
Rob Nowak
University of Wisconsin-MadisonSimons, March 2015

Picking Brains with Bandits

Motivation

Imagine we have n items and we want to know which one people prefer

n beers
n papers
n resumes

We also have a large pool of people who can judge the items.
How should we allocate the judges?

uniform distribution of judges over items

adaptive allocation of judges to (hopefully) focus on top items

n arms (one for each item)

xij ⇠ Pµi , random rating from judge j

xij ⇠ Pµi , random rating from judge j

(assume judges are iid)

(order is unknown)

bµi,ti =
1
ti

Pti
j=1 xij , empirical mean from ti ratings

Use {bµi,ti} to choose

bi so that P(bi 6= 1)  �

µ1 > µ2 � · · · � µn, expected rating of each item

Multi-Armed Bandit

xi iid Bernoulli ! Cherno↵
xi iid bounded ! Hoe↵ding
xi iid Gaussian ! e

�t✏2/2

With probability at least 1� �

bµi,t �
r

c

t
log

2

�
 µi  bµi,t +

r
c

t
log

2

�

Assume Pµi are subGaussian:

P(|bµi,t � µi| � ✏)  2e�ct✏2 , for some c > 0

Confidence Intervals

With probability at least 1� �

bµi,t �
r

c

t
log

2n

�
 µi  bµi,t +

r
c

t
log

2n

�

bµi,t �
r

c

t
log

2

�
 µi  bµi,t +

r
c

t
log

2

�

for fixed i and t

� ! �/n: for all i and fixed t

� ! �/(2nt2): for all i and all t

bµi,t �
r

c

t
log

4nt2

�
 µi  bµi,t +

r
c

t
log

4nt2

�

Confidence Intervals

· · ·

Non-Adaptive Scheme

1 2 3 n-1 n

keep sampling every arm ...

until

· · ·

1 2 3 n-1 n

satisfied if

4

r
c

t
log

4nt2

�
 µ1 � µ2 =: �2

Total samples T = O

✓
n�

�2
2 log

n��2
2

�

◆

) t = O

✓
�

�2
2 log

n��2
2

�

◆
samples/arm su�ce

Non-Adaptive Scheme

· · ·

1 2 3 n-1 n

· · ·

ith arm removed after ti = O

✓
�

�2
i log

n��2
i

�

◆
samples

�i := µ1 � µi

Total samples T = O

0

@
X

i�2

�

�2
i log

n��2
i

�

1

A

Adaptive Scheme

1 2 3 n-1 n

stop sampling arms with UCBs < max LCB

x
x x

Even-Dar et al (2006)

�2 = n�1/2, �i � 1, i � 3

non-adaptive: T = O(n2
log n)

adaptive: T = O(n log n)

is log n factor necessary?

Example

· · ·

1 2 3 n-1 n

Two-Arm Case

p
2t log log t

zero-mean walk

when drift crosses LIL bound

Test:
Pt

j=1(x1,j � x2,j) � 0
�2 > 0

walk + drift �2 t

�2 = 0

� t =

p
2t log log t) t ⇡ �

�2
2 log log�

�2
2

this suggests T = O

0

@
X

i�2

�

�2
i log

✓
log�

�2
i

�

◆1

A

LIL UCB Algorithm

· · ·

1 2 3 n-1 n

sample arm with largest LIL upper confidence bound

bµi,t �

s
c

t
log

✓
log t

�

◆
 µi  bµi,t +

s
c

t
log

✓
log t

�

◆

LIL UCB Algorithm

· · ·

1 2 3 n-1 n

... eventually, algorithm will stop sampling suboptimal arms

key steps in analysis are to show

1. suboptimal arms sampled finitely many times

P
i�2

ti  c
0

P
i�2

�

�2

i log

⇣
log�

�2
i

�

⌘

2. no suboptimal arm sampled more than all others

ti  c
1

P
j 6=i tj + 1 , 8 i � 2

Theorem 1 Assume arms are sub-Gaussian. For any �  0.10, there exist

(small) universal constants c0, c1 > 0 such that with probability at least 1� c0�
the lil’ UCB algorithm stops after at most

c1

nX

i=2

�

�2
i log(log(�

�2
i)/�)

samples and outputs the optimal arm.

lil’ UCB

Jamieson et al (2014)

pij = P(arm i � arm j), probability person prefers i to j

samples xij ⇠ Bernoulli(pij)

Dueling Bandits

Rather than collecting ratings, collect binary comparisons
between pairs of items; e.g., Do you prefer Beer A or Beer B ?

