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Distribution Estimate

source
memoryless

π x

Memoryless source with finite alphabetX and distributionπ.

E.g., X = {a, b, c, d, e, f}.

Consider a length-n sequence x produced by this source.

E.g., x = c c a d c d d e a

ML estimate of distributionπ given sequence x:

π̂x ,

∣
∣{ℓ | xℓ = x}

∣
∣

n
, x ∈ X .
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source
memoryless

π x

Entropy estimate:

Ĥ(X) = −
∑

x

π̂x log(π̂x)

Support estimate:

̂|supp(π)| =
{
x : π̂x > 0

}

. . .
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Sorted distribution p: non-increasingly sorted version ofπ.
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sorting
source

memoryless
πp x

Entropy estimate:

Ĥ(X) = −
∑

i

p̂i log(p̂i)

Support estimate:

̂|supp(π)| =
{
i : p̂i > 0

}

. . .
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Pattern of a Sequence

For estimating p based on x:

The patternψ of x is a sufficient statistic.

Consider a finite-length sequence x produced by the source.

E.g., x = c c a d c d d e a

Patternψ:

Replaces the symbols in x by their order of first appearance.

Here, ψ = 1 1 2 3 1 3 3 4 2
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Pattern maximum likelihood (PML) distribution (Orlitsky et al.):

pPML(ψ) , argmax
p

P (ψ | p).
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Pattern ML Distribution
The above probability can be expressed as follows:

P (ψ | p) =
∑

σ

p1
µσ(1) p2

µσ(2) · · · pkµσ(k) .

This probability can be expressed as follows:

P (ψ | p) ∝ perm
(
θ(p,ψ)

)
,

with

θ(p,ψ) ,










p1
µ1 p1

µ2 · · · p1
µk

p2
µ1 p2

µ2 · · · p2
µk

...
...

...

pk
µ1 pk

µ2 · · · pk
µk










,

whereµ , µ(ψ) are the multiplicities of the integers in the pattern.
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Finding the PML distribution means

finding the pmf p that maximizes

p∗ = argmax
p

perm
(
θ(p)

)
.

⇒ One needs to come up with approximate optimization algorithms:

Monte Carlo Markov chain (MCMC) based approaches.

Surrogate function based approaches.

. . .



Estimating the Permanent of a Matrix

10000 experiments with matrices of size 10× 10 and structure θ(p).
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Estimating the Permanent of a Matrix

Sinkhorn permanent based LB/UB give

a deterministic polynomial-time algorithm to approximate the

permanent of a non-negative matrix

up to a multiplicative factor of en.

[Linial, Samorodnitsky, Wigderson, 2000]

Bethe permanent based LB/UB give

a deterministic polynomial-time algorithm to approximate the

permanent of a non-negative matrix

up to a multiplicative factor of 2n (conjecture:
√
2
n
).

[Gurvits, Samorodnitsky, 2014]
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Pattern ML Distribution

We replace perm
(
θ(p)

)
by the solution of an optimization problem:

pPML = argmax
p

perm
(
θ(p)

)

↑
perm(θ) = max

γ
exp

(
− FGibbs(γ;θ)

)
.

Gibbs free energy

Combined:

pPML = argmax
p

max
γ

exp
(

− FGibbs

(
γ;θ(p)

))

.
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Pattern ML Distribution

We replace perm
(
θ(p)

)
by the solution of an optimization problem:

pPML = argmax
p

perm
(
θ(p)

)

↑
perm(θ) = max

γ
exp

(
− FGibbs(γ;θ)

)
.

Gibbs free energy

Combined:

pPML = argmax
p

max
γ

exp
(

− FGibbs

(
γ;θ(p)

))

.
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First half:
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Second half:
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− FGibbs
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This algorithm is equivalent to an expectation maximization (EM)

algorithm proposed by Orlitsky et al.



Pattern ML Distribution

This suggests the following alternating maximization algorithm:

Fix some p(0).

For t = 1, 2, . . . do:

First half:

γ(t) = argmax
γ

exp
(

− FGibbs

(
γ;θ(p(t−1))

))

Second half:

p(t) = argmax
p

exp
(

− FGibbs

(
γ(t);θ(p)

))

Can be approximated with the help of MCMC based techniques.
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Pattern ML Distribution

Recall:

pPML = argmax
p

perm
(
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↑
perm(θ) = max

γ
exp

(
− FGibbs(γ;θ)

)
.

