APPLICATIONS OF (INDISTINGUISHABILITY) OBFUSCATION

Craig Gentry, IBM Research
An indistinguishability obfuscator is a PPT algorithm iO that takes a program P as input and is:

- **Efficient**: Description/runtime of iO(P) are poly-related to P.
- **Functionality-Preserving**: The string iO(P) describes a program with the same input-output behavior as P.
- **Pseudo-Canonicalizing**: For any PPT adversary A and any programs P₁ and P₂ of equal complexity and functionality:

\[|\Pr[A(iO(P₁))=1] - \Pr[A(iO(P₂))=1]| \text{ is negligible.} \]

- In English: If two programs have the same input-output behavior, the adversary cannot distinguish which was obfuscated.

- **Circuits**: Usually our model of computation.
Plant of the Talk

VBBeanstalk
[BGI+01]
Does not exist.

Amazing Crypto Applications

Slide stolen from Elette’s and Amit’s garden.

Warning: Not to scale!
Plant of the Talk

VBBeanstalk
[BGI+01]
Does not exist.

Amazing Crypto Applications

Slide stolen from Elette’s and Amit’s garden.

Warning: Not to scale!
Simple Applications of iO
Best-Possible Obfuscation

An indistinguishability obfuscator is “as good" as any other obfuscator that exists. [GR07]
Best-Possible Obfuscation

Indist. Obfuscation

Best Obfuscation

Some program P

$P(x)$

Indist. Obfuscation

Padding

Some program P

$P(x)$

\approx Computationally Indistinguishable
Restricted-Use Software

- **Setting**: Software developer wants to:
 - Publish demo version with features removed
 - Construct multiple tiers of product at different prices
 - Give an untrusted partner a “dumbed-down” version that only works for relevant tasks

- **The problem**: Removing features is difficult.
 - Laborious, introduces bugs
 - End product may still reveal more than intended
Restricted-Use Software from iO

Indist. Obfuscation

Demo version of program P with features laboriously removed

\[P(x) \]

\[\approx \]

Computationally Indistinguishable

Indist. Obfuscation

Restricted Some program P Interface

\[P(x) \]
Witness Encryption [R89,GK05,GGSW13]

- **Goal**: Encrypt m so only someone with proof of Riemann Hypothesis can decrypt.

- **Procedures**:
 - Encryption: $c \leftarrow WEnc(x;m)$ encrypts m relative to statement x.
 - Decryption: $\{m, \bot\} \leftarrow WDec(w;c)$ works if w is a witness for $x \in L$.

- **Secret key?**: No “secret key” per se.

- **Security**: $WEnc(x;m_0) \approx WEnc(x;m_1)$ when $x \notin L$.
Witness Encryption from iO [GGHRSW13]

Program $P_{x,m}(w)$: Output m if w is a witness that $x \in L$. Otherwise output \bot.

Indist. Obfuscation

\approx

Computationally Indistinguishable if $x \notin L$.

Program that always outputs \bot.

\bot
Relative vs. Absolute Guarantees

- Apps above have weak “relative” security guarantees:
 - BPO: Obfuscation is as good as best-possible obfuscation
 - Restricted-use software: As good as restricted interface.
 - WE: No guarantees when \(x \in L \).

- How to get absolute guarantees?
 - Make an absolute assumption – e.g., existence of OWFs.
 - But surely iO already implies OWFs...?
iO and OWFs

- **iO → OWFs?**
 - No, if $P = NP$.
 - iO exists if $P = NP$: Obfuscate program by outputting lexicographically first program with same functionality.

- **iO → OWFs if $NP \not\subseteq BPP$ [KMNPRY14].**
 - Candidate OWF: $f(x) = iO(Z;x)$ where Z is unsatisfiable.
 - Replace challenge with $y_1 = iO(C_1;x_1)$ for unsatisfiable C_1. By iO, adversary cannot distinguish, and will still invert.
 - Replace challenge with $y_2 = iO(C_2;x_2)$ for satisfiable C_2. Adversary cannot invert, since $\nexists x$ such that $f(x) = iO(C_2;x_2)$.
 - Adversary’s success/failure tells us whether C is satisfiable.
Simple App: WE+OWF → PKE [GGSW13]

- **KeyGen**: PRG : \{0,1\}^n \rightarrow \{0,1\}^{2n}.
 - Secret key: s^* \in \{0,1\}^n. Public key: t^* = PRG(s^*).

- **Encryption**:
 - Let \(x_{t^*} \) be the statement “\(\exists s \text{ such that } t^* = PRG(s) \)”.
 - \(c \leftarrow \text{WEnc}(x_{t^*};m) \).

- **Decryption**: \(m \leftarrow \text{WDec}(s^*;c) \).

Hyb\(_0\) (real world): \(c = \text{WEnc}(x_{t^*}; m_0) \).

Hyb\(_1\) (t \leftarrow \{0,1\}^{2n}): \(c = \text{WEnc}(x_t; m_0) \).

Hyb\(_2\) (m\(_0\) \rightarrow m\(_1\)): \(c = \text{WEnc}(x_t; m_1) \).

Hyb\(_3\) (real world): \(c = \text{WEnc}(x_{t^*}; m_1) \).
Other Apps of WE (+ Simple Primitives)

- Identity-based encryption
- Attribute-based encryption for circuits
- Secret sharing for monotone NP access structures [KNY14]
- ...

Two main techniques:
1. Shell games with secrets
2. Punctured programs
1st Technique: Shell Games with Secrets
Shell Games with Secrets

Thought Experiment

Indist. Obfuscation

Program P_1 uses secret sk_1 and does not contain sk_2.

Functionally Equivalent

Indist. Obfuscation

Program P_2 uses secret sk_2 and does not contain sk_1.

