Efficient Minimax Strategies for Online Prediction

Peter Bartlett

Computer Science and Statistics University of California at Berkeley

Mathematical Sciences Queensland University of Technology

Joint work with Fares Hedayati, Wouter Koolen, Alan Malek, Eiji Takimoto, Manfred Warmuth.

A repeated game:

A repeated game:

At round t:

1 Player chooses prediction $a_t \in \mathcal{A}$.

A repeated game:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.

A repeated game:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.
- **3** Player incurs loss $\ell(a_t, y_t)$.

$$\ell(a_t, y_t) = ||a_t - y_t||^2.$$

A repeated game:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.
- **3** Player incurs loss $\ell(a_t, y_t)$.

A repeated game:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.
- **3** Player incurs loss $\ell(a_t, y_t)$.

A repeated game:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.
- **3** Player incurs loss $\ell(a_t, y_t)$.

A repeated game:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.
- 3 Player incurs loss $\ell(a_t, y_t)$.

A repeated game:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.
- **3** Player incurs loss $\ell(a_t, y_t)$.

A repeated game:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.
- **3** Player incurs loss $\ell(a_t, y_t)$.

A repeated game:

At round t:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.
- **3** Player incurs loss $\ell(a_t, y_t)$.

Player's aim:

Minimize regret:

$$\sum_{t=1}^{T} \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_t).$$

A repeated game:

At round t:

- **1** Player chooses prediction $a_t \in A$.
- 2 Adversary chooses outcome $y_t \in \mathcal{Y}$.
- **3** Player incurs loss $\ell(a_t, y_t)$.

Player's aim:

Minimize regret wrt comparison C:

$$\sum_{t=1}^{T} \ell(a_t, y_t) - \inf_{a \in \mathcal{C}} \sum_{t=1}^{T} \ell(a, y_t).$$

 Universal prediction: very weak assumptions on process generating the data.

- Universal prediction: very weak assumptions on process generating the data.
- Deterministic heart of a decision problem.

- Universal prediction:
 very weak assumptions on process generating the data.
- Deterministic heart of a decision problem.
- Gives robust statistical methods.

- Universal prediction:
 very weak assumptions on process generating the data.
- Deterministic heