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A repeated game:

At round t:

@ Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player's aim:

| A\

Minimize regret wrt comparison C:
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@ Deterministic heart of a decision problem.
@ Gives robust statistical methods.

@ This talk: Minimax optimal strategies.
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The value of the game: Minimax Regret
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To play the minimax strategy: after seeing y1,..., yr—1,
@ Compute V,
@ Choose a; as the minimizer of

max (Lat,yt) + V(y1,-- s y1))

Difficult! |

Efficient minimax optimal strategies

When is V' a simple function of (statistics of) the history y1,...,y:?
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@ Log loss: 4(p,y) = —logp(y). (p a density; C a probability model.)
@ Minimax optimal strategy: normalized maximum likelihood. shtarkov, 1987]

@ Computation difficult in general. Efficient special cases:

o Multinomials [Kontkanen, Myllymiki, 2005]
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e Bayesian prediction.
10/ 44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary

e ¥Y=1{0,1}, A=10,1], 4(a,y) = |a— y|. (Also C C static experts.)

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary

e ¥Y=1{0,1}, A=10,1], 4(a,y) = |a— y|. (Also C C static experts.)
@ Minimax optimal strategy: compare expected minimal cumulative loss
for random futures.
[Cover, 1967], [Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, Warmuth, 1997],

[Cesa-Bianchi, Shamir, 2011], [Koolen, 2011], [Gravin, Peres, Sivan, 2014]

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated

e ¥Y=1{0,1}, A=10,1], 4(a,y) = |a— y|. (Also C C static experts.)
@ Minimax optimal strategy: compare expected minimal cumulative loss
for random futures.
[Cover, 1967], [Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, Warmuth, 1997],

[Cesa-Bianchi, Shamir, 2011], [Koolen, 2011], [Gravin, Peres, Sivan, 2014]

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss

@ Y = A, linear loss, best cumulative loss is bounded.

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss

@ Y = A, linear loss, best cumulative loss is bounded.

o Minimax optimal strategy: estimate survival probability.

[Abernethy, Warmuth, Yellin, 2008]

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss can be approximated

@ Y = A, linear loss, best cumulative loss is bounded.

o Minimax optimal strategy: estimate survival probability.

[Abernethy, Warmuth, Yellin, 2008]

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss can be approximated

Quadratic loss

o la,y) = 3lla—yl.

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss can be approximated

Quadratic loss unit ball

° Ua.y)=zlla—yl?
(] y —unit ball. [Takimoto, Warmuth, 2000]

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss can be approximated

Quadratic loss

This talk: |

e ) =compact set, A D co()).

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss can be approximated

Quadratic loss \/
This talk: |

e ) =compact set, A D co()).
o Efficient minimax optimal strategy.

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss can be approximated

Quadratic loss \/
Linear regression

This talk: |

o Fixed design: xi,...,xT.

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss can be approximated

Quadratic loss \/
Linear regression

This talk: |
o Fixed design: xi,...,xT.

@ (y1,...,yT) € box, ellipsoid.

10/ 44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss can be approximated
Quadratic loss \/
Linear regression v
This talk: |
o Fixed design: xi,...,xT.

@ (y1,...,yT) € box, ellipsoid.

o Efficient minimax optimal strategy.

10 /44



Games with simple minimax optimal strategies

] Prediction Game \ Efficient optimal strategy? ‘

Log loss some cases v
Absolute loss, binary can be approximated
Experts, bounded loss can be approximated

Quadratic loss \/
Linear regression v

10 /44



Computing minimax optimal strategies.

Prediction games with simple minimax optimal strategies.

Part 1: Log loss.

Normalized maximum likelihood.

SNML: predicting like there's no tomorrow.
Bayesian strategies.

Optimality = exchangeability.

Part 2: Euclidean loss.

Part 3: Fixed design linear regression.
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Online density estimation with log loss

Many interpretations of prediction with log loss

@ Sequential probability prediction.
@ Sequential lossless data compression.

@ Repeated gambling/investment.

Long history in several communities.