Many criteria for how to decide which item is most prefered
(e.g., Condorcet, Borda, etc.)

Borda score: µi :=

1
n�1

P
j 6=i pij

Simulate sample from arm i:

xi = xiJ , where J ⇠ uniform over [n]/i

from here we can apply all the algorithms for the usual best arm problem

Yue et al (2012)

P1 =

2

66666666666664

1
2

1
2

3
4+✏ · · · 3

4

1
2

1
2

3
4 · · · 3

4

1
4�✏ 1

4
1
2 · · · 1

2

...
...

...
...

...

1
4

1
4

1
2 · · · 1

2

3

77777777777775

P2 =

2

66666666666664

1
2

1
2

3
4+✏/n · · · 3

4+✏/n

1
2

1
2

3
4 · · · 3

4

1
4�✏/n 1

4
1
2 · · · 1

2

...
...

...
...

...

1
4�✏/n 1

4
1
2 · · · 1

2

3

77777777777775

Assume pij are known up

to permutation of the arms

P1 and P2 have roughly

the same Borda scores, but very

di↵erent sample complexities:

T1 = O
⇣ n

✏2
log

n

�

⌘

T2 & n2

✏2
log

1

�

P1 =

2

66666666666664

1
2

1
2

3
4+✏ · · · 3

4

1
2

1
2

3
4 · · · 3

4

1
4�✏ 1

4
1
2 · · · 1

2

...
...

...
...

...

1
4

1
4

1
2 · · · 1

2

3

77777777777775

T1 = O
⇣ n

✏2
log

n

�

⌘

1. Duel each arm with O(log

n
�) others, chosen uniformly at random

2. Duel arms 1 and 2 against each other arm O
�

1
✏2 log

n
�

�
times

1. Duel each arm with O(log

n
�) others, chosen uniformly at random

2. Duel arms 1 and 2 against any other arm O
⇣

n2

✏2 log

n
�

⌘
times

T2 & n2

✏2
log

1

�
P2 =

2

66666666666664

1
2

1
2

3
4+✏/n · · · 3

4+✏/n

1
2

1
2

3
4 · · · 3

4

1
4�✏/n 1

4
1
2 · · · 1

2

...
...

...
...

...

1
4�✏/n 1

4
1
2 · · · 1

2

3

77777777777775

P1 =

2

66666666666664

1
2

1
2

3
4+✏ · · · 3

4

1
2

1
2

3
4 · · · 3

4

1
4�✏ 1

4
1
2 · · · 1

2

...
...

...
...

...

1
4

1
4

1
2 · · · 1

2

3

77777777777775

P2 =

2

66666666666664

1
2

1
2

3
4+✏/n · · · 3

4+✏/n

1
2

1
2

3
4 · · · 3

4

1
4�✏/n 1

4
1
2 · · · 1

2

...
...

...
...

...

1
4�✏/n 1

4
1
2 · · · 1

2

3

77777777777775

Assume pij are known up

to permutation of the arms

P1 and P2 have roughly

the same Borda scores, but very

di↵erent sample complexities:

T1 = O
⇣ n

✏2
log

n

�

⌘

T2 & n2

✏2
log

1

�

sparsity helps !

Borda score: µi := 1
n�1

P
j 6=i pij

Borda gaps: �i = µi � µ1 , i � 2

general upper bound on sample complexity: T = O

0

@
X

i�2

�

�2
i log

✓
log�

�2
i

�

◆1

A

Bounds for Borda Dueling Bandits

... but maybe it is possible to automatically adapt to sparsity to achieve better results

Consider class problems P := {P :

3
8  pij  5

8 8 ij} and class A of procedures

that are guaranteed to find Borda winner with probability at least 1�� 8 P 2 P.

