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Definition of iO [B+01]

 An indistinguishability obfuscator is a PPT algorithm iO that 
takes a program P as input and is:

 Efficient: Description/runtime of iO(P) are poly-related to P.

 Functionality-Preserving: The string iO(P) describes a program 
with the same input-output behavior as P.

 Pseudo-Canonicalizing: For any PPT adversary A and any 
programs P1 and P2 of equal complexity and functionality:

|Pr [A(iO(P1))=1] - Pr [A(iO(P2))=1]| is negligible.

 In English: If two programs have same input-output behavior, 
the adversary cannot distinguish which was obfuscated.

 Circuits: Usually our model of computation.
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Simple Applications of iO



Best-Possible Obfuscation

An indistinguishability obfuscator is “as good" 
as any other obfuscator that exists. [GR07]



Best-Possible Obfuscation

Some 

program P

Best Obfuscation

Indist. Obfuscation

x

P(x)

Some 

program P

Padding

Indist. Obfuscation

x

P(x)

≈
Computationally 

Indistinguishable



Restricted-Use Software

 Setting: Software developer wants to:

 Publish demo version with features removed

 Construct multiple tiers of product at different prices

 Give an untrusted partner a “dumbed-down” version 
that only works for relevant tasks

 The problem: Removing features is difficult.

 Laborious, introduces bugs

 End product may still reveal more than intended



Restricted-Use Software from iO

Some 

program P

Indist. Obfuscation

x

P(x)

Some 

program P

Restricted

Interface

Indist. Obfuscation

x
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Witness Encryption [R89,GK05,GGSW13]

 Goal: Encrypt m so only someone with proof of 
Riemann Hypothesis can decrypt.

 Procedures:
 Encryption: c ← WEnc(x;m) encrypts m relative to statement x.

 Decryption: {m,⊥} ← WDec(w;c) works if w is a witness for x∈L.

 Secret key?: No “secret key” per se.

 Security: WEnc(x;m0) ≈ WEnc(x;m1) when x∉L. 



Witness Encryption from iO [GGHRSW13]

Program Px,m(w): 

Output m if w is a 

witness that x∈L. 

Otherwise output ⊥.

Indist. Obfuscation

w

x or ⊥

Program 

that 

always 

outputs ⊥. 

Indist. Obfuscation

w

⊥

≈
Computationally 

Indistinguishable

if x∉L.

WE ciphertext



Relative vs. Absolute Guarantees

 Apps above have weak “relative” security guarantees:

 BPO: Obfuscation is as good as best-possible obfuscation

 Restricted-use software: As good as restricted interface.

 WE: No guarantees when x∈L.

 How to get absolute guarantees?

 Make an absolute assumption – e.g., existence of OWFs.

 But surely iO already implies OWFs…?



iO and OWFs

 iO → OWFs?
 No, if P = NP. 

 iO exists if P = NP: Obfuscate program by outputting 
lexicographically first program with same functionality.

 iO → OWFs if NP ⊈ BPP [KMNPRY14].
 Candidate OWF: f(x) = iO(Z;x) where Z is unsatisfiable.

 Replace challenge with y1 = iO(C1;x1) for unsatisfiable C1. 
By iO, adversary cannot distinguish, and will still invert.

 Replace challenge with y2 = iO(C2;x2) for satisfiable C2. 
Adversary cannot invert, since ∄x such that f(x) = iO(C2;x2).

 Adversary’s success/failure tells us whether C is satisfiable.



Simple App: WE+OWF → PKE [GGSW13]

Hyb0 (real world): 

c = WEnc(xt* ; m0).

 KeyGen: PRG : {0,1}n → {0,1}2n.

 Secret key: s* ∈ {0,1}n. Public key: t* = PRG(s*).

 Encryption:

 Let xt* be the statement “∃ s such that t* = PRG(s)”.

 c ← WEnc(xt*;m).

 Decryption: m ← WDec(s*;c).

Hyb1 (t ←{0,1}2n):

c = WEnc(xt ; m0).

Hyb2 (m0 → m1):

c = WEnc(xt ; m1).

Hyb3 (real world): 

c = WEnc(xt* ; m1).

PRG 

security
WE 

security
PRG 

security

Super-fast 

KeyGen!



Other Apps of WE (+ Simple Primitives)

 Identity-based encryption

 Attribute-based encryption for circuits

 Secret sharing for monotone NP access structures 
[KNY14] 

 … 



Two main techniques:

1. Shell games with secrets

2. Punctured programs

Hiding Secrets in Software with iO



1st Technique: 
Shell Games with Secrets



Shell Games with Secrets

Program P1 uses 

secret sk1 and 

does not contain sk2.

Indist. Obfuscation

Program P2 uses 

secret sk2 and 

does not contain sk1.

Indist. Obfuscation

≈
Computationally 

Indistinguishable

Functionally 

Equivalent

Thought Experiment

Does either obfuscation reveal sk1 or sk2?



Shell Games with Secrets

Program P1 uses 

secret sk1 and 

does not contain sk2.

Indist. Obfuscation

Program P2 uses 

secret sk2 and 

does not contain sk1.

Indist. Obfuscation

≈
Computationally 

Indistinguishable

Functionally 

Equivalent

Thought Experiment

 P1 hides sk2 and P2 hides sk1.
 But iO(P1) ≈ iO(P2).
 So, iO(P1) hides sk1 and iO(P2) hides sk2.
 “Two-key technique” used many times before ([NY90], …).



Shell Game Application: iO for Circuits 
from (iO for NC1) + (FHE with decryption in NC1)

Reminder about FHE [RAD78, Gen09, …]

Data x

Circuit C

Data x

Circuit C

FHE Encryption

FHE Encryption

C(x)

Encrypted

Unencrypted

U = universal circuit

Enc(C) = encrypted program

Current FHE schemes have decryption procedures 

that can be computed by shallow (NC1) circuits.



Shell Game Application: iO for Circuits 
from (iO for NC1) + (FHE with decryption in NC1)

Obfuscation of General Circuit C

Circuit C 

encrypted under 

FHE key pk1

Circuit C 

encrypted under 

FHE key pk2

Program CondDec:
Hardwired: sk1 and {ei = Enc(pki,c)}

Verify proof 𝜋 that 
c1 = Eval(pk1, U, e1, x),
c2 = Eval(pk2, U, e2, x). 

If true, output Dec(sk1,c1); else output ⊥. 