[Kelly, 1956], [Solomonoff, 1964], [Kolmogorov, 1965], [Cover, 1974], [Rissanen, 1976, 1987, 1996], [Shtarkov, 1987], [Feder,
Merhav and Gutman, 1992], [Freund, 1996], [Xie and Barron, 2000], [Cesa-Bianchi and Lugosi, 2001, 2006], [Griinwald, 2007]
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Normalized maximum likelihood

-
pr(1m)l(y1T) o< sup PB(Y1T)~
e

NML is optimal [Shtarkov, 1987]
© NML equalizes regret: for any sequence le, regret is
Iog/ sup pp(z") dAT(27).
YT 6c©

@ Any strategy that does not equalize regret has strictly worse
maximum regret.
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@ To predict, we compute conditional distributions, marginalize.

@ All that conditioning is computationally expensive!
@ When is a computationally cheaper strategy optimal?

e Horizon-independent NML?
e Bayesian prediction?
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Bayesian strategies.

Optimality = exchangeability.

Part 2: Euclidean loss.

Part 3: Fixed design linear regression.
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Predicting like there's no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood

—il t =1l
Ponmi(Velyi ™) i= poy (el ™) o< sup py(yf)
0O
@ Pretend that this is the last prediction we'll ever make.
@ Simpler conditional calculation.

@ Known to have asymptotically optimal regret.

[Takimoto and Warmuth, 2000], [Roos and Rissanen, 2008], [Kottowski and Griinwald, 2011]
b
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Predicting like there's no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood

Penmi(velyE™) = PO (velyt ) o sup po(y1)
c

Sequential NML is optimal iff ps,m is exchangeable.

Proof idea:

@ SNML's regret doesn’t depend on last observation.

e (<) Exchangeability implies regret is independent of observations.
Hence SNML is an equalizer: same as NML.

° (=) pnm,(y1 ) is permutation-invariant.
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Computing minimax optimal strategies.

Prediction games with simple minimax optimal strategies.

Part 1: Log loss.

Normalized maximum likelihood.

SNML: predicting like there's no tomorrow.
Bayesian strategies.

Optimality = exchangeability.

Part 2: Euclidean loss.

Part 3: Fixed design linear regression.
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Bayesian strategies

Bayesian strategies

For prior  on ©:

pelyf) = /9 Pl dn(0)

p=(0lyf) o< pr(0lyi " )polye).

Sequential update to prior.

Jeffreys prior:
m(0) o V11(0)],

Attractive properties (e.g., invariant to parameterization).

Asymptotically optimal regret for exponential families.
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Sequential NML and Bayesian strategies

Optimality

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the f0||0Wing are eqUiValent:

© NML = SNML.

© psnmi exchangeable.

© NML = Bayesian.

©@ NML = Bayesian with Jeffreys prior.
© SNML = Bayesian.

© SNML = Bayesian with Jeffreys prior.

@ If we can ignore the time horizon and be optimal, that's the same as
Bayesian prediction with Jeffreys prior.

o If any Bayesian strategy is optimal, it uses Jeffreys prior.

@ Why? If NML=SNML, then we can consider long time horizons, so
the asymptotics emerge. Asymptotic normality of the MLE implies
Jeffreys prior is the only candidate. 23/ 44
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Online density estimation with log loss

EXtenSIOHS [B., Griinwald, Harremoés, Hedayati, Kottowski, 2013]

@ One-dimensional exponential families:
po(y) = h(y)exp (6y — A(0)).
@ psyme is exchangeable (i.e., SNML optimal, Bayesian optimal) <
@ Gaussian distributions with fixed variance o2 > 0,
© gamma distributions with fixed shape k > 0,

© Tweedie exponential family of order 3/2,
@ Or smooth transformations.

normal gamma Pareto
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@ Computing minimax optimal strategies.

@ Prediction games with simple minimax optimal strategies.
@ Part 1: Log loss.
°

Part 2: Euclidean loss.

o The role of the smallest ball.
e The simplex and the ball.
e Sub-game optimal strategies on ellipsoids.

Part 3: Fixed design linear regression.
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Online prediction with Euclidean loss

Euclidean loss

Adversary chooses y, € )V, where ) C RY.