Does either obfuscation reveal sk_1 or sk_2?
Shell Games with Secrets

Thought Experiment

Indist. Obfuscation

Program P_1 uses secret sk_1 and does not contain sk_2.

Functionally Equivalent

\approx

Computationally Indistinguishable

Indist. Obfuscation

Program P_2 uses secret sk_2 and does not contain sk_1.

- P_1 hides sk_2 and P_2 hides sk_1.
- But $iO(P_1) \approx iO(P_2)$.
- So, $iO(P_1)$ hides sk_1 and $iO(P_2)$ hides sk_2.
- “Two-key technique” used many times before ([NY90], ...).
Shell Game Application: iO for Circuits from (iO for NC\(^1\)) + (FHE with decryption in NC\(^1\))

Reminder about FHE \([RAD78, Gen09, \ldots]\)

Data \(x\)

FHE Encryption

Data \(x\)

Eval(\(pk, C, Enc(x)\))

Circuit \(C\)

FHE Encryption

Eval(\(pk, U, Enc(C), Enc(x)\))

Eval(\(pk, U, Enc(C), x\))

C(x)

\(U =\) universal circuit
\(Enc(C) =\) encrypted program

Current FHE schemes have decryption procedures that can be computed by shallow (NC\(^1\)) circuits.
Shell Game Application: iO for Circuits from (iO for NC\(^1\)) + (FHE with decryption in NC\(^1\))

Obfuscation of General Circuit C

Program CondDec:
Hardwired: sk\(_1\) and \(\{e_i = \text{Enc}(pk_i, c)\}\)
Verify proof \(\pi\) that
\(c_1 = \text{Eval}(pk_1, U, e_1, x),\)
\(c_2 = \text{Eval}(pk_2, U, e_2, x).\)
If true, output \(\text{Dec}(sk_1, c_1)\); else output \(\bot\).

C(x) or \(\bot\)
Shell Game Application: iO for Circuits from (iO for NC^1) + (FHE with decryption in NC^1)

- **CondDec_{sk_1}:**
 - Verify proof \(\pi \) that
 \[c_1 = \text{Eval}(pk_1, U, e_1, x), \]
 \[c_2 = \text{Eval}(pk_2, U, e_2, x). \]
 - If true, output \(\text{Dec}(sk_1, c_1) \).
 - Else output \(\bot \).

- **CondDec_{sk_2}:**
 - Verify proof \(\pi \) that
 \[c_1 = \text{Eval}(pk_1, U, e_1, x), \]
 \[c_2 = \text{Eval}(pk_2, U, e_2, x). \]
 - If true, output \(\text{Dec}(sk_2, c_2) \).
 - Else output \(\bot \).

- \(\cong \)

- **CondDec_{sk_1} and CondDec_{sk_2}** have same input-output behavior.
- So, their obfuscations are indistinguishable, and hide \(sk_1 \) and \(sk_2 \).
Shell Game Application: iO for Circuits from (iO for NC1) + (FHE with decryption in NC1)

Security Proof for iO Scheme:

- Suppose circuits C_1, C_2 have same functionality.
- Hybrids: In $H_{C_{b_1}, C_{b_2}, sk_{b_3}}$ the obfuscation consists of:

 $e_1 = \text{Enc}(pk_1, C_{b_1})$, $e_2 = \text{Enc}(pk_2, C_{b_2})$, iO($\text{CondDec}_{sk_{b_3}}$)

Real iO of C_1

H_{C_1, C_1, sk_1}

Real iO of C_2

H_{C_2, C_2, sk_1}

FHE security under pk_2

H_{C_1, C_2, sk_1}

H_{C_1, C_2, sk_2}

H_{C_2, C_2, sk_2}

iO security

FHE security under pk_1
Functional Encryption [S84, SW05, BSW11, …]

Syntax

- $(MPK, MSK) \leftarrow FE.\text{Setup}(1^\lambda)$
- $sk_f \leftarrow FE.\text{KeyGen}(MSK, f)$
- $ct_x \leftarrow FE.\text{Enc}(MPK, x)$
- $f(x) \leftarrow FE.\text{Dec}(sk_f, ct_x)$
Shell Game Application: Functional Encryption for Circuits

Functional Encryption [S84, SW05, BSW11, …]

Syntax
- (MPK, MSK) ← FE.Setup(1^λ)
- sk_f ← FE.KeyGen(MSK, f)
- ct_x ← FE.Enc(MPK, x)
- f(x) ← FE.Dec(sk_f, ct_x)

(Selective) Security Game
- Adversary selects x_1, x_2.
- Challenger sends MPK, challenge ct.
- Key queries: for f_i such that f_i(x_1) = f_i(x_2).
- Adversary guesses.
Shell Game Application: Functional Encryption for Circuits

Functional Encryption from IO \[\text{GGHRSW13} \]

- **FE.Setup**: Generate:
 - PKE key-pairs \((pk_1, sk_1), (pk_2, sk_2)\).
 - CRS for stat. sim. sound NIZK proof.

- **FE.Enc**(MPK, x): Generate:
 - \(c_1 \leftarrow \text{Enc}(pk_1, x; r_1)\),
 - \(c_2 \leftarrow \text{Enc}(pk_2, x; r_2)\),
 - NIZK proof \(\pi\) that \(c_1, c_2\) encrypt same value: that \(\exists\ r_1, r_2\ s.t.
 \(c_1 = \text{Enc}(pk_1, x; r_1), c_2 = \text{Enc}(pk_2, x; r_2)\).

Decryption key for \(f\):
Verify proof \(\pi\) that \(c_1, c_2\) encrypt same value under \(pk_1, pk_2\).
If so, output \(f(\text{Dec}(sk_1, c_1))\).
Else output \(\bot\).

