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e Classifying Twitter
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3. Example of an Analysis:
Exact String Matching.



Motivation - Biology & String Matching

Biological world is highly stochasticand innomogeneous (8. SalzbergQ).
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Motivation - Google & Subsequnce Matching

GD Slﬁ' tree estimation probability theory

Weh Images Shopping Videos MNews Maore = Search tools

About 54 900000 results (038 seconds)

Scholarly articles for tree estimation probability theory
Detection. estimation, and modulation theory - Van Trees - Cited by 9276

.. discrete probability distributions with dependence trees - Chow - Citad by 1975
Estimation of failure probability of oil and gas .. - Yuhua - Cited by 183

Estimation theory - Wikipedia, the free encyclopedia

en.wikipedia org/wiki/Estimation_theory ~ \Wikipedia -

It iz also possible for the parameters themselves to have a probability distrbution {e.g.
Bayesian . Mumerous fields require the use of estimation theory

Bayes' theorem - Wikipedia, the free encyclopedia

en. wikipedia org/wiki/Bayes' theorem = Wikipedia -

In probability theory and statistics. Bayes' theorem (alternatively Bayes law . The
role of Bayes's theorem is best visualized with tree diagrams, as shown to the right
"Bayes Estimate/Risk/Solution”, "Empincal Bayes”, and "Bayes Factor”



Motivation - Twitter & String Complexity

"allow users to download an entire movie in one second.” | need
this http://t.co/3fbNfKEkah

Green energy boss accuses Govt of obstructing renewable energy
development http://t.co/v5Lg2Jx1GQ

Figure 1: Two similar fwitter texts have many common words
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Figure 2: Twitters Classification




Outline Update

1. Motivations
2. Pattern Matching Problems

e Exact String Matching

e Constrained String Matching
e Generalized String Matfching
e Subsequence String Matching

3. Example of an Analysis: Exact String Matching.



Pattern Matching

Let W and T be (set of) strings generated over a finite alphabet A.

We call W the pattern and T the text. The fext T' is of length n and is
generated by a probabilistic source.

We shall write
T" =Ty, ... T
The pattern YV can be a single string

W:wl...wm, ’UJ@GA

or a set of strings
W: {Wl,...,Wd}
with W, € A™i being a set of strings of length m;.

Basic question:
how many times VvV occurs in T (or how long to wait until VW occurs in T').

Define .
O,(W) = #H{i : T,f_m+1 =W, m<i<n}.



Varations on Pattern Matching

(Exact) String Matching

In the exact string matching the pattern W = w; .. . w,, is a given string
(i.e., consecutive sequence of symbols).

Generalized String Matching

In the generadlized pattern matching a set of patterns (rather than a
single pattern) is given, that is,

W:(Wo,W1,...,Wd), w, € A"

where W, itself for ¢ > 1 is a subset of A™i (i.e., a set of words of a given
length m;).
The set W, is called the forbidden set.

Three cases to be considered:

W, = ) — one is interested in the number of patterns from VW occurring
in the text.

Wy # 0 — we study the number of W;, i > 1 pattern occurrences under
the condition that no pattern from YW, occurs in the text.

W; = 0,1 > 1, Wy # 0 — restricted pattern matching.



Pattern Matching Problems

Hidden Words or Subsequence Pattern Matching

In this case we search in text for a subsequence W = w; ... w,, rather
than a string, that is, we look for indices 1 < i1 < is < -+ < 4y, < n SUCh
that

I, = wi, Ty, = wa, -+, 15, = Wy,

We also say that the word W is "hidden” in the text.
For example:

YW = date
T' = hidden pattern

occurs four times as a subsequence in the text as hidden pattern but not
even once as a string.

Self-Repetitive Pattern Matching
N this case the pattern W is part of the text:
w =T;".

We may ask when the first m symbols of the text will occur again. This is
important in Lempel-Ziv like compression algorithms.
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New Book on Pattern Matching

How do you distinguish a cat from a dog by their DNA
Did Shakespeare really write all of his plays?

Philippe Jacquet and
Wojciech Szpankowski

Pattern matching techniques can offer answers to these questions and to
many others, from molecular biology, to telecommunications, to classifyi
Twitter content.

(]
This book for researchers and graduate students demonstrates the
probabilistic approach to pattern matching, which predicts the performance #&
of pattern matching algorithms with very high precision using analytic 7’
combinatorics and analytic information theory. Part I compiles known P QI
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results of pattern matching problems via analytic methods. Part II focuses on
.
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applications to various data structures on words, such as digital trees, suffix
trees, string complexity and string-based data compression. The authors use
results and techniques from Part I and also introduce new methodology such
as the Mellin transform and analytic depoissonization.