Input x, two ciphertexts c1, c2, and proof 𝜋

C(x) or ⊥

iO for NC1

[GGHRSW13]



Shell Game Application: iO for Circuits 
from (iO for NC1) + (FHE with decryption in NC1)

CondDecsk1
:

Verify proof 𝜋 that 
c1 = Eval(pk1, U, e1, x),

c2 = Eval(pk2, U, e2, x). 

If true, output Dec(sk1,c1).

Else output ⊥. 

iO for NC1

x, c1, c2, 𝜋

C(x) or ⊥

CondDecsk2
:

Verify proof 𝜋 that 
c1 = Eval(pk1, U, e1, x),

c2 = Eval(pk2, U, e2, x). 

If true, output Dec(sk2,c2).

Else output ⊥. 

iO for NC1

x, c1, c2, 𝜋

C(x) or ⊥

≈

 CondDecsk1
and CondDecsk2

have same input-output behavior.

 So, their obfuscations are indistinguishable, and hide sk1 and sk2.



Shell Game Application: iO for Circuits 
from (iO for NC1) + (FHE with decryption in NC1)

 Suppose circuits C1, C2 have same functionality.

 Hybrids: In H𝐶𝑏1 ,𝐶𝑏2 ,𝑠𝑘𝑏3 the obfuscation consists of: 

e1 = Enc(pk1,𝐶𝑏1), e2 = Enc(pk2,𝐶𝑏2), iO(CondDec𝑠𝑘
𝑏3

)

Security Proof for iO Scheme:

H𝐶1,𝐶1,𝑠𝑘1 H𝐶2,𝐶2,𝑠𝑘1

H𝐶1,𝑪𝟐,𝑠𝑘1 H𝐶1,𝐶2,𝒔𝒌𝟐 H𝑪𝟐,𝐶2,𝑠𝑘2

Real iO of C1 Real iO of C2

FHE security

under pk2

iO security FHE security 
under pk1

iO security



Shell Game Application: 
Functional Encryption for Circuits

Functional Encryption [S84, SW05, BSW11, …]

Authority

Sender

Receivers

skf1

MSK MPK

skf2

ctx
f1(x)

f2(x)

Syntax

 (MPK, MSK) ← FE.Setup(1λ)

 skf ← FE.KeyGen(MSK, f)

 ctx ← FE.Enc(MPK, x)

 f(x) ← FE.Dec(skf , ctx)



Shell Game Application: 
Functional Encryption for Circuits

Functional Encryption [S84, SW05, BSW11, …]

MSK MPK

Client Evaluatorctx1
, ctx2

, …

skf1
, skf2

, … {fi(xk)}

(Selective) Security Game

 Adversary selects x1, x2.

 Challenger sends MPK, challenge ct.

 Key queries: for fi such that fi(x1) = fi(x2).

 Adversary guesses.

Syntax

 (MPK, MSK) ← FE.Setup(1λ)

 skf ← FE.KeyGen(MSK, f)

 ctx ← FE.Enc(MPK, x)

 f(x) ← FE.Dec(skf , ctx)



Shell Game Application: 
Functional Encryption for Circuits

Functional Encryption from IO [GGHRSW13]

Decryption key for f:

Verify proof 𝜋 that c1, c2

encrypt same value 

under pk1, pk2.

If so, output f(Dec(sk1,c1)).

Else output ⊥. 

iO

c1, c2, 𝜋

f(x) or ⊥

 FE.Setup: Generate:

 PKE key-pairs (pk1, sk1), (pk2, sk2).

 CRS for stat. sim. sound NIZK proof.

 FE.Enc(MPK,x): Generate:

 c1 ← Enc(pk1, x; r1),

 c2 ← Enc(pk2, x; r2),

 NIZK proof 𝜋 that c1, c2 encrypt 
same value: that ∃ r1, r2 s.t.
c1=Enc(pk1,x;r1), c2=Enc(pk2,x;r2).



Shell Game Application: 
Functional Encryption for Circuits

 Hybrids: In H𝑥𝑏1 ,𝑥𝑏2 ,𝑠𝑘𝑏3 the challenge ciphertext is 𝑐1
∗, 𝑐2

∗, 𝜋∗, where 

𝑐1
∗ encrypts 𝑥𝑏1, 𝑐2

∗ encrypts 𝑥𝑏2, and user keys decrypt under 𝑠𝑘𝑏3.

Security Proof for FE Scheme:

H𝑥1,𝑥1,𝑠𝑘1 H𝑥2,𝑥2,𝑠𝑘1

H𝑥1,𝒙𝟐,𝑠𝑘1 H𝑥1,𝑥2,𝒔𝒌𝟐 H𝒙𝟐,𝑥2,𝑠𝑘2

Real enc of x1 Real enc of x2

PKE security 

under pk2

iO security PKE security 
under pk1

iO security

Oops!! NIZK proof cannot work in these hybrids!!!



Shell Game Application: 
Functional Encryption for Circuits

Security Proof for FE Scheme:

H𝑥1,𝑥1,𝑠𝑘1 H𝑥2,𝑥2,𝑠𝑘1

H′𝑥1,𝒙𝟐,𝑠𝑘1 H′𝑥1,𝑥2,𝒔𝒌𝟐 H′𝒙𝟐,𝑥2,𝑠𝑘2

Real enc of x1 Real enc of x2

PKE security 

under pk2

iO security PKE security 
under pk1

iO security

H′𝑥1,𝑥1,𝑠𝑘1

 Hybrids: In H𝑥𝑏1 ,𝑥𝑏2 ,𝑠𝑘𝑏3 the challenge ciphertext is 𝑐1
∗, 𝑐2

∗, 𝜋∗, where 

𝑐1
∗ encrypts 𝑥𝑏1, 𝑐2

∗ encrypts 𝑥𝑏2, and user keys decrypt under 𝑠𝑘𝑏3.

H′𝑥2,𝑥2,𝑠𝑘1

Stat. sim. sound proof 

allows “escape hatch”

only for challenge 

ciphertexts 𝑐1
∗, 𝑐2

∗.



2nd Technique: 
Punctured Programs



Punctured Programming [SW13]

Definition: P{t} is program P punctured at input t.

P{t}x
P(x)

⊥

if x ≠ t

if x = t

 Show iOs of two programs are 
indistinguishable.

 Show adversary needs P(t) to win game.

 Show that P{t} keeps P(t) secret.