\(f(x)\) or \(\bot\)
Shell Game Application:
Functional Encryption for Circuits

Security Proof for FE Scheme:

- Hybrids: In $H_{x_{b_1}, x_{b_2}, sk_{b_3}}$ the challenge ciphertext is c_1^*, c_2^*, π^*, where c_1^* encrypts x_{b_1}, c_2^* encrypts x_{b_2}, and user keys decrypt under sk_{b_3}.

Oops!! NIZK proof cannot work in these hybrids!!!
Shell Game Application: Functional Encryption for Circuits

Security Proof for FE Scheme:

- **Hybrids:** In $H_{x_{b1},x_{b2},sk_{b3}}$ the challenge ciphertext is c_1^*, c_2^*, π^*, where c_1^* encrypts x_{b1}, c_2^* encrypts x_{b2}, and user keys decrypt under sk_{b3}.

Diagram:

- **Real enc of x_1**
 - H_{x_1,x_1,sk_1}
 - H'_{x_1,x_1,sk_1}
 - PKE security under pk_2

- **Stat. sim. sound proof allows “escape hatch” only for challenge ciphertexts c_1^*, c_2^***

- **Real enc of x_2**
 - H_{x_2,x_2,sk_1}
 - H'_{x_2,x_2,sk_1}
 - iO security

- **PKE security under pk_1**
 - H'_{x_1,x_2,sk_1}
 - H'_{x_1,x_2,sk_2}
 - iO security

- **iO security**
2nd Technique: Punctured Programs
Punctured Programming [SW13]

Definition: $P\{t\}$ is program P punctured at input t.

\[x \rightarrow P\{t\} \rightarrow P(x) \]

\[\perp \text{ if } x \neq t \]
\[\perp \text{ if } x = t \]

Punctured Programming Strategy:

- Show iOs of two programs are indistinguishable.
- Show adversary needs $P(t)$ to win game.
- Show that $P\{t\}$ keeps $P(t)$ secret.

“The idea of the technique is to alter a program (which is to be obfuscated) by surgically removing a key element of the program, without which the adversary cannot win the security game it must play, but in a way that does not alter the functionality of the program.”
Punctured PRFs

Definition:

\[
Punctured \text{ Key} \quad K^{\{t\}} \quad \text{PPRF}\(K, x)\]

if \(x \neq t\)

\[
\downarrow
\]

if \(x = t\)

Security: \(\text{PPRF}(K, t)\) is pseudorandom given \(K^{\{t\}}\) and \(t\).

From GGM:

\[\text{PRG} \ G : \{0,1\}^s \rightarrow \{0,1\}^{2s}\]

\[G(r) = G_0(r) \ || \ G_1(r)\]

\[\text{PRF}(K, x) = G_{x_n}(\cdots G_{x_1}(K) \cdots)\]
PKE Using Punctured PRFs [SW13]

Secret Key:
Key K for symmetric encryption

Public Key:

![Diagram](image)

Diffie-Hellman '76: Get PKE by obfuscating encryption:
“If the [encryption] program were to be made purposefully confusing through the addition of unneeded variables and statements then determining an inverse algorithm could be made very difficult.”
PKE Using Punctured PRFs [SW13]

Secret Key:
Key K for PRF

Public Key:

$$m \oplus \text{PRF}(K, r)$$

Problem: Stream cipher encryption is its own inverse!
PKE Using Punctured PRFs [SW13]

Secret Key:
Key K for PRF

Public Key: Let $G : \{0,1\}^s \rightarrow \{0,1\}^{2s}$ be a PRG.

- $m \oplus \text{PPRF}(K, G(r))$
- $G(r)$

Challenge ciphertext: $c^* = (t, m \oplus \text{PPRF}(K, t)), t = \text{PRG}(r)$

Make t uniform in $\{0,1\}^{2s}$. (PRG security)

Actual Scheme
Super-fast Decryption!
PKE Using Punctured PRFs [SW13]

Secret Key:
Key K for PRF

Public Key: Let $G : \{0,1\}^s \rightarrow \{0,1\}^{2s}$ be a PRG.

Challenge ciphertext: $c^* = (t, m \oplus \text{PPRF}(K, t))$, t uniform in $\{0,1\}^{2s}$.

Use $\text{PPRF}(K^{\{t\}}, \cdot)$ instead of $\text{PPRF}(K, \cdot)$ inside Enc. (iO security, since t is almost certainly not in range of G.)
PKE Using Punctured PRFs [SW13]

Secret Key:
Key K for PRF

Public Key: Let $G : \{0,1\}^s \rightarrow \{0,1\}^{2s}$ be a PRG.

Challenge ciphertext: $c^* = (t, m \oplus \text{PPRF}(K, t))$, t uniform in $\{0,1\}^{2s}$.

Replace PPRF(K, t) with random value u. (Punctured PRF security)
PKE Using Punctured PRFs [SW13]

Secret Key:
Key K for PRF

Public Key: Let $G : \{0,1\}^s \rightarrow \{0,1\}^{2s}$ be a PRG.

Challenge ciphertext: $c^* = (t, m \oplus u)$, t uniform, u uniform.

Message is perfectly hidden.
Another Useful Trick: Complexity Leveraging

- **Construct “selectively secure” scheme.**
 - Adversary forced to pre-commit to input \(t \in \{0,1\}^k \) to “attack”.
 - Successful attack on \(t \) breaks iO or PPRF (or whatever).
 - \(\varepsilon_{selective}(\lambda) \leq \varepsilon_{iO}(\lambda) + \varepsilon_{PPRF}(\lambda) \).