Then for every P 2 P and every procedure in A, the expected number of

samples satisfies

EP [T] � C log

✓
1

2�

◆X

i�2

�

�2
i

using techniques from Kaufmann,
Cappe, & Garivier (2014)

=> impossible to agnostically exploit sparsity for much, if any, gain

Sparse Dueling Bandits

ments from search results. The data also contains the
values of 136 features and corresponding user labelled
relevance factors with respect to each query-document
pair. We use the training set of Fold 1, which com-
prises of about 2,000 queries. The second data set is
the MQ2008-list from the Microsoft Learning to Rank
4.0 (MQ2008) data set (Qin and Liu, 2013). We use
the training set of Fold 1, which has about 550 queries.
Each query has a list of documents with 46 features
and corresponding user labelled relevance factors.

For each data set, we create a set of rankers, each corre-
sponding to a feature from the feature list. The aim of
this task is be to determine the feature whose ranking
of query-document pairs is the most relevant. To com-
pare two rankers, we randomly choose a pair of docu-
ments and compare their relevance rankings with those
of the features. Whenever a mismatch occurs between
the rankings returned by the two features, the feature
whose ranking matches that of the relevance factors of
the two documents “wins the duel”. If both features
rank the documents similarly, the duel is deemed to
have resulted in a tie and we flip a fair coin. We run a
Monte Carlo simulation on both data sets to obtain a
preference matrix P corresponding to their respective
feature sets. As with the previous setup, the entries
of the preference matrices ([P]i,j = pi,j) are used to
simulate comparisons between the respective arms and
each experiment was repeated 75 times.

From the MSLR-WEB10k data set, a single arm was
removed for our experiments as its Borda score was
unreasonably close to the arm with the best Borda
score and behaved unlike any other arm in the dataset
with respect to its ↵i curves, confounding our model.
For these real datasets, we consider a range of di↵er-
ent k values for the SECS algorithm. As noted above,
while there is no guarantee that the SECS algorithm
will return the true Borda winner, in all of our trials
for all values of k reported we never observed a single
error. This is remarkable as it shows that the correct-
ness of the algorithm is insensitive to the value of k on
at least these two real datasets. The sample complex-
ities of BR and SECS on both datasets are reported
in Figure 4. We observe that the SECS algorithm, for
small values of k, can identify the Borda winner using
as few as half the number required using the Borda re-
duction method. As k grows, the performance of the
SECS algorithm becomes that of the BR algorithm, as
predicted by Theorem 2.

Lastly, the preference matrices of the two data sets
support the argument for finding the Borda winner
over the Condorcet winner. The MSLR-WEB10k data
set has no Condorcet winner arm. However, while the
MQ2008 data set has a Condorcet winner, when we
consider the Borda scores of the arms, it ranks second.

(a) MSLR-WEB10k (b) MQ2008

Figure 4: Comparison of an action elimination-style
algorithm using the Borda reduction (denoted as BR)
and the proposed SECS algorithm with di↵erent values
of k on the two datasets.

Sparse Borda Algorithm

Assumption: best arm is differentiated from any suboptimal arm by a small
subset (of size at most k) of all possible duels

Algorithmic idea: Successive elimination of arms and duels

Results: provably improves on sample complexity of simple Borda reduction

Jamieson, Katariya
and others (2012)

Jamieson, Katariya, Deshpande, Nowak

Thus, under the stated assumptions, the algorithm
never does worse than the Borda reduction scheme.
The first argument of the min indicates the poten-
tial improvement gained by exploiting the sparsity as-
sumption. The first argument of the max is the result
of throwing out the arms with large Borda di↵erences
and the second argument is the result of throwing out
arms where a partial Borda di↵erence was observed to
be large.

