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Motivation

Imagine we have n items and we want to know which one people prefer

n beers
n papers
n resumes

We also have a large pool of people who can judge the items.
How should we allocate the judges?

uniform distribution of judges over items

adaptive allocation of judges to (hopefully) focus on top items



Multi-Armed Bandit

n arms (one for each item)

[ > o > -+ > by, expected rating of each item
(order is unknown)

x;; ~ P, , random rating from judge j

z;; ~ P,,, random rating from judge j

(assume judges are iid)

~ t; . . .
Wi, = tl D _i—1 Tij, empirical mean from ¢; ratings

Use {Ji;+,} to choose 7 so that P(i # 1) < 8




Confidence Intervals

Assume P, are subGaussian:

P(|pie — il > €) < D¢ cte” , for some ¢ > 0

x; 11d Bernoulli — Chernoft
x; 1id bounded — Hoefgding
r,; iid Gaussian — e~ t€ /2

With probability at least 1 — 0
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Confidence Intervals

With probability at least 1 — 9
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Non-Adaptive Scheme

: keep sampling every arm ...
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Non-Adaptive Scheme

1 2 3 n-1

satisfied if
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= t=0 (Az_ *log ) samples /arm suffice

A—Z
Total samples T' = O (nAEQIOgn 52 )



Adaptive Scheme

stop sampling arms with UCBs < max LCB

1 o -
1 2 3 n-1 n
_ 5 nA,L-_2
ith arm removed after ¢t; = O | A “log 5 samples
Aj = 1 — py
Total samples T = O Z A ?lo nAi_Z

i>2

Even-Dar et al (2006)
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non-adaptive: T = O(n?logn)

adaptive: T'= O(nlogn)
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is log n factor necessary?



Two-Arm Case

Test: 3., (w1, — 22,) >0
AQ > ()

walk + drift Ayt

i P \/ 2t loglogt

zero-mean walk

Ao =10

when drift crosses LIL bound

At = \/2tloglogt = %A2_210g10gA2_2

log A
this suggests T' = O Z Ai—2 log ( 08 2 )

. 0
1>2



LIL UCB Algorithm
ﬁz’,t_\/ oo (105gt> < o < ﬁi,t+\/§10g (ngt>

sample arm with largest LIL upper confidence bound




LIL UCB Algorithm

... eventually, algorithm will stop sampling suboptimal arms
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key steps in analysis are to show
1. suboptimal arms sampled finitely many times

9 | A;Q
Duisati < €0 D isg A log(og5 )

2. no suboptimal arm sampled more than all others
t; < Zj;éitj_l_l? VZZQ
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Theorem 1 Assume arms are sub-Gaussian. For any ¢ < 0.10, there exist
(small) universal constants cg,c1 > 0 such that with probability at least 1 — cyd
the lil” UCB algorithm stops after at most

c1 Y A7?log(log(A;?)/6)
i=2
samples and outputs the optimal arm.

Jamieson et al (2014)



Dueling Bandits

Rather than collecting ratings, collect binary comparisons
between pairs of items; e.g., Do you prefer Beer A or Beer B ?

pi; = P(arm ¢ > arm j), probability person prefers ¢ to j

samples z;; ~ Bernoulli(p;;)
Yue et al (2012)

Many criteria for how to decide which item is most prefered
(e.g., Condorcet, Borda, etc.)

Borda score: y; = — D iti Dij
Simulate sample from arm :

r; = x;7, where J ~ uniform over [n]/i

from here we can apply all the algorithms for the usual best arm problem
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Assume p;; are known up
to permutation of the arms

P; and P, have roughly
the same Borda scores, but very
different sample complexities:
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1. Duel each arm with O(log %) others, chosen uniformly at random

2. Duel arms 1 and 2 against each other arm O (}2 log %) times
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1. Duel each arm with O(log %) others, chosen uniformly at random

2. Duel arms 1 and 2 against any other arm O (2—22 log %) times
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Assume p;; are known up
to permutation of the arms

P; and P, have roughly
the same Borda scores, but very
different sample complexities:

n n
n? 1
T Z E—QIOgg

sparsity helps !



Bounds for Borda Dueling Bandits

Borda score: p; := ﬁzj;ﬂpij

Borda gaps: A, = u; — 1, 1> 2

log A2
general upper bound on sample complexity: 17" = O Z A;Q log < Og5 z )
i>2

... but maybe it is possible to automatically adapt to sparsity to achieve better results

Consider class problems P := {P: 2 < p;; < 2 V ij} and class A of procedures
that are guaranteed to find Borda winner with probability at least 1—0V P € P.

Then for every P € P and every procedure in A, the expected number of

samples satisfies
1 —2
Ep[T] > Clog (2—5> E A

i>9 using techniques from Kaufmann,

Cappe, & Garivier (2014)

=> impossible to agnostically exploit sparsity for much, if any, gain



Sparse Borda Algorithm

Assumption: best arm is differentiated from any suboptimal arm by a small
subset (of size at most k) of all possible duels

Algorithmic idea: Successive elimination of arms and duels
Results: provably improves on sample complexity of simple Borda reduction
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