1 2
€y, y)=s1ly—vl*-
Strategy chooses ¥, € RY. (7:%) 2 | |

t=1

Regret = Zf(f/t,yt) - aienéd Zf(aa)/t)' J
t—1
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The smallest ball containing ) is
By ={y €R?: |y — c|| < r}, with
¢ = argminc maxyey |ly — ||,

r = minc max,cy ||y — ¢l

Main Theorem
For closed, bounded ) c R¢:

n

Minimax strategy is aj‘,H = na,,+1; Zyt + (1 — napt1)c.
t=1

N

-
Optimal regret is V() = % Za,,.
—1
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Suppose )V is a set of d + 1 affinely independent points in RY, all lying on
the surface of the smallest ball.

Use sufficient statistics: s, = > ;1 (vt — ¢), o2 =311 llye — cll®.
Value-to-go: quadratic in state Minimax strategy: affine in state
* _ Sn
. - dnp1 = € = Ny
2 2, 2
5 (Om”sn” —o,+r tZH Oét) a:+1 = NQpt1yYn + (]_ — nan+1)c
=n

Maximin distribution: same mean.

~+ | =

2
ar = Qppq+ e <

aT =
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Minimax regret for simplex

N
\i
N

V() =5 > ar< 5 (1+1ogT).

2
o = Qpyq +app1 <
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The final V(y1,...,y7) is a (convex) quadratic in the state.
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Online prediction with quadratic loss on the simplex

V(Yla---a)/T *mnga}/t

V(yi,...,Yt—1) := min max (E(at,yt) +V(0a,---, 1))

a Yt
The final V(y1,...,y7) is a (convex) quadratic in the state.
V(yi,...,yt-1) :i= min mpaxIEytht (Uat, yt) + V(,-- -y 01))

— man n;m ]E}/tNPt (E(ahyt) + V(y17 cee 7yt)) .
t t

At each step, the unconstrained maximizer in {p € R9*1: 17p = 1} keeps

the value-to-go a quadratic function.

When the simplex points are on the surface of the smallest ball, the

maximizer is a probability distribution.
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Proof idea

V(.yla"'ayT *mmzfah

V(y1, - Y1) i= nlltn my?x (E(at,yt) + Vi, ).

The final V(y1,...,y7) is a (convex) quadratic in the state.
V(.y17 D 7.yt—1) = n;in myax(g(ahyt) + V(YL O 7yt)) .

At each step, the inner maximum is of a (convex) quadratic criterion with
a single quadratic constraint. This is a rare example of a nonconvex
problem where strong duality holds. Evaluating the dual gives the
recurrence for the value-to-go.
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Recall: the smallest ball containing Vis By = {x € RY : |[x — | < r}.
A Lagrange dual argument shows that the optimal center is in the convex
hull of a set of contact points of ) at radius r.

From Carathéodory’s Theorem, there is an affinely independent subset S
of these contact points, with |S| < d + 1.

From below
YOS, so , T

V) 2 V(S)= 5 Y a

Y C By, so )
V(Y) < V(By) = % 3

i=1




Main result: the role of the smallest ball

The smallest ball: By,

The smallest ball containing ) is
By ={y €R?: |y — c|| < r}, with
¢ = argminc maxyey |ly — ||,

r = minc max,cy ||y — ¢l

Main Theorem
For closed, bounded ) c R¢:

n

Minimax strategy is aj‘,H = na,,+1; Zyt + (1 — napt1)c.
t=1

N

-
Optimal regret is V() = % Za,,.
—1
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Minimax regret

T 2
r r loglog T
V() E}joztzg(logT—loglogno(;‘f}g—gT».
t=1

regret

50

100 150 200
T

35 /44



Online prediction with quadratic loss

36 /44



Online prediction with quadratic loss

@ Minimax regret depends on the radius of the smallest ball.

36 /44



Online prediction with quadratic loss

@ Minimax regret depends on the radius of the smallest ball.

@ The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

36 /44



Online prediction with quadratic loss

@ Minimax regret depends on the radius of the smallest ball.

@ The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

@ For the simplex and the ball, the strategy is sub-game optimal.

36 /44



Online prediction with quadratic loss

@ Minimax regret depends on the radius of the smallest ball.

@ The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

@ For the simplex and the ball, the strategy is sub-game optimal.

@ Sub-game optimal strategies for other cases?

36 /44



Online prediction with quadratic loss

@ Minimax regret depends on the radius of the smallest ball.

@ The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

@ For the simplex and the ball, the strategy is sub-game optimal.