- **Go from selective security to adaptive security**
 - Challenger randomly guesses \(t \) that adversary will target.
 - Probability that adaptive adversary wins and happens to pick \(t \) is
 \(\varepsilon_{adaptive}(\lambda)/2^k \leq \varepsilon_{selective}(\lambda) \leq \varepsilon_{iO}(\lambda) + \varepsilon_{PPRF}(\lambda) \).
 - So \(\varepsilon_{adaptive}(\lambda) \leq 2^k (\varepsilon_{iO}(\lambda) + \varepsilon_{PPRF}(\lambda)) \).
 - Choose \(\lambda = \text{poly}(k) \) so that \(\varepsilon_{adaptive}(\lambda) \) is negligible.

Security at one input boosted to security at many inputs.
Constrained PRF

Definition:

\[\text{PRF}(K, x) \]

- If \(C(x) = 1 \)
- If \(C(x) = 0 \)

Key for Circuit C

Security: \(\text{PRF}(K, x) \) is pseudorandom for all unsatisfying \(x \).

Problem: How can we puncture the key at an exponential number of points?
Constrained PRF

Construction:
PPRF \{0,1\}^n \rightarrow \{0,1\}^m

Security: Sample random \(t \) such that \(C(t)=0 \).

- iO

 If \(C(x) = 0 \), output \(\perp \).
 Else output PPRF(K, x).

- \(\approx \)

 If \(C(x) = 0 \), output \(\perp \).
 Else output PPRF(K^{\{t\}}, x).

- Adversary outputs PPRF(t) with probability > \(\varepsilon_{CPRF}/2^n - \varepsilon_{iO} \).

- Complexity leveraging: iO and PPRF need sub-exp security.
Constrained Signature Scheme

Definition:

\[
K^C \xrightarrow{\text{Key for Circuit C}} \\
\xrightarrow{\text{C Sig}} \xrightarrow{\text{Sig}(K, x)} \xrightarrow{\bot} \text{if } C(x)=1 \\
\xrightarrow{\bot} \text{If } C(x)=0
\]

(Plus a verification algorithm Ver.)

For unsatisfying x, we get usual signature scheme security.

Applications:

- Mobile agents: Agent’s signature looks just like Principal’s (on messages that it is permitted to sign).
- Delegation: Signature on x is an argument that C(x)=1.
Constrained Signature Scheme

Construction:
PPRF \(\{0,1\}^n \rightarrow \{0,1\}^m\). Let \(f\) be a public OWF. \(|x| = k\).

Constrained signing:
- If \(C(x) = 0\), output \(\bot\).
- Else output \(PRF(K, x)\).

Verification:
- Output \(f(PPRF(K, x))\).

Security: Pick random \(t\) such that \(C(t) = 0\). Hybrids:
- Use \(K_t\) and hardwire \(f(PPRF(K, t))\) into \(\text{Ver}\) (iO security).
- Change \(f(PPRF(K, t))\) to \(f(v)\) in \(\text{Ver}\) for random \(v\) (PPRF security).
- \(\text{Adv}\) forges \(v = \text{Sig}(t)\) with prob \(> \varepsilon_{CSig}/2^k - 2\varepsilon_{IO} - \varepsilon_{PPRF}\).
- OWF needs \(> 2^k\) security \(\rightarrow m > k \rightarrow \text{CSigs longer than messages}\).
Non-Deterministic Constrained PRFs/Sigs

Witness PRFs: [Zhandry ’14] Get PRF on x if input satisfies $R(x, w) = 1$

Applications:
- Multiparty NIKE without trust setup
 - Similar to Boneh-Zhandry protocol, but without iO
- Reusable WE and ABE with short cts (independent of relation size)
- Reusable secret sharing for NP with shorter shares
- Fully distributed broadcast encryption
- Maybe not enough for to achieve some things achievable via iO, like Boneh-Zhandry’s traitor tracing protocol.

NIZK args for NP: [SW13] Get sig on x if input satisfies $R(x, w) = 1$
A Few Constrained PRF/Sig papers

Another Useful Trick: Extraction

- Show $iO(P) \approx iO(P^t)$ even though $P(t) \neq \perp$.
 - Show distinguisher can extract “differing input” t.
 - Show t is hard to extract assuming OWFs.

- Show that P^t lacks some property necessary for the adversary’s attack.
iO and Differing Inputs Obfuscation (diO)

- **Differing inputs obfuscation (diO):**
 - Security definition: For every diO distinguisher, there is an extractor that gives a differing input.

- **diO → iO**

- **iO → diO if # of differing inputs is very small** [Boyle, Chung, Pass TCC 2014]
 - Apply iO scheme to programs P, P’ that differ at one input t.
 - If iO(P) $\not\approx$ iO(P’), iO implies we can extract t.
 - If P’ = P{t}, we can extract t.
 - In general, Extractor’s work scales with # of differing inputs.
Suppose \(P(x) = P'(x) \) for all \(x \) except \(t \).

Program \(P_k \): If \(x \geq k \) output \(P(x) \), else output \(P'(x) \).

Assuming \(\text{iO} \), if \(\text{iO}(P) \not\approx \text{iO}(P') \), we can find \(t \) by binary search.
Let’s Give P^t Some Code:
Suppose t’s domain supports an injective OWF f. Let $y = f(t)$.

If $f(x) = y$, output \bot.
Else, output $P(x)$.

- Assuming iO, if $iO(P) \not\approx iO(P^t)$, we can break the OWF.
- Assuming iO and OWF, $iO(P) \approx iO(P^t)$.
Circular Security from iO

Public Key: \(pk_1 \) and \(\text{iO}(P) \).

- **P:** Output \(pk_i, \text{Enc}_{pk_i}(sk_{i+1}) \).
- **For random \(t \):**
 - \(P^\{t\} \): If \(i=t \), output \(\perp \).
 - Else \(pk_i, \text{Enc}_{pk_i}(sk_{i+1}) \).

Big Key Cycle

If domain large enough to support OWFs

(No more cycle.)