Punctured Programming Strategy:

P
Outer Program

P{t}

Outer Program

iO

iO

“The idea of the technique is to alter a program (which is to be obfuscated) by surgically 
removing a key element of the program, without which the adversary cannot win the security 

game it must play, but in a way that does not alter the functionality of the program.”



Punctured PRFs

Definition:

PPRFx

K{t}

PPRF(K, x)

⊥

if x ≠ t

if x = t

Security: PPRF(K, t) is pseudorandom given K{t} and t. 

From GGM:

𝐺𝑡𝑛(⋅⋅⋅ 𝐺𝑡1(K) ⋅⋅⋅) 𝐺𝑡𝑛(⋅⋅⋅ 𝐺𝑡1(K) ⋅⋅⋅)

𝐺𝑡1(K) 𝐺𝒕𝟏(K)

𝐺𝑡2(𝐺𝑡1(K))𝐺𝑡2(𝐺𝑡1(K))

K

𝐺1(𝐺𝑡1(K))𝐺0(𝐺𝑡1(K))

…

𝐺 𝑟 = 𝐺0(𝑟) ∥ 𝐺1(𝑟)

Punctured Key

PRG 𝐺 ∶ {0,1}𝑠→ {0,1}2𝑠

PRF 𝐾, 𝑥
= 𝐺𝑥𝑛(⋅⋅⋅ 𝐺𝑥1(K) ⋅⋅⋅)



PKE Using Punctured PRFs [SW13]

Secret Key:

Key K for symmetric encryption 

Encryption Alg. 

for symmetric

scheme (K):

iO

Public Key:

m

r
c

symmetric 

ciphertext

Diffie-Hellman ’76: Get PKE by obfuscating encryption:
“If the [encryption] program were to be made purposefully confusing 

through the addition of unneeded variables and statements then 

determining an inverse algorithm could be made very difficult.”



PKE Using Punctured PRFs [SW13]

Secret Key:

Key K for PRF

Stream cipher 

encryption (K):

iO

Public Key:

m

r

m ⊕ PRF(K, r)

Problem: Stream cipher encryption is its own inverse!

Naïve Attempt

r



PKE Using Punctured PRFs [SW13]

Secret Key:

Key K for PRF

Enc(K, m; r)

iO

Public Key: Let G : {0,1}s → {0,1}2s be a PRG.

m

r

m ⊕ PPRF(K, G(r))

G(r)

Challenge ciphertext: c* = (t , m ⊕ PPRF(K, t)), t = PRG(r)

Make t uniform in {0,1}2s. (PRG security)

Actual Scheme

Super-fast 

Decryption!



PKE Using Punctured PRFs [SW13]

Secret Key:

Key K for PRF

Enc(K, m; r)

iO

Public Key: Let G : {0,1}s → {0,1}2s be a PRG.

m

r

m ⊕ PPRF(K, G(r))

G(r)

Challenge ciphertext: c* = (t , m ⊕ PPRF(K, t)), t uniform in {0,1}2s.

Use PPRF(K{t}, ·) instead of PPRF(K, ·) inside Enc. 
(iO security, since t is almost certainly not in range of G.)

{t}

Actual Scheme

Super-fast 

Decryption!



PKE Using Punctured PRFs [SW13]

Secret Key:

Key K for PRF

Enc(K{t}, m; r)

iO

Public Key: Let G : {0,1}s → {0,1}2s be a PRG.

m

r

m ⊕ PRF(K, G(r))

G(r)

Challenge ciphertext: c* = (t , m ⊕ PPRF(K, t)), t uniform in {0,1}2s.

Replace PPRF(K, t) with random value u. (Punctured PRF security)

Actual Scheme

Super-fast 

Decryption!



PKE Using Punctured PRFs [SW13]

Secret Key:

Key K for PRF

Enc(K{t}, m; r)

iO

Public Key: Let G : {0,1}s → {0,1}2s be a PRG.

m

r

m ⊕ PRF(K, G(r))

G(r)

Challenge ciphertext: c* = (t , m ⊕ u), t uniform, u uniform.

Message is perfectly hidden.

Actual Scheme

Super-fast 

Decryption!



Another Useful Trick: Complexity Leveraging

 Construct “selectively secure” scheme.

 Adversary forced to pre-commit to input t ∈ {0,1}k to  “attack”.

 Successful attack on t breaks iO or PPRF (or whatever).

 𝜀selective(λ) ≤ 𝜀iO(λ) + 𝜀PPRF(λ).

 Go from selective security to adaptive security

 Challenger randomly guesses t that adversary will target.

 Probability that adaptive adversary wins and happens to pick t is 

𝜀adaptive(λ)/2k ≤ 𝜀selective(λ) ≤ 𝜀iO(λ) + 𝜀PPRF(λ).

 So 𝜀adaptive(λ) ≤ 2k (𝜀iO(λ) + 𝜀PPRF(λ)).

 Choose λ = poly(k) so that 𝜀adaptive(λ) is negligible.

Security at one input boosted to security at many inputs.



Constrained PRF

Definition:

CPRFx

KC

PRF(K, x)

⊥

if C(x)=1

If C(x)=0

Security: PRF(K, x) is pseudorandom for all unsatisfying x.

Key for Circuit C

Problem: How can we puncture the key at an exponential 

number of points?



Constrained PRF

Construction:

PPRF {0,1}n → {0,1}m

Security: Sample random t such that C(t)=0.

If C(x) = 0, output ⊥.  

Else output PPRF(K, x).

iO

If C(x) = 0, output ⊥.  

Else output PPRF(K{t}, x).

iO

If C(x) = 0, output ⊥.  

Else output PPRF(K, x).

iO

≈
 Adversary outputs PPRF(t) with probability > 𝜀𝐶𝑃𝑅𝐹/2n −𝜀𝑖𝑂. 

 Complexity leveraging: iO and PPRF need sub-exp security.



Constrained Signature Scheme

Definition:

CSigx

KC

Sig(K, x)

⊥

if C(x)=1

If C(x)=0

For unsatisfying x, we get usual signature scheme security.

Key for Circuit C

Applications:

(Plus a verification algorithm Ver.)

 Mobile agents: Agent’s signature looks just like Principal’s 

(on messages that it is permitted to sign). 

 Delegation: Signature on x is an argument that C(x)=1.



Constrained Signature Scheme

Construction:

PPRF {0,1}n → {0,1}m. Let f be a public OWF. |x| = k.