More than 100 end-of-chapter problems help the reader to make the link
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Book Contents: Part I. ANALYSIS

Chapter 1. Probabilistic Models

Chapter 2. Exact String Matching (DNA Applications)
2.1 Formulation of the problem

2.2 Language representation

2.3 Generating functions

2.4 Moments

2.5 Limit laws

Chapter 3: Constrained Exact String Matching (Constrained Coding)
3.1 Enumeration of (d, k) sequences
3.7 Application: Significant signals in neural data

Chapter 4: Generalized String Matching (Biological Applications)
4.1 String matfching over a reduced set

4.2 Generadlized string matching via automata

4.3 Generalized string matching via a language approach

Chapter 5: Subsequence String Matching (Google Applications)
5.1 Problem formulation

5.2 Mean and variance analysis

5.3 Autocorrelation polynomial revisited

5.4 Central limit laws

5.5 Limit laws for fully constrained pattern

5.6 Generdlized subsequence problem



Book Contents: Part Il. APPLICATIONS

Chapter 6. Algorithms and Data Structures
6.1 Tries

6.2 Suffix trees

6.3 Lempel-Ziv'77 scheme

6.4 Digital search free

6.5 Parsing trees and Lempel-Ziv'78 algorithm

Chapter 7: Digital Trees

Chapter 8: Suffix Trees & Lempel-Ziv’'77
8.1 Random tries resemble suffix trees
8.2 Size of suffix free

8.3 Lempel-Ziv'77

Chapter 9. Lempel-Ziv’78 Compression Algorithm

Chapter 10: String Complexity (Twitter Applications)
10.1 Introduction to string complexity

10.2 Analysis of string self-complexity

10.3 Analysis of the joint complexity

10.4 Average joint complexity for identical sources

10.5 Average joint complexity for non identical sources
10.6 Joint complexity via suffix trees

10.7 Conclusion and applications
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Analysis: Exact String Matching

In the exact string matching the pafttern W = w; . . . w,, is a given string and
one searches for its occurrences in a random text 77",

Memoryless Source: The text is a realization of an independently, identically
distributed sequence of random variables such that a symbol s € A occurs
with probability P(s).

Extensions to Markovian Source are relatively easy.
Objective: probabilistic laws for

OnW) =#{i: T, ., =W, m<i<n}.
Tools. Symbolic calculus and analytic tools of languages:

Language L is a collection of words satisfying some properties.
Generating function L(z) of language L is defined as

L(z) = Z P(u)z|u|

uel

where P(w) is the stationary probability w occurrence, |u| is the length of w.



Autocorrelation Set and Polynomial

Given a pattern YW, we define the autocorrelation set S as:
8 _ m . k _ m k . m
= {wk+1 - Wy = Wiy 15y Wy = Wy gy

and WW is the set of positions k satisfying w) = w?_, . |.

S

Wy Wi Wimks1  Wm

The generating function of S is S(z) known also as the autocorrelation

polynomial.
m m—k
S(z) = Y Pwp,)z"".
keywwv

Example: Let W = bab over the alphabet A = {a, b}.
WW ={1,3} and S = {¢,ab},

where ¢ is the empty word, since

b a Db
b a Db

For the unbiased memoryless source: S(z) = 1 4+ P(ab)z* = 1 + 2.



Language 7.. and Associated Languages

Define 7, as set of words containing exactly » > 1 occurrences of W:
T, =R -M"'.U.

which can be illustrated as

Ty

R M M M U
(i) We define R as the set of words contfaining only one occurrence of W,
located at the right end. For example, for W = aba, we have ccaba € R.
(i) We also define U as
U={u: W u €T}
thatis, aword v € U if W -« has exactly one occurrence of VW at the left

end of W - u,
bba € U, ba & U.

(i) Let M be the language:
M= {u: W-u €& Ty and W occurs af the right of W - u },

that is, M is a language such that WM has exactly two occurrences of
W at the left and right end of a word from M (e.Q., ba € M since ababa).