To illustrate the potential improvements, consider the
P
1

matrix discussed above, the theorem implies that

by setting T
0

= 32

R2 log
⇣

32n/�
R2

⌘

with R = 1/2+✏
n�1

+
1

4

n�2

n�1

⇡ 1

4

and k = 1 we obtain a sample complexity of

O(✏�2n log(n)) for the proposed algorithm compared
to the standard Borda reduction sample complexity of
⌦(n2).

In practice it is di�cult optimize the choice of T
0

and
k, but motivated by the results shown in the experi-
ments section, we recommend setting T

0

= 0 and k = 5
for typical problems.

5 EXPERIMENTS

The goal of this section is not to obtain the best
possible sample complexity results for the specified
datasets, but to show the relative performance gain
of exploiting structure using the proposed SECS algo-
rithm with respect to the Borda reduction. That is, we
just want to measure the e↵ect of exploiting sparsity
while keeping all other parts of the algorithms con-
stant. Thus, the algorithm we compare to that uses the
simple Borda reduction is simply the SECS algorithm
described above but with T

0

= 1 so that the sparse
condition never becomes activated. Running the al-
gorithm in this way, it is very closely related to the
Successive Elimination algorithm of Even-Dar et al.
(2006). In what follows, our proposed algorithm will
be called SECS and the benchmark algorithm will be
denoted as just the Borda reduction (BR) algorithm.

We experiment on both simulated data and two real-
world datasets. During all experiments, both the BR
and SECS algorithms were run with � = 0.1. For the
SECS algorithm we set T

0

= 0 to enable condition 1
from the very beginning (recall for BR we set T

0

=
1). Also, while the algorithm has a constant factor
of 6 multiplying (k + 1)Ct, we feel that the analysis
that led to this constant is very loose so in practice
we recommend the use of a constant of 1/2 which was
used in our experiments. While the change of this
constant invalidates the guarantee of Theorem 2, we
note that in all of the experiments to be presented
here, neither algorithm ever failed to return the best
arm. This observation also suggests that the SECS

Figure 3: Comparison of the Borda reduction algo-
rithm and the proposed SECS algorithm ran on the
P
1

matrix for di↵erent values of n. Plot is on log-
log scale so that the sample complexity grows like ns

where s is the slope of the line.

algorithm is robust to possible inconsistencies of the
model assumptions.

5.1 Synthetic Preference matrix

Both algorithms were tasked with finding the best arm
using the P

1

matrix of (1) with ✏ = 1/5 for problem
sizes equal to n = 10, 20, 30, 40, 50, 60, 70, 80 arms. In-
specting the P

1

matrix, we see that a value of k = 1 in
the SECS algorithm su�ces so this is used for all prob-
lem sizes. The entries of the preference matrix Pi,j are
used to simulate comparisons between the respective
arms and each experiment was repeated 75 times.

Recall from Section 3 that any algorithm using the
Borda reduction on the P

1

matrix has a sample com-
plexity of ⌦(n2). Moreover, inspecting the proof of
Theorem 2 one concludes that the BR algorithm has a
sample complexity of O(n2 log(n)) for the P

1

matrix.
On the other hand, Theorem 2 states that the SECS
algorithm should have a sample complexity no worse
than O(n log(n)) for the P

1

matrix. Figure 3 plots
the sample complexities of SECS and BR on a log-log
plot. On this scale, to match our sample complexity
hypotheses, the slope of the BR line should be about
2 while the slope of the SECS line should be about 1,
which is exactly what we observe.

5.2 Web search data

We consider two web search data sets. The first is
the MSLR-WEB10k Microsoft Learning to Rank data
set (Qin et al., 2010) that is characterized by approx-
imately 30,000 search queries over a number of docu-

sparse borda

simple borda

P1 =

2

66666666666664

1
2

1
2

3
4+✏ · · · 3

4

1
2

1
2

3
4 · · · 3

4

1
4�✏ 1

4
1
2 · · · 1

2

...
...

...
...

...

1
4

1
4

1
2 · · · 1

2

3

77777777777775

Thanks!

Matt Malloy

Kevin Jamieson

Sebastien Bubeck

Sumeet Katariya