If C(x) = 0, output ⊥.  

Else output PPRF(K, x).

iO

Output f(PPRF(K, x)).

iO

Constrained signing Verification

Security: Pick random t such that C(t)=0. Hybrids:

 Use K{t} and hardwire f(PPRF(K,t)) into Ver (iO security).

 Change f(PPRF(K,t)) to f(v) in Ver for random v (PPRF security).

 Adv forges v = Sig(t) with prob > 𝜀CSig/2k – 2𝜀IO – 𝜀PPRF. 

 OWF needs > 2k security → m > k → CSigs longer than messages.



Non-Deterministic Constrained PRFs/Sigs

NIZK args for NP: [SW13] Get sig on x if input satisfies R(x,w)=1

Witness PRFs: [Zhandry ’14] Get PRF on x if input satisfies R(x,w)=1

Applications:

 Multiparty NIKE without trust setup

 Similar to Boneh-Zhandry protocol, but without iO

 Reusable WE and ABE with short cts (independent of relation size)

 Reusable secret sharing for NP with shorter shares

 Fully distributed broadcast encryption

 Maybe not enough for to achieve some things achievable via iO, 

like Boneh-Zhandry’s traitor tracing protocol. 



A Few Constrained PRF/Sig papers

 Boneh, Waters: “Constrained Pseudorandom Functions and Their Applications”. Asiacrypt 2013.

 Boyle, Goldwasser, Ivan: “Functional Signatures and Pseudorandom Functions”. PKC 2014.

 Kiayias, Papadopoulos, Triandopoulos: “Delegatable Pseudorandom Functions and Applications”. 
CCS 2013.

 Bellare, Fuchsbauer: “Policy-Based Signatures”. PKC 2014.

 Backes, Meiser, Schroder: “Delegatable Functional Signatures”. ePrint 2013.

 Chen, Zhang: “Publicly Evaluable Pseudorandom Functions and Their Applications”. SCN 2014

 Georg Fuchsbauer, “Constrained Verifiable Random Functions”. SCN 2014.

 Chandran, Raghuraman, Vinayagamurthy: ”Constrained Pseudorandom Functions: Verifiable and 
Delegatable”. ePrint 2014.

 Fuchsbauer, Konstantinov, Pietrzak, Rao: “Adaptive Security of Constrained PRFs”. Asiacrypt 2014.

 Hofheinz, Kamath, Koppula, Waters: “Adaptively Secure Constrained Pseudorandom Functions”. 
ePrint, 2014.

 Hohenberger, Koppula, Waters: Adaptively Secure Puncturable Pseudorandom Functions in the 
Standard Model”. ePrint 2014.

 Abusalah, Fuchsbauer, Pietrzak: “Constrained PRFs for Unbounded Inputs”. ePrint 2014.

 Cohen, Goldwasser, Vaikuntanathan: “Aggregate Pseudorandom Functions and Connections to 
Learning”. TCC 2015.



Another Useful Trick: Extraction

 Show iO(P)≈iO(P{t}) even though P(t) ≠⊥.

 Show distinguisher can extract “differing input” t.

 Show t is hard to extract assuming OWFs.

 Show that P{t} lacks some property necessary for 
the adversary’s attack.



iO and Differing Inputs Obfuscation (diO)

 Differing inputs obfuscation (diO): 

 Security definition: For every diO distinguisher, there is an 
extractor that gives a differing input.

 diO → iO

 iO → diO if # of differing inputs is very small [Boyle, 

Chung, Pass TCC 2014]

 Apply iO scheme to programs P, P’ that differ at one input t.

 If iO(P) ≉ iO(P’), iO implies we can extract t.

 If P’ = P{t}, we can extract t.

 In general, Extractor’s work scales with # of differing inputs.



iO → diO for One Differing Input

Pk

iO
P

iO ≈for k ≤ t Pk

iO ≈for k > t P’
iO

 Suppose P(x) = P’(x) for all x except t.

 Program Pk: If x≥k output P(x), else output P’(x).

 Assuming iO, if iO(P) ≉ iO(P’), we can find t by 

binary search.



Random Puncture is Undetectable

If f(x) = y, output ⊥.

Else, output P(x).

Let’s Give P{t} Some Code:

Suppose t’s domain supports an injective OWF f.

Let y = f(t).

 Assuming iO, if iO(P) ≉ iO(P{t}), we can break the OWF.

 Assuming iO and OWF, iO(P)≈iO(P{t}). 



Circular Security from iO

Public Key: pk1 and iO(P).

P: Output 

pki, Encpki
(ski+1).

iO
i

sk1

pk2n

Big

Key Cycle

≈

For random t:

P{t}: If i=t, output ⊥. 

Else pki, Encpki
(ski+1).

iO

≈ If domain 
large enough 

to support 
OWFs

(No more cycle.)

i

Application: “Pure” FHE uses key 

cycle to handle unbounded depth.



Circular Security from iO: Rest of Proof

P{t}: If i = t, output ⊥. Else 

output P(i).

Q{t}: If i = t, output ⊥. Else 

output Q(i).

(ri, si) ← PPRF(K, i)

(ri+1, si+1) ←PPRF(K, i+1)

(ski, pki) ← KGen(ri)

(ski+1,pki+1) ← KGen(ri+1)

ci ← Enc(pki, ski+1; si)

Output (pki, ci) 

Set (pki’, ci’) ← PRF(K’, i) 

except pk1’ = pk1.

Output (pki’, ci’)

Additional Requirements: Encryption scheme is not only 

IND-CPA, but pairs (pki, ci = Enc(pki, m)) look pseudorandom.

P: Q:

Clearly IND-CPA is 

preserved when iO(Q{t}) 

is added to public key.



Circular Security from iO: Rest of Proof

P[t,u,0]: has PPRF key K>u. 

If i > u output P{t}(i). 

Else output Q{t}(i).

iO

P[t,u,1]: Like P[t,u,0], except 

output for u+1 hardwired.

iO P[t,u,2]: Like P[t,u,1], except 

PPRF key is now K>u+1.

iO

P[t,u+1,0]: has PPRF key K>u+1. 

If i > u+1 output P{t}(i). 

Else output Q{t}(i).

iO

≈

Claim:

iO security

iO security

Pseudo-
randomness



Related Work on Circular Security vs. iO

 iO + LFHE ⇒ “Almost pure FHE”

 Canetti, Lin, Tessaro, Vaikuntanathan: “Obfuscation of 
Probabilistic Circuits and Applications”. TCC 2015.