Language Relations & Generating Functions

Lemma 1. (i) The languages M, U and 'R satisfy:

M = AW+ S — {e},

k>1

U-A = M+U—-{e, W- M=A-R—(R—-W),

where A* is the set of all words.
(ii) The generating functions associated with languages M, U and R satisfy

1 z™
M) Sw(z) + P(W)—l —
Uw(z) = Miz_)z 1’ R(z) = P(W)z" - Un(z)

Theorem 1. The generating functfions T;.(z) = >, <, Pr{O,(W) = r}z" and
T(z,u) = S, T.(z)u’ satisfy -

T.(x) = REM) ()Un(z), r>1
T(z,u) = R(z)1 — uM(z)UW(Z)



Main Results: Asymptotics

Theorem 2. (i) Moments. The expectation safisfies, forn > m:
E[O,(W)] = POW)(n — m + 1),

while the variance is
Var|[O,,(W)] = nc1 + c2

with
ci = PW)(2S5(1) —1— (2m — 1)P(W),
ca = POW)((m —1)3m —1)P(W) — (m —1)(25(1) — 1) — 25'(1)).

(ii) Caser = O(1). Let pyy be the smallest root of

Dw(z) = (1 — 2)Sw(z) + 2" P(W) = 0.

Then
r+1 . n .
Pr{O,(W) =71} ~ > (~1)aq, (j " 1)%(”“)
j=1
where

PP (W) (pw — 1)

Ar41 — r
(D4 (ow))" "
and the remaining coefficients can be easily computed, too.

Y



Central Limit and Large Deviations

(iii) CLT: Case » = EO,, + x+/VarO,, forx = O(1). Then:

Pr{O,(W) = r} = \/ﬁe%* (1 40 (%)) |

(iv) Large Deviations: Case » = (1 4+ §)EO,,. Let a = (1 + §)P (W) with
d # 0. For complex t, define p(t) to be the root of

1 — etMW(ep) =0 ,
while w, and o, are defined as

_P/(Wa) = a

_p//(wa) — O-a,

\}

Then

e—(n—m—l—l)](a)—i—Sa

Pr{O.(W) ~ (1+8)BO:} = J/2r(n —m + 1)

where I(a) = aw, + p(w,) ANd §, is a constant.



Biology — Weak Signals and Artifacts

Denise and Regnier (2002) observed that in biological sequence whenever
a word is overrepresented, then its subwords are also overrepresented.
Forexample, if Wy = AAT AAA, then

W = ATAAAN

is also overrepresented.
Overrepresented subwords are called artifact, and it is important fo
disregard automatically noise created by artifacts.

New Approach:

Once a dominating signal has been detected, we look for a weaker
signal by comparing the number of obbserved occurrences of patterns
to the conditional expectations not the regular expectations.

To solve this harder quastion one needs a new approach thru Generalized
Patftern Matching discussed in Chapter 4. Thea, as in Denise and Regnier
(2002) we find

When W, is overrepresented the constant « differs significantly from
E[O,(W].



Polyadenylation Signals in Human Genes

Beaudoing et al. (2000) studied several variants of the well known AAUAAA
polyadenylation signal in mMRNA of humans genes. To avoid arfifacts
Beaudoing et al cancelled all sequences where the overrepresented
hexamer was found.

Using our approach Denise and Regnier (2002) discovered/eliminated all

artifacts and found in a much simpler and reliable way.

Hexamer Obs. Rk Exp. Z-SC. Rk Cd.Exp. Cd.Z-sc. Rk
AAUAAA 3456 1 363.16 167.03 1 1
AAAUAA 1721 2 363.16 71.25 2 1678.53 1.04 1300
AUAAAA 1530 3 363.16 61.23 3 1311.03 6.05 404
UuuuuU 1105 4 416.36 33.75 8 373 .30 37.87 2
AUAAAU 1043 5 373.23 34.67 6 1529.15 12.43 4078
AAAAUA 1019 6 363.16 34.41 7 848.76 5.84 420
UAAAAU 1017 7 373.23 33.32 Q 780.18 8.48 211
AUUAAA 1013 | 373.23 33.12 10 385.85 31.93 3
AUAAAG Q72 Q 184.27 58.03 4 593.90 15.51 34
UAAUAA 022 10 373.23 28.41 13 1233.24 -8.86 4034
UAAAAA 022 11 363.16 29.32 12 022.67 Q.79 155
UUAAAA 863 12 373.23 25.35 15 374.81 25.21 4
CAAUAA 847 13 185.59 48.55 5 613.24 Q.44 167
AAAAAA 841 14 353.37 25.94 14 496.38 15.47 36
UAAAUA 805 15 373.23 22.35 21 1143.73 -10.02 4068




That’s It
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