@ Sub-game optimal strategies for other cases?

Extensions:

36 /44



Online prediction with quadratic loss

@ Minimax regret depends on the radius of the smallest ball.

@ The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

@ For the simplex and the ball, the strategy is sub-game optimal.

@ Sub-game optimal strategies for other cases?

Extensions:

@ Sub-game optimal strategies for ellipsoids.

36 /44



Online prediction with quadratic loss

@ Minimax regret depends on the radius of the smallest ball.

@ The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

@ For the simplex and the ball, the strategy is sub-game optimal.

@ Sub-game optimal strategies for other cases?

Extensions:
@ Sub-game optimal strategies for ellipsoids.

o Changing losses: £,(a,y) = (a—y)  W,(a—y).

36 /44
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@ Minimax regret depends on the radius of the smallest ball.

@ The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

@ For the simplex and the ball, the strategy is sub-game optimal.

@ Sub-game optimal strategies for other cases?

Extensions:
@ Sub-game optimal strategies for ellipsoids.
o Changing losses: £,(a,y) = (a—y)  W,(a—y).
@ Hilbert space.
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Computing minimax optimal strategies.
Prediction games with simple minimax optimal strategies.
Part 1: Log loss.

Part 2: Euclidean loss.

Part 3: Fixed design linear regression.

e Minimax strategy is regularized least squares.
e Box and ellipsoidal constraints.
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Online linear regression

Fort=1,2,..., T:
@ Learner predicts y; € R
@ Adversary reveals y; € R

@ Learner incurs loss (9:

Given: T; x1,...,xTt € RP; Y C RT.

- yr)2-

W €Y

T

Regret = Z (7 — = Br’g]llgp Z (5 Xt — }’t)

t=1 t=1
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Ordinary least squares (linear model, uncorrelated errors)

Given (x1,¥1), -, (Xn, ¥n) € RP X R, choose
n -1 n
B= (Z XtXtT> th_yta
t=1 t=1
and for a subsequent x € RP, predict

n -1 n

~ TAh T T

y=x B=x E Xt X¢ E XtYt,
=1 i=Il

v
A sequential version of ridge regression

n -1 5
Vnt1 = x,,TH <Z XeXp 4 )\I) thyt.
t=1 t=1
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Welieiie-ger queEie Minimax* strategy: linear

-

T 2 2. T ox T
Sy Cnsn — o, + E Bix, Cexe. Vo1 = X1 Cay15n.
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n—1
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x,;r ChXt

n Z
t=1
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Linear regression

Ellipsoid constraints

-
Vr = {(yb.--,yr) Y yix! Coxe < R}.

t=1
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Linear regression

Ellipsoid constraints

-
Vr = {(yb.--,yr) Y yix! Coxe < R}.

t=1

Minimax strategy: linear

Minimax regret = R. J 7* = T C.s .
n — ~*n =n2n—1-
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Linear regression

Ellipsoid constraints

-
Yr= {(Y1,~--»)’T) Y vix Ceoxe < R}.

t=1

Minimax strategy: linear
Minimax regret = R. J s
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Equalizer property
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Linear regression

Ellipsoid constraints

-
Yr= {(Y1,~--»)’T) Y vix Ceoxe < R}.

t=1

Minimax strategy: linear
Minimax regret = R. J s

= anC,,s,,_l. (MM)

Equalizer property

For all yy,...,yT,

T

yt) — min (5 Xt — )2

Regret of (MM)
egret of ( 2

Mﬂ i M*i

2T
Yixe Cexe.
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o
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Fixed design linear regression

oy = xICnsn_l is minimax optimal for two families of label
constraints:
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@ Strategy does not need to know the constraints.
@ Regret is O(plog T).

e Conjecture: O(plog(T/p)).

o Adversarial order for a fixed set {x1,...,x7}?

@ Adversarial choice of x1,...,x77?
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Computing minimax optimal strategies.

Prediction games with simple minimax optimal strategies.

Part 1: Log loss.

e Normalized maximum likelihood.
o SNML and Bayesian strategies: optimality = exchangeability.

Part 2: Euclidean loss.

o The role of the smallest ball.
o The simplex and the ball.

@ Part 3: Fixed design linear regression.

e Minimax strategy is regularized least squares.
o Box and ellipsoidal constraints.
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