 Clear, McGoldrick: “Bootstrappable Identity-Based Fully 
Homomorphic Encryption”. CANS, 2014.

 Negative results on circ. security (for poly-size cycles):

 Marcedone, Orlandi: 

“iO ⇒ (IND-CPA ⇏ Circular Security)”. SCN 2014.

 Koppula, Ramchen, Waters: “Separations in Circular 
Security for Arbitrary Length Key Cycles”. TCC 2015.



Trapdoor Permutation from iO [BPW15]

Trapdoor:

Key K for PRF

Public Key: 

Obfuscated program for FK.

Pseudorandom sampler:

Output xPRG(i).
iO

i

x1

x2x2n

xu-1 …

…

FK

xu

…

xt

xt+1

xi = ( i, PRF(K, i) )

FK: If z = xi

output xi+1.

Else output ⊥.

iO
z

Remark: xi’s like secret keys in a key cycle. 

Replace iO(Fk) with iO(P) that outputs Enc(pki, ski+1). 

Get ski+1 from ski via decryption.



Trapdoor Permutation from iO [BPW15]

x1

x2x2n

xu-1 …

…

xi = ( i, PRF(K, i) )

Trapdoor:

Key K for PRF

FK: If z = xi

output xi+1.

Else output ⊥.

iO

Public Key: 

Obfuscated program for FK.

FK

z

≈

xu

…

xt

xt+1

?

For random t:

FK
{t}: If z = xt, output ⊥.

Else output FK(z).

iO



Other Work on iO vs. Delicate Graphs

 Bitansky, Paneth, Rosen: “On the Cryptographic Hardness 
of Finding a Nash Equilibrium”. ePrint 2015.
 Prove that finding a Nash equilibrium of a game is hard, 

assuming the existence of iO and sub-exp OWFs.

 Nash is PPAD-complete: [DGP09, CDT09].

 END-OF-THE-LINE: Canonical PPAD-complete problem. Given 
succinct program PG representing exponential-size directed 
graph G over {0,1}n with in/out degrees ≤ 1,  and a source 
node s, find some other source/sink node.

 iO(PG) for long-line-graph indistinguishable from iO(P’G) where 
end-of-the-line is inaccessible.



Roughly grouped by area:
1. FHE
2. Multilinear maps
3. Delegation
4. Secure multiparty computation
5. Garbled circuits
6. RAM computations
7. Differential privacy
8. Odds and Ends

Scope of iO Applications



Canetti, Lin, Tessaro, Vaikuntanathan: 
“Obfuscation of Probabilistic Circuits and 
Applications”. TCC 2015.

FHE from iO and Re-randomizable PKE



Leveled FHE from iO+OWFs?

 Compact additive HE → CRHFs.

 Let c1 = Enc(a), c2 = Enc(b).

 H(x1∥x2) = Enc(ax1+bx2) (computed homomorphically).

 Collision gives linear equation on (a,b), violating 
semantic security.

 But don’t know how to get CRHFs from iO+OWFs!

 Asharov, Segev: “Limits on the Power of iO and FE”
(ePrint 2015): “There is no fully black-box construction 
with a polynomial security loss of a collision-resistant 
function family from a general-purpose 
indistinguishability obfuscator and a… trapdoor 
permutation.”



Leveled FHE from iO+Re-rand PKE

 Canetti, Lin, Tessaro, Vaikuntanathan: “Obfuscation of 

Probabilistic Circuits and Applications”. TCC 2015.

 “Assume the existence of a sub-exponentially 

indistinguishable IO for circuits, and a sub-exponentially 

secure OWF. Then any perfectly rerandomizable

encryption scheme can be transformed into a leveled 

homomorphic encryption scheme.”



L-Leveled FHE from iO + Re-rand PKE: 
Natural Approach

Output

Enc(pki, NAND(Dec(ski-1, c1), Dec(ski-1, c2)); PRF(K,c1,c2))

iO

i-1

KeyGen as in PKE, but with obfuscated NANDs:

c1 = Enc(pki-1, x) c2 = Enc(pki-1, y)

c3 = Enc(pki, NAND(x,y)) General way to 
handle obfuscation 
of programs that 
use internal coins



L-Leveled FHE from iO + Re-rand PKE: 

Security Proof

 Uses 2 types of PKE scheme:
 Normal

 Trapdoor/Lossy: Enc(tpk, m; r) and Enc(tpk, 0; r) 
have statistically identical distributions.

 Hybrid Hk: 
 Use normal public keys pki for i≤k. 

 Trapdoor keys tpki for i>k, and obfuscate program 
that just outputs encryptions of 0.

 HL: real game. 

 H0: Challenge ct is always an encryption of 0. 



L-Leveled FHE from iO + Re-rand PKE: 

Hybrids

Output Enc(pki, NAND(Dec(ski-1, c1), Dec(ski-1, c2)); PRF(K,c1,c2))iOHi-1,0

Output Enc(tpki, NAND(Dec(ski-1, c1), Dec(ski-1, c2)); PRF(K,c1,c2))iOHi-1,1

Hi-1,2,j,1

Output Enc(tpki, NAND(Dec(ski-1, c1*), Dec(ski-1, c2*)); r)iOHi-1,2,j,2

For j = (c1*, c2*), hardcode response to (i-1,j) and puncture PRF there. 

Output Enc(tpki, 0; r)iOHi-1,2,j,3

Output Enc(tpki, 0; PRF(K,j))iOHi-1,2,j,4

Trapdoor key indistinguishability

iO security

PPRF security

Statistical re-randomizability

PPRF security and iO security



L-Leveled FHE from iO + Re-rand PKE: 

Hybrids

Output Enc(pki, NAND(Dec(ski-1, c1), Dec(ski-1, c2)); PRF(K,c1,c2))iOHi-1,0

Output Enc(tpki, NAND(Dec(ski-1, c1), Dec(ski-1, c2)); PRF(K,c1,c2))iOHi-1,1

Hi-1,2,j,1

Output Enc(tpki, NAND(Dec(ski-1, c1*), Dec(ski-1, c2*)); r)iOHi-1,2,j,2

For j = (c1*, c2*), hardcode response to (i-1,j) and puncture PRF there. 