Application: “Pure” FHE uses key cycle to handle unbounded depth.
Additional Requirements: Encryption scheme is not only IND-CPA, but pairs \((pk_i, c_i = \text{Enc}(pk_i, m))\) look pseudorandom.

\[P^t: \text{If } i = t, \text{ output } \bot. \text{ Else output } P(i). \]

\[Q^t: \text{If } i = t, \text{ output } \bot. \text{ Else output } Q(i). \]

P:

\[
(r_i, s_i) \leftarrow \text{PPRF}(K, i) \\
(r_{i+1}, s_{i+1}) \leftarrow \text{PPRF}(K, i+1) \\
(sk_i, pk_i) \leftarrow \text{KGen}(r_i) \\
(sk_{i+1}, pk_{i+1}) \leftarrow \text{KGen}(r_{i+1}) \\
c_i \leftarrow \text{Enc}(pk_i, sk_{i+1}; s_i) \\
\text{Output } (pk_i, c_i)
\]

Q:

Set \((pk_i', c_i') \leftarrow \text{PRF}(K', i)\) except \(pk_1' = pk_1\).

\text{Output } (pk_i', c_i')

Clearly IND-CPA is preserved when iO\((Q^t)\) is added to public key.
Circular Security from iO: Rest of Proof

Claim:

\[P[t,u,0] : \text{has PPRF key } K > u. \]
If \(i > u \) output \(P_t^i(i) \).
Else output \(Q_t^i(i) \).

\[P[t,u+1,0] : \text{has PPRF key } K > u+1. \]
If \(i > u+1 \) output \(P_t^i(i) \).
Else output \(Q_t^i(i) \).

\[P[t,u,1] : \text{Like } P[t,u,0], \text{except output for } u+1 \text{ hardwired.} \]

\[P[t,u,2] : \text{Like } P[t,u,1], \text{except PPRF key is now } K > u+1. \]

iO security

≈

Pseudo-randomness
Related Work on Circular Security vs. iO

- iO + LFHE ⇒ “Almost pure FHE”

- Negative results on circ. security (for poly-size cycles):
Trapdoor Permutation from iO [BPW15]

Trapdoor:
Key K for PRF

Public Key:
Obfuscated program for F_K.

Pseudorandom sampler:
Output $x_{PRG(i)}$.

Remark: x_i's like secret keys in a key cycle. Replace $iO(F_k)$ with $iO(P)$ that outputs $Enc(pk_i, sk_{i+1})$. Get sk_{i+1} from sk_i via decryption.
Trapdoor:
Key K for PRF

Public Key:
Obfuscated program for F_K.

For random t:

- F_K^t: If $z = x_t$, output \bot.
 Else output $F_K(z)$.

\[x_i = (i, \text{PRF}(K, i)) \]
Other Work on iO vs. Delicate Graphs

 - Prove that finding a Nash equilibrium of a game is hard, assuming the existence of iO and sub-exp OWFs.
 - Nash is PPAD-complete: [DGP09, CDT09].
- END-OF-THE-LINE: Canonical PPAD-complete problem. Given succinct program P_G representing exponential-size directed graph G over $\{0,1\}^n$ with in/out degrees ≤ 1, and a source node s, find some other source/sink node.
 - $\text{iO}(P_G)$ for long-line-graph indistinguishable from $\text{iO}(P'_G)$ where end-of-the-line is inaccessible.
Roughly grouped by area:
1. FHE
2. Multilinear maps
3. Delegation
4. Secure multiparty computation
5. Garbled circuits
6. RAM computations
7. Differential privacy
8. Odds and Ends
FHE from iO and Re-randomizable PKE

Leveled FHE from iO+OWFs?

- Compact additive HE → CRHFs.
 - Let $c_1 = \text{Enc}(a)$, $c_2 = \text{Enc}(b)$.
 - $H(x_1 \| x_2) = \text{Enc}(ax_1 + bx_2)$ (computed homomorphically).
 - Collision gives linear equation on (a,b), violating semantic security.

- But don’t know how to get CRHFs from iO+OWFs!
 - Asharov, Segev: “Limits on the Power of iO and FE” (ePrint 2015): “There is no fully black-box construction with a polynomial security loss of a collision-resistant function family from a general-purpose indistinguishability obfuscator and a… trapdoor permutation.”
Leveled FHE from iO+Re-rand PKE

 “Assume the existence of a sub-exponentially indistinguishable IO for circuits, and a sub-exponentially secure OWF. Then any perfectly rerandomizable encryption scheme can be transformed into a leveled homomorphic encryption scheme.”
L-Leveled FHE from iO + Re-rand PKE: Natural Approach

KeyGen as in PKE, but with obfuscated NANDs:

\[\text{Output} = \text{Enc}(pk_i, \text{NAND}(\text{Dec}(sk_{i-1}, c_1), \text{Dec}(sk_{i-1}, c_2)); \text{PRF}(K, c_1, c_2)) \]

\[c_1 = \text{Enc}(pk_{i-1}, x) \]
\[c_2 = \text{Enc}(pk_{i-1}, y) \]
\[c_3 = \text{Enc}(pk_i, \text{NAND}(x, y)) \]

General way to handle obfuscation of programs that use internal coins
L-Leveled FHE from iO + Re-rand PKE: Security Proof

- Uses 2 types of PKE scheme:
 - Normal
 - Trapdoor/Lossy: \(\text{Enc}(\text{tpk}, m; r) \) and \(\text{Enc}(\text{tpk}, 0; r) \) have statistically identical distributions.