Gibbs free energy

Combined:
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max
γ
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(

− FGibbs

(
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))
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Now:

pPML = argmax
p
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(
θ(p)

)

↑
perm(θ) ≈ max

γ
exp

(
− FBethe(γ;θ)

)
.

Bethe free energy

Combined:

pPML ≈ pBPML , argmax
p

max
γ

exp
(

− FBethe

(
γ;θ(p)

))

.
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alternating minimization algorithm:

Fix some p(0).

For t = 1, 2, . . . do:

First half:
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Pattern ML Distribution

Recall:

pPML = argmax
p

perm
(
θ(p)

)

↑
perm(θ) = max

γ
exp

(
− FGibbs(γ;θ)

)
.

Gibbs free energy

Combined:

pPML = argmax
p

max
γ

exp
(

− FGibbs

(
γ;θ(p)

))
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Now:

pPML = argmax
p

perm
(
θ(p)

)

↑
perm(θ) ≈ max

γ
exp

(
− FSinkhorn(γ;θ)

)
.

Sinkhorn free energy

Combined:

pPML ≈ pBPML , argmax
p

max
γ

exp
(

− FSinkhorn

(
γ;θ(p)

))

.
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We can rewrite this as an

alternating minimization algorithm:

Fix some p(0).

For t = 1, 2, . . . do:

First half:

γ(t) = argmax
γ

exp
(
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(
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))

Second half:

p(t) = argmax
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(
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Valiant–Valiant estimate
of the distribution histogram

Key ingredients:

Poissonization trick:

instead of sequences of length n

consider sequences of length n′ where n′ ∼ Poisson(n)

⇒multiplicities of pattern symbols are independent!

A source symbol with probablity pwill yield

a pattern symbol with multiplicity µwhere

µ ∼ Poisson(n · p).



Valiant–Valiant estimate
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Key ingredients:

Set up a linear program that looks for a sorted distribution

p =
(
p(1), . . . , p(1)
︸ ︷︷ ︸

length k(1)

, p(2), . . . , p(2)
︸ ︷︷ ︸

length k(2)

, . . . , p(L), . . . , p(L)
︸ ︷︷ ︸

length k(L)

)

such that the expected multiplicity histogram

“matches” the observed mulitiplicty vectorµ

such that p(ℓ) ∈ Q for some finite setQ

and such that k(1) + k(2) + · · ·+ k(L) = k.



Valiant–Valiant estimate
of the distribution histogram

Key ingredients:

Set up a linear program that looks for a sorted distribution

p =
(
p(1), . . . , p(1)
︸ ︷︷ ︸

length k(1)

, p(2), . . . , p(2)
︸ ︷︷ ︸

length k(2)

, . . . , p(L), . . . , p(L)
︸ ︷︷ ︸

length k(L)

)

such that the expected multiplicity histogram

“matches” the observed mulitiplicty vectorµ

such that p(ℓ) ∈ Q for some finite setQ

and such that k(1) + k(2) + · · ·+ k(L) = k.

Note: there is a bijection between

sorted distributions and distribution histograms.



Connections

Based on the sorted distribution p∗ found by the above LP,

one can define a k × kmatrix γ∗ with entries

γ∗

i,j , e−np∗i · (np
∗

i )
µj

µj! · ϕµj

, (i, j) ∈ [k]2.

such that

The matrix γ∗ is approximately doubly stochastic.

By this we mean

that all entries are non-negative and

that the row and column sums are approximately 1.

The vector-matrix pair (p∗,γ∗) is close to being a stationary point

of FSinkhorn

(
γ(t);θ(p)

)
.
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Conclusions / Outlook

We have defined the PML estimate and various approximations.

We have defined the Valiant–Valiant estimate of the distribution

histogram.

We have discussed connections between these estimates.

The key object for establishing these connections and for

establishing properties of these estimates is the matrix γ and its

approximations.

Use insights to speed up Bethe PML and Sinkhorn PML algorithms.



Thank you!
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