Output Enc(tpki, 0; r)iOHi-1,2,j,3

Output Enc(tpki, 0; PRF(K,j))iOHi-1,2,j,4

Trapdoor key indistinguishability

iO security

PPRF security

Statistical re-randomizability

PPRF security and iO security

Need > 22len

security where 

len is then length 

of a ciphertext.

Hence need  

statistical re-

randomizability.



Toward iO-based Multilinear Maps?



A Positive Result

 Yamakawa, Yamada, Hanaoka, Kunihiro: “Self-

bilinear Map on Unknown Order Groups from 

Indistinguishability Obfuscation and Its 

Applications”. Crypto 2014.

 Encoding of x consists of the obfuscation:

Fx: Output         

e(gx,gy) ≝ g2xy by 

powering by 2x.

iO
gy

 Degree of maps is unbounded-polynomial.

 Applications to non-interactive key agreement and 

distributed broadcast encryption schemes.

Fx’: Output g2xy 

by powering by 

2x+ord(g).

iO

≈
Odd number



The Problem with Truly Unbounded MMaps

 van Dam, Hallgren, Ip, “Quantum Algorithms for 

Some Hidden Shift Problems”. SODA 2003.

 FHE scheme with equality test can be broken in 

quantum polynomial time.

 Seems difficult to base security of truly unbounded 

mmap on quantum-resistant assumption like LWE.



Delegation using iO



Delegation using iO

 Constrained sigs via iO
 But better options?

 Yael’s no-signaling proofs
 Paneth/Rothblum use mmaps

to get public verifiability here

 Reusable garbled circuits

 Fully homomorphic sigs

 Quadratic arithmetic programs

 Boneh, Gupta, Mironov, Sahai, “Hosting Services on an 
Untrusted Cloud”, Eurocrypt 2015.
 iO used to outsource provider’s entire multi-client service, 

with privacy for both the provider and clients against the host.



Improving Secure MPC with iO



Some Applications of iO to MPC

 Two-round adaptively secure MPC
 Canetti, Goldwasser, Poburinnaya: “Adaptively Secure 2PC From iO”. TCC 

2015.
 Dachman-Soled, Katz, Rao: “Adaptively Secure, Universally Composable

MPC in Constant Rounds”. TCC 2015.
 Garg, Polychroniadou: “Two-Round Adaptively Secure MPC from iO”. TCC 

2015.
 Garg, Gentry, Halevi, Raykova: “Two-round [static] secure MPC from iO”. 

TCC 2014.

 SFE with Long Output
 Hubacek, Wichs, “On the Communication Complexity of SFE with Long 

Output”. ITCS 2015.
 Jakobsen, Orlandi, “How to Bootstrap Anonymous Communication”. ePrint

2015.



Two-Round Adaptively-Secure MPC

Useful Ingredient: Deniable encryption, Explainability Compilers

 Definition [Explainability Compiler] (following [SW13, DKR15])                         
A PPT algorithm Comp is an explainability compiler if for every 
efficient randomized circuit Alg, the following hold:

 Polynomial slowdown: There is a polynomial p(·) such that for any 
(Alg*,Explain) output by Comp(1λ, Alg) it holds that |Alg*| ≤ p(λ)|Alg|.

 Statistical functional equivalence: Distributions of Alg*(x) and Alg(x) 
are statistically close for all x.

 Explainability: Adversary A has negl advantage in following game:

A(1λ) outputs x* of its choice (selects target input).
(Alg*, Explain) ← Comp(1λ, Alg).
Choose uniform coins r0 ∈ and compute y* = Alg*(x*; r0).
Compute r1 ← Explain(x*, y*).
Choose random bit b and give (Alg*, y*, rb) to A.
A tries to guess b.

Explain allows simulator to generate consistent randomness.



Explainability Compiler: Construction

Hardwired keys: K1, K2, K3

Input: x and randomness u = u[1]∥u[2]
1. Sparse Hidden Trigger: If (x’,y’,r’)← PPRF(K3, u[1]) ⊕ u[2] 

satisfies x = x’ and u[1] = PPRF(K2, (x’,y’,r’)), output y’.
2. Normal: Output Alg(x; PPRF(K1,(x,u)).

Alg*: u is a nonmalleable 

“encryption” of (x,y’)

Hardwired keys K2, K3

Input: x, y’ and randomness r
1. u[1]←PPRF(K2, (x,y’,PRG(r))   u[2]←PPRF(K3,u[1]) ⊕ (x,y’,PRG(r)).

2. Output u ← u[1]∥u[2].

Explain: Outputs an 

“encryption” of (x,y’)



Communication Complexity of SFE 
with Long Output [Hubacek,Wichs’15]

 SFE with Long Output Scenario:

 Function f : {0,1}A × {0,1}B → {0,1}t.

 Output is long: t ≫ A. Maybe also t ≫ B. 

 Want SFE protocol for Bob to get f(xA,xB)| ∈ {0,1}t.

 Examples:

 xA = PRF key K, f(xA,∅) = PRF(K,1), …, PRF(K,L).

 xA = partial decryption key, xB = encryption of long output of MPC 
protocol under threshold PKE, f = partial decryption procedure.

 Communication complexity:

 Can we get communication sublinear in t?

 Possible with insecure protocols.

 FHE doesn’t do this.

 Constrained PRF? No, not simulatable from PRF outputs alone.



Communication Complexity of SFE with 
Long Output [Hubacek,Wichs’15]

 Negative Results:

 Output-dependence inherent when Bob is malicious or 

even honest-but-deterministic.

 The Problem: incompressibility

 viewBob allows Bob to compute PRF(K,1), …, PRF(K,L)

 |viewBob|≪t if Bob is deterministic, |xB|≪t, and |comm|≪t.

 viewBob compresses PRF(K,1), …, PRF(K,L) (impossible).

 Positive results

 Use iO to remove output-dependence in semi-honest case.

 Requires Bob to use long randomness with succinct 

decommitments via an iO-friendly Merkle tree hash.



Communication Complexity of SFE with 
Long Output [Hubacek,Wichs’15]

Bob sends z = H(r1, …, rL). 

Alice sends iO(CK,z).

Hardwired: key K, hash output z

Inputs: (i≤L, ri, πi)

1. Verify decommitment πi that ri

is i-th bit of hashed randomness.

2. If so, output yi = PRF(K, i).

iO(CK,z): iO(CKsim,{yi : i≤L},z):

iO

Hardwired: key Ksim, H output z

Inputs: (i≤L, ri, πi)

1. Verify decommitment πi that ri

is i-th bit of hashed randomness.

