_2, ..., X_k$$

Is
$$x_1 = y_1$$
 or

$$x_2 = y_2$$
 or

•••

$$x_k = y_k$$
?

$$y_1, y_2, ..., y_k$$

Special case of Sparse Set Disjointness:

 $\{(1,x_1),(2,x_2),...,(k,x_k)\} \cap \{(1,y_1),(2,y_2),...,(k,y_k)\} \neq \emptyset$?

Exists-equal problem

$$X_1, X_2, ..., X_k$$

Is
$$x_1 = y_1$$
 or

$$x_2 = y_2$$
 or

 $x_{\nu} = y_{\nu}$?

$$y_1, y_2, ..., y_k$$

Special case of Sparse Set Disjointness:

$$\{(1,x_1),(2,x_2),...,(k,x_k)\} \cap \{(1,y_1),(2,y_2),...,(k,y_k)\} \neq \emptyset$$
?

- O(k) bits in log*k rounds suffice.
- Or $O(k \log^{(r)} k)$ bits in r rounds.

This is optimal for any r.

Single equality

OR of *k* equalities

10 bits in single round solves with <0.1% error

solve with 45% error in single round: $need \Omega(k \log k) bits$

Single equality

OR of *k* equalities

10 bits in single round solves with <0.1% error

solve with 45% error in single round: need $\Omega(k \log k)$ bits

best is to solve each equality separately with O(1/k) error

for Exists-equal (sparse set disjointness follows)

- for Exists-equal (sparse set disjointness follows)
- elementary argument for single round
- round-elimination argument in general

- for Exists-equal (sparse set disjointness follows)
- elementary argument for single round
- round-elimination argument in general

Need: special form of isoperimetric inequality on the Hamming cube $[t]^k$

What is the most "compact" set $H \subseteq [t]^k$ with |H| fixed?

- for Exists-equal (sparse set disjointness follows)
- elementary argument for single round
- round-elimination argument in general

Need: special form of isoperimetric inequality on the Hamming cube $[t]^k$

What is the most "compact" set $H \subseteq [t]^k$ with |H| fixed?

compact \approx small $E_x[\log |B_x \cap H|]$

expectation for random *x*

Hamming ball around *x*

- for Exists-equal (sparse set disjointness follows)
- elementary argument for single round
- round-elimination argument in general

Need: special form of isoperimetric inequality on the Hamming cube $[t]^k$

What is the most "compact" set $H \subseteq [t]^k$ with |H| fixed?

compact \approx small $E_x[\log |B_x \cap H|]$

Obtained through "shifting"

Hamming ball around *x*

expectation for random *x*

