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lim inf sup Pe(f, 9, W) =0
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e Orlitsky et al.
e Boucheron et al.
e Shamir
e Szpankowski and Weinberger
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Definition:

{(Xn, y,,)},‘f’=1 supports universal
communication if for all e > 0 and all {R,, I‘;"_
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Theorem (Gao and Wagner '13): The sequence
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|Xn| = n?

| Vn] = nP

forsome a+ (B < 1.

|Xn| - || = # of parameters in the channel
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Must one [be able to] learn
the channel Iin order to
communicate at capacity?

e Training-based scheme suggests maybe not:
e Encoder only needs arg min /l(p; W)
e Decoder doesn’t use the training
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Theorem (Gao and Wagner ’'14): if |X,| =n“
and o = 1 then ({Xn}, {Vn}) does not support
universal communication.

Proof: Encoder must try every input.
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e Let Wh be the set of all channels
obtained via column permutations

e ForanyWeW,, C=log 2
e Consider the block mixture channel:

e |f the alphabets admit a universal code
then the capacity of this channel must
be log 2, but it actually lower.
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channels in this class ...

e ... even though the optimal input
distribution is known
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e Capacity of typical channel realization is
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2 J 2 J
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and Is nearly achieved by a uniform input
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e Similarly to #2, capacity of mixture
channel is < (f—7v/2)logn—log?2

e Decoder must learn locations of the B
to hit this rate

e Can learn locations for some rows ...

e ... but not for all of them.
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Definition:
{(Xn, yn)}°° support communication

at capac:ty if for all e >0 and all {Rn}"",

lim sup INnf Pe(f, g, W) =0.
=0 W:x,-»Yn:C(W)=R, f.g:rateze Rp—e

Theorem (Gao and Wagner *13):{(Xh, Vn)}
support communication at capacity iff

~log?min(|&nl, [Vnl)
lim = 0.
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Appears so but...
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e Sub-poly factors

e Unknown channel
drawn from some class
(sim. Stéphane’s talk)
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