- Hybrid \(H_k \):
 - Use normal public keys \(\text{pk}_i \) for \(i \leq k \).
 - Trapdoor keys \(\text{tpk}_i \) for \(i > k \), and obfuscate program that just outputs encryptions of 0.
 - \(H_L \): real game.
 - \(H_0 \): Challenge ct is always an encryption of 0.
L-Leveled FHE from iO + Re-rand PKE: Hybrids

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_{i-1,0}$</td>
<td>Output $\text{Enc}(pk_i, \text{NAND} (\text{Dec}(sk_{i-1}, c_1), \text{Dec}(sk_{i-1}, c_2)); \text{PRF}(K,c_1,c_2))$</td>
</tr>
<tr>
<td>$H_{i-1,1}$</td>
<td>Output $\text{Enc}(tpk_i, \text{NAND} (\text{Dec}(sk_{i-1}, c_1), \text{Dec}(sk_{i-1}, c_2)); \text{PRF}(K,c_1,c_2))$</td>
</tr>
<tr>
<td>$H_{i-1,2,j,1}$</td>
<td>For $j = (c_1^, c_2^)$, hardcode response to (i-1,j) and puncture PRF there.</td>
</tr>
<tr>
<td>$H_{i-1,2,j,2}$</td>
<td>Output $\text{Enc}(tpk_i, \text{NAND} (\text{Dec}(sk_{i-1}, c_1^), \text{Dec}(sk_{i-1}, c_2^)); r)$</td>
</tr>
<tr>
<td>$H_{i-1,2,j,3}$</td>
<td>Output $\text{Enc}(tpk_i, 0; r)$</td>
</tr>
<tr>
<td>$H_{i-1,2,j,4}$</td>
<td>Output $\text{Enc}(tpk_i, 0; \text{PRF}(K,j))$</td>
</tr>
</tbody>
</table>

- Trapdoor key indistinguishability
- iO security
- PPRF security
- Statistical re-randomizability
- PPRF security and iO security
L-Leveled FHE from iO + Re-rand PKE: Hybrids

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_{i-1,0}$</td>
<td>Output $\text{Enc}(\text{pk}i, \text{NAND}(\text{Dec}(\text{sk}{i-1}, c_1), \text{Dec}(\text{sk}_{i-1}, c_2)); \text{PRF}(K,c_1,c_2))$</td>
</tr>
<tr>
<td>$H_{i-1,1}$</td>
<td>Trapdoor key indistinguishability</td>
</tr>
<tr>
<td>$H_{i-1,2,j,1}$</td>
<td>For $j = (c_1^, c_2^)$, hardcode response to $(i-1,j)$ and make PPRF secure</td>
</tr>
<tr>
<td>$H_{i-1,2,j,2}$</td>
<td>Output $\text{Enc}(\text{tpk}i, \text{NAND}(\text{Dec}(\text{sk}{i-1}, c_1^), \text{Dec}(\text{sk}_{i-1}, c_2^)))$</td>
</tr>
<tr>
<td>$H_{i-1,2,j,3}$</td>
<td>Statistical re-randomizability</td>
</tr>
<tr>
<td>$H_{i-1,2,j,4}$</td>
<td>Output $\text{Enc}(\text{tpk}_i, 0; \text{PRF}(K,j))$</td>
</tr>
</tbody>
</table>

Notes:
- Need $> 2^{2\text{len}}$ security where len is the length of a ciphertext.
- Hence need statistical re-randomizability.
Toward iO-based Multilinear Maps?
A Positive Result

- Encoding of x consists of the obfuscation:

 \[F_x : \text{Output } e(g^x, g^y) \overset{\text{def}}{=} g^{2xy} \text{ by powering by } 2x. \]

 \[F'_x : \text{Output } g^{2xy} \text{ by powering by } 2x + \text{ord}(g). \]

- Degree of maps is unbounded-polynomial.

- Applications to non-interactive key agreement and distributed broadcast encryption schemes.

- FHE scheme with equality test can be broken in quantum polynomial time.
- Seems difficult to base security of truly unbounded mmap on quantum-resistant assumption like LWE.
Delegation using iO
Delegation using iO

- Constrained sigs via iO
 - But better options?
 - Yael’s no-signaling proofs
 - Paneth/Rothblum use mmaps to get public verifiability here
 - Reusable garbled circuits
 - Fully homomorphic sigs
 - Quadratic arithmetic programs

 - iO used to outsource provider’s entire multi-client service, with privacy for both the provider and clients against the host.
Improving Secure MPC with iO
Some Applications of iO to MPC

Two-round adaptively secure MPC

SFE with Long Output
Two-Round Adaptively-Secure MPC

Useful Ingredient: Deniable encryption, Explainability Compilers

- **Definition [Explainability Compiler]** (following [SW13, DKR15])
 A PPT algorithm Comp is an explainability compiler if for every efficient randomized circuit Alg, the following hold:
 - **Polynomial slowdown**: There is a polynomial $p(\cdot)$ such that for any $(\text{Alg}^*, \text{Explain})$ output by $\text{Comp}(1^\lambda, \text{Alg})$ it holds that $|\text{Alg}^*| \leq p(\lambda) |\text{Alg}|$.
 - **Statistical functional equivalence**: Distributions of $\text{Alg}^*(x)$ and $\text{Alg}(x)$ are statistically close for all x.
 - **Explainability**: Adversary A has negl advantage in following game:

 $\begin{align*}
 &A(1^\lambda) \text{ outputs } x^* \text{ of its choice (selects target input).} \\
 &\text{(Alg}^*, \text{Explain}) \leftarrow \text{Comp}(1^\lambda, \text{Alg}). \\
 &\text{Choose uniform coins } r_0 \in \text{ and compute } y^* = \text{Alg}^*(x^*; r_0). \\
 &\text{Compute } r_1 \leftarrow \text{Explain}(x^*, y^*). \\
 &\text{Choose random bit } b \text{ and give (Alg}^*, y^*, r_b) \text{ to } A. \\
 &A \text{ tries to guess } b.
 \end{align*}$

 Explain allows simulator to generate consistent randomness.
Explainability Compiler: Construction

Alg*:

Hardwired keys: K_1, K_2, K_3

Input: x and randomness $u = u[1] \parallel u[2]$

1. Sparse Hidden Trigger: If $(x',y',r') \leftarrow \text{PPRF}(K_3, u[1]) \oplus u[2]$ satisfies $x = x'$ and $u[1] = \text{PPRF}(K_2, (x',y',r'))$, output y'.
2. Normal: Output $\text{Alg}(x; \text{PPRF}(K_1,(x,u)))$.

Explain:

Hardwired keys K_2, K_3

Input: x, y' and randomness r

1. $u[1] \leftarrow \text{PPRF}(K_2, (x,y',\text{PRG}(r)))$ $u[2] \leftarrow \text{PPRF}(K_3,u[1]) \oplus (x,y',\text{PRG}(r))$.

Outputs an “encryption” of (x,y')
SFE with Long Output Scenario:
- Function $f: \{0,1\}^A \times \{0,1\}^B \rightarrow \{0,1\}^t$.
- Output is long: $t \gg A$. Maybe also $t \gg B$.
- Want SFE protocol for Bob to get $f(x_A,x_B) | \in \{0,1\}^t$.

Examples:
- $x_A = $ PRF key K, $f(x_A,\emptyset) = PRF(K,1)$, ..., $PRF(K,L)$.
- $x_A = $ partial decryption key, $x_B = $ encryption of long output of MPC protocol under threshold PKE, $f = $ partial decryption procedure.

Communication complexity:
- Can we get communication sublinear in t?
- Possible with insecure protocols.
- FHE doesn’t do this.
- Constrained PRF? No, not simulatable from PRF outputs alone.
Communication Complexity of SFE with Long Output [Hubacek, Wichs’15]

- **Negative Results:**
 - Output-dependence inherent when Bob is malicious or even honest-but-deterministic.
 - **The Problem: incompressibility**
 - \(\text{view}_{\text{Bob}} \) allows Bob to compute \(\text{PRF}(K,1), \ldots, \text{PRF}(K,L) \)
 - \(|\text{view}_{\text{Bob}}| \ll t \) if Bob is deterministic, \(|x_B| \ll t \), and \(|\text{comm}| \ll t \).
 - \(\text{view}_{\text{Bob}} \) compresses \(\text{PRF}(K,1), \ldots, \text{PRF}(K,L) \) (impossible).

- **Positive results**
 - Use iO to remove output-dependence in semi-honest case.
 - Requires Bob to use long randomness with succinct decommitments via an iO-friendly Merkle tree hash.
Communication Complexity of SFE with Long Output [Hubacek, Wichs’15]

Real World
Bob sends $z = H(r_1, \ldots, r_L)$. Alice sends $iO(C_{K,z})$.

$iO(C_{K,z})$:

- **Hardwired:** key K, hash output z
- **Inputs:** $(i \leq L, r_i, \pi_i)$
 1. Verify decommitment π_i that r_i is i-th bit of hashed randomness.
 2. If so, output $y_i = PRF(K, i)$.

Simulation
$z = H(r_1, \ldots, r_L)$ for $r_i = y_i \oplus PRF(K_{sim}, i)$. Modified obfuscation.

$iO(C_{K_{sim},\{y_i : i \leq L\}, z})$:

- **Hardwired:** key K_{sim}, H output z
- **Inputs:** $(i \leq L, r_i, \pi_i)$
 1. Verify decommitment π_i that r_i is i-th bit of hashed randomness.
 2. If so, output $y_i = r_i \oplus PRF(K_{sim}, i)$.

Not functionally equivalent when $(i, r' \neq r_i, \pi_i')$ is a valid decommitment!
Communication Complexity of SFE with Long Output [Hubacek, Wichs’15]

iO-Friendly Merkle Tree (somewhere statistically binding hash):

- **Functionality of a Merkle tree:**
 - Short hash key: $z = H_{hk}(r_1, \ldots, r_L)$
 - Allows short decommitment of r_i.

- **iO-friendly security:**
 - Some index i is statistically binding: For that i, there is no opening to $r_i' \neq r_i$.
 - Hash key hk does not reveal which index i is binding.

- **Construction:** from FHE.
More iO-Friendly Techniques

 - **Positional accumulators**: Similar in concept to somewhere statistically binding hashes. Allows short commitment to large storage that is unconditionally sound for some hidden index.
More Powerful Protocols via iO

Functionalities:

 - Given ciphertexts $\text{Enc}(x_1), \ldots, \text{Enc}(x_n)$ and the secret key sk_f for n-ary function f, one can compute $f(x_1, \ldots, x_n)$, and nothing else about the $\{x_i\}$’s.

More Powerful Protocols via iO

Functionalities from Mmaps (not iO):

More Powerful Protocols via iO

ZK, WI, Concurrency:

- Bitansky, Paneth: “ZAPs and NIWI from iO”. TCC 2015.
More Powerful Protocols via iO

Frameworks:

iO of Randomized Functionalities
(Like Circuit Garbling)
Papers Considering Randomized Functionalities

Can we obfuscate a program that flips coins internally?

If we make it pseudorandom?
The Question:

\[\{P_1(x, r) : r \in R\} \approx \{P_2(x, r) : r \in R\} \text{ for every } x \]

\[[P_1, P_2, iO(P_1(x, PPRF(K, x)))] \approx [P_1, P_2, iO(P_2(x, PPRF(K, x)))] \]

Certainly not true that \(P_1(x, r) = P_2(x, r) \) for all \((x, r) \)!
iO for Randomized Functionalities

\[P^{\leq t}(x): \]
If \(x \leq t \), output \(P_1(x, \text{PPRF}(K, x)) \).
If \(x > t \), output \(P_2(x, \text{PPRF}(K, x)) \).

\[\text{iO security} \]
Hardcode \(y = P_1(t, \text{PPRF}(K, t)) \).
If \(x < t \), output \(P_1(x, \text{PPRF}(K^{\{t\}}, x)) \).
If \(x > t \), output \(P_2(x, \text{PPRF}(K^{\{t\}}, x)) \).
If \(x = t \), output \(y \).

\[\text{PPRF security} \]
Hardcode \(y = P_1(t, r_1) \).
If \(x < t \), output \(P_1(x, \text{PPRF}(K^{\{t\}}, x)) \).
If \(x > t \), output \(P_2(x, \text{PPRF}(K^{\{t\}}, x)) \).
If \(x = t \), output \(y \).

\[P^{\leq t+1}(x): \]
If \(x < t \), output \(P_1(x, \text{PPRF}(K, x)) \).
If \(x \geq t \), output \(P_2(x, \text{PPRF}(K, x)) \).

\[\text{iO security} \]
Hardcode \(y = P_2(t, \text{PPRF}(K, t)) \).
If \(x < t \), output \(P_1(x, \text{PPRF}(K^{\{t\}}, x)) \).
If \(x > t \), output \(P_2(x, \text{PPRF}(K^{\{t\}}, x)) \).
If \(x = t \), output \(y \).

\[\text{PPRF security} \]
Hardcode \(y = P_2(t, r_2) \).
If \(x < t \), output \(P_1(x, \text{PPRF}(K^{\{t\}}, x)) \).
If \(x > t \), output \(P_2(x, \text{PPRF}(K^{\{t\}}, x)) \).
If \(x = t \), output \(y \).

Indistinguishable distributions
Randomized Encodings

Randomized Encoding RE for a circuit family \mathcal{C}

- Given $C \in \mathcal{C}$ input x, $\text{RE}(C, x)$ outputs (C', x') such that:
 - From (C', x') one can efficiently recover $C(x)$
 - Given $C(x)$, one can efficiently simulate the pair (C', x'), implying $\text{RE}(C, x)$ reveals nothing beyond $C(x)$.
 - Also, RE is typically not only efficient, but has low parallel complexity (e.g., it’s in NC^1).
Using Randomized Encodings to Bootstrap iO

- If we have VBB for class WEAK that includes RE and a PRF, we get VBB for get for general circuits.
 - $O(C)(x)$ outputs $RE(C,x)$, using $PRF(K,x)$ as randomness.

- [CLTV15] iO suffices for this purpose.
 - If C_1, C_2 are functionally equiv., $\{RE(C_1, x; r)\} \approx \{RE(C_2, x; r)\}$.
 - Therefore $iO(C_1(x, PRF(K,x))) \approx iO(C_1(x, PRF(K,x)))$
 - Don’t need FHE to bootstrap iO.
Obfuscating RAM Computations
Obfuscating RAM Computations

Garbling RAM Computations

 - Seminal work on garbling programs without going through circuits.

 - Based on OWFs
 - Runtime proportional to runtime of plaintext RAM program
 - But garbled program size also proportional to runtime.
Fully Succinct Garbled RAM [CH15]

- Fully succinct garbling scheme for RAM programs assuming iO for circuits and OWFs.
 - Fully succinct: the size, space requirements, and runtime of the garbled program are the same as those of the input program, up to poly-logarithmic factors and a polynomial in the security parameter.
- Constructs iO for RAMs assuming iO for circuits and sub-exp OWFs.
- Combines iO, garbling, ORAM, and other techniques.
Differential Privacy
Scenario:
- Hospitals generate patient records
- Medical researchers want access to patient records to test hypotheses

Differential privacy:
- Publish differentially-private “noisy” “sanitized” DB
- Hospitals don’t need to interact in each research analysis
- Researchers don’t need to share hypothesis or algorithm
- Issue: Allowing diverse research analytics → high accuracy loss [DNR+09].
Randomized FE/iO can help. Randomized FE approach:
- Government is authority of system.
- Government issues key to researcher if function is differentially private.
- Randomized FE decryption adds noise to exact response, to “sanitize” it. Decryption process adds low-level of noise to exact response.
- Pro: Better accuracy, since noise can be added fresh for each function.
- Con: Researcher reveals hypothesis to government.
 - Maybe automate government’s role using iO.
iO vs. Differential Privacy

- iO gives very efficient traitor tracing schemes [BZ14].
- Traitor tracing is opposite of differential privacy [Dwork, Naor, Reingold, Rothblum, Vadhan, STOC ’09]
 - Differential privacy: Summarize data in meaningful way while hiding individual information.
 - Traitor tracing: Prevent keys from being summarized in a way that hides individual information.
More on iO and Complexity Theory

 - Finding Nash Eq hard assuming iO and sub-exp OWFs.

 - Separates efficient PAC learning from efficient differentially-private PAC learning assuming iO and simple primitives.

 - [Val84]: PRF in a complexity class C implies the existence of concept classes in C unlearnable by membership queries.
 - Explores implications of constrained PRFs etc.
Odds and Ends
Software Watermarking

- Result: For certain types of programs, like PRFs, they create a marked program $C^\#$ such that:
 - Evaluates C correctly on overwhelming fraction of inputs
 - Adversary cannot come up with any program with mark removed that evaluates correctly on even a small fraction of inputs.
Hashing Using iO

- Bernstein, Lange, van Vredendaal et al. ePrint 2015: “Bad Directions in Cryptographic Hash Functions”?
Impossibilities Implied by iO

- Bitansky, Canetti, Cohn, Goldwasser, Kalai, Paneth, Rosen: “The Impossibility of Obfuscation with Auxiliary Input or a Universal Simulator”. Crypto 2014.
Thank You! Questions?