2. If so, output yi = ri⨁PRF(Ksim,i). 

iO

Real World

z = H(r1, …, rL) for ri = yi⨁PRF(Ksim, i). 

Modified obfuscation.

Simulation

Not functionally equivalent when (i, r’≠ri, πi’) is a valid decommitment!



Communication Complexity of SFE with 
Long Output [Hubacek,Wichs’15]

iO-Friendly Merkle Tree (somewhere statistically binding hash):

 Functionality of a Merkle tree:

 Short hash key: z = Hhk(r1, …, rL)

 Allows short decommitment of ri.

 iO-friendly security:

 Some index i is statistically binding: For that i, there is 

no opening to ri’ ≠ ri. 

 Hash key hk does not reveal which index i is binding.

 Construction: from FHE.



More iO-Friendly Techniques

 Koppula, Lewko, Waters: “Indistinguishability 

Obfuscation for Turing Machines with Unbounded 

Memory”. STOC 2015.

 Positional accumulators: Similar in concept to 

somewhere statistically binding hashes. Allows short 

commitment to large storage that is unconditionally 

sound for some hidden index.



More Powerful Protocols via iO

 Goldwasser, Gordon, Goyal, Jain, Katz, Liu, Sahai, Shi, Zhou: 
“Multi-Input Functional Encryption”. Eurocrypt ‘14.

 Given ciphertexts Enc(x1), …, Enc(xn) and the secret key skf for 
n-ary function f, one can compute f(x1, …, xn), and nothing else 
about the {xi’s}.

 Waters, “A Punctured Programming Approach to Adaptively 
Secure FE”. ePrint 2014.

 Boneh, Zhandry, “Multiparty Key Exchange, Efficient          
Traitor Tracing, and More from Indistinguishability 
Obfuscation”. Crypto 2014.

Functionalities:



More Powerful Protocols via iO

 Boneh, Waters, Zhandry, “Low Overhead BE from 
Multilinear Maps”. Crypto 2014.

 Garg, Gentry, Halevi, Zhandry: “Fully Secure ABE using 
Multilinear Maps”. ePrint 2014.

 Garg, Gentry, Halevi, Zhandry: “Fully Secure FE without 
Obfuscation”. ePrint 2014.

 Boneh, Lewi, Raykova, Sahai, Zhandry, Zimmerman: 
“Semantically Secure Order-Revealing Encryption: Multi-
Input FE without Obfuscation”. Eurocrypt ‘15.

Functionalities from Mmaps (not iO):



More Powerful Protocols via iO

 Bitansky, Paneth: “ZAPs and NIWI from iO”. TCC 2015.

 Pandey, Prabhakaran, Sahai: “Obfuscation-based Non-
black-box Simulation and Four Message Concurrent ZK 
for NP”. TCC 2015.

 Chung, Lin, Pass: “Constant-Round Concurrent ZK from 
iO”. ePrint 2014.

ZK, WI, Concurrency:



More Powerful Protocols via iO

 Hofheinz, Jager, Khurana, Sahai, Waters, Zhandry: “How to 
Generate and use Universal Parameters”. ePrint 2014.

 Agrawal, Agrawal, Prabhakaran: “Cryptographic Agents: 
Towards a Unified Theory of Computing on Encrypted Data”. 
Eurocrypt 2015.

Frameworks:



iO of Randomized Functionalities 
(Like Circuit Garbling)



Papers Considering Randomized 
Functionalities

 Alwen, Barbosa, Farshim, Gennaro, Gordon, 
Tessaro, Wilson: “On the Relationship between 
Functional Encryption, Obfuscation, and Fully 
Homomorphic Encryption”. IMACC, 2013.

 Goyal, Jain, Koppula, Sahai: “Functional Encryption 
for Randomized Functionalities”. TCC 2015.

 Canetti, Lin, Tessaro, Vaikuntanathan: “Obfuscation 
of Probabilistic Circuits and Applications”. TCC 
2015.



iO for Randomized Functionalities

Can we obfuscate a program that flips coins internally?

Randomized 

Program P
x P(x, r)

If we make it pseudorandom? 

Randomized 

Program P,

PPRF(K, ·)

x P(x, PPRF(K, x))

r



iO for Randomized Functionalities

Certainly not true that P1(x,r) = P2(x,r) for all (x,r)!

The Question:

{P1(x, r) : r ∈ R} ≈ {P2(x, r) : r ∈ R} for every x

[P1, P2, iO(P1(x, PPRF(K, x)))] ≈ [P1, P2, iO(P2(x, PPRF(K, x)))] 

?



iO for Randomized Functionalities

P≤t(x): 

If x≤t, output P1(x,PPRF(K,x)). 

If x>t, output P2(x,PPRF(K,x)).

iO

Hardcode y= P1(t,PPRF(K,t)). 

If x<t, output P1(x,PPRF(K{t},x)). 

If x>t, output P2(x,PPRF(K{t},x)).

If x=t, output y.

iO

Hardcode y= P1(t, r1). 

If x<t, output P1(x,PPRF(K{t},x)). 

If x>t, output P2(x,PPRF(K{t},x)).

If x=t, output y.

iO

iO security

PPRF security

P≤t+1(x): 

If x<t, output P1(x,PPRF(K,x)). 

If x≥t, output P2(x,PPRF(K,x)).

iO

Hardcode y= P2(t,PPRF(K,t)). 

If x<t, output P1(x,PPRF(K{t},x)). 

If x>t, output P2(x,PPRF(K{t},x)).

If x=t, output y.

iO

Hardcode y= P2(t, r2). 

If x<t, output P1(x,PPRF(K{t},x)). 

If x>t, output P2(x,PPRF(K{t},x)).

If x=t, output y.

iO

iO security

PPRF security

Indistinguishable distributions



Randomized Encodings 

 Given C ∈ 𝒞 input x, RE(C,x) outputs (C’,x’) such that:

 From (C’, x’) one can efficiently recover C(x)

 Given C(x), one can efficiently simulate the pair (C’,x’), 
implying RE(C,x) reveals nothing beyond C(x).

 Also, RE is typically not only efficient, but has low parallel 
complexity (e.g., it’s in NC1).

Randomized Encoding RE for a circuit family 𝓒



iO and Randomized Encodings 

Using Randomized Encodings to Bootstrap iO

 If we have VBB for class WEAK that includes RE and a 
PRF, we get VBB for get for general circuits.

 O(C)(x) outputs RE(C,x), using PRF(K,x) as randomness.

 [CLTV15] iO suffices for this purpose.

 If C1, C2 are functionally equiv., {RE(C1, x; r)} ≈ {RE(C2, x; r)}.

 Therefore iO(C1(x,PRF(K,x))) ≈ iO(C1(x,PRF(K,x))) 

 Don’t need FHE to bootstrap iO.



Obfuscating RAM Computations



Obfuscating RAM Computations

 Gentry, Halevi, Raykova, Wichs: “Outsourcing Private 
RAM Computation”. FOCS 2014.

 Bitansky, Garg, Lin, Pass, Telang: “Succinct Randomized 
Encodings and their Applications”. STOC 2015.

 Canetti, Holmgren, Jain, Vaikuntanathan: “Succinct 
Garbling and Indistinguishability Obfuscation for RAM 
Programs”. STOC 2015.

 Canetti, Holmgren: “Fully Succinct Garbled RAM”. 
ePrint 2015.

 Chen, Chow, Chung, Lai, Lin, Zhou: “Computation-Trace 
Indistinguishability Obfuscation”. ePrint 2015.



Garbling RAM Computations

 Lu, Ostrovsky: “How to Garble RAM Programs?” 
Eurocrypt 2013.
 Seminal work on garbling programs without going through 

circuits.

 Gentry, Halevi, Lu, Ostrovsky, Raykova, Wichs: 
“Garbled RAM revisited.” Eurocrypt 2014.

 Garg, Lu, Ostrovsky, Scafuro: “Garbled RAM from 
OWFs”. STOC’15.
 Based on OWFs

 Runtime proportional to runtime of plaintext RAM program 

 But garbled program size also proportional to runtime.



Fully Succinct Garbled RAM [CH15]

 Fully succinct garbling scheme for RAM programs 
assuming iO for circuits and OWFs.

 Fully succinct: the size, space requirements, and 
runtime of the garbled program are the same as those 
of the input program, up to poly-logarithmic factors 
and a polynomial in the security parameter. 

 Constructs iO for RAMs assuming iO for circuits 
and sub-exp OWFs.

 Combines iO, garbling, ORAM, and other 
techniques.



Differential Privacy



iO + Differential Privacy: A Positive App

 Scenario: 

 Hospitals generate patient records

 Medical researchers want access to patient records to test 
hypotheses

 Differential privacy: 

 Publish differentially-private “noisy” “sanitized” DB

 Hospitals don’t need to interact in each research analysis

 Researchers don’t need to share hypothesis or algorithm

 Issue: Allowing diverse research analytics → high accuracy 
loss [DNR+09]. 



iO + Differential Privacy: A Positive App

 Randomized FE/iO can help. Randomized FE approach:

 Government is authority of system.

 Government issues key to researcher if function is 
differentially private.

 Randomized FE decryption adds noise to exact response, to 
“sanitize” it. Decryption process adds low-level of noise to 
exact response.

 Pro: Better accuracy, since noise can be added fresh for each 
function.

 Con: Researcher reveals hypothesis to government.

 Maybe automate government’s role using iO.



iO vs. Differential Privacy

 iO gives very efficient traitor tracing schemes [BZ14].

 Traitor tracing is opposite of differential privacy 
[Dwork, Naor, Reingold, Rothblum, Vadhan, STOC ’09]

 Differential privacy: Summarize data in meaningful way 
while hiding individual information.

 Traitor tracing: Prevent keys from being summarized in a 
way that hides individual information.



More on iO and Complexity Theory

 Bitansky, Paneth, Rosen: “On the Cryptographic Hardness 
of Finding a Nash Equilibrium”. ePrint 2015.
 Finding Nash Eq hard assuming iO and sub-exp OWFs.

 Bun, Zhandry: “Order-Revealing Encryption and the 
Hardness of Private Learning”. ePrint 2015.
 Separates efficient PAC learning from efficient differentially-

private PAC learning assuming iO and simple primitives.

 Cohen, Goldwasser, Vaikuntanathan: “Aggregate PRFs and 
Connections to Learning”. TCC 2015.
 [Val84]: PRF in a complexity class C implies the existence of 

concept classes in C unlearnable by membership queries.
 Explores implications of constrained PRFs etc.



Odds and Ends



Software Watermarking

 Nishimaki, Wichs: “Watermarking Cryptographic 
Programs Against Arbitrary Removal Strategies”. ePrint
2015.

 Cohen, Holmgren, Vaikuntanathan: ”Publicly Verifiable 
Software Watermarking”. ePrint 2015.

 Result: For certain types of programs, like PRFs, they 
create a marked program C# such that:

 Evaluates C correctly on overwhelming fraction of inputs

 Adversary cannot come up with any program with mark 
removed that evaluates correctly on even a small fraction 
of inputs.



Hashing Using iO

 Bellare, Stepanovs, Tessaro: “Poly-Many Hardcore Bits 
for Any One-Way Function and a Framework for 
Differing-Inputs Obfuscation”. Asiacrypt 2014.

 Brzuska, Mittelbach: “Using Indistinguishability 
Obfuscation via UCEs”. Asiacrypt 2014.

 Canetti, Chen, Reyzin: “On the Correlation Intractability 
of Obfuscated Pseudorandom Functions”. ePrint 2015.

 Hohenberger, Sahai, Waters: “Replacing a Random 
Oracle: Full Domain Hash From Indistinguishability 
Obfuscation”. Eurocrypt 2014.

 Bernstein, Lange, van Vredendaal et al. ePrint 2015: 
“Bad Directions in Cryptographic Hash Functions”?



Impossibilities Implied by iO

 Bitansky, Canetti, Cohn, Goldwasser, Kalai, Paneth, 
Rosen: ”The Impossibility of Obfuscation with 
Auxiliary Input or a Universal Simulator”. Crypto 2014.

 Brzuska, Farshim, Mittelbach: “Random-Oracle
Uninstantiability from iO”. TCC 2015.

 Brzuska, Farshim, Mittelbach: “iO and UCEs: The Case of 
Computationally Unpredictable Sources”. Crypto 2014.

 Brzuska, Mittelbach: “iO versus Multi-Bit Point 
Obfuscation with Auxiliary Input”. Asiacrypt 2014.

 Green, Katz, Malozemoff, Zhou, “A Unified Approach to 
Idealized Model Separations via iO”. ePrint 2014.



Thank You!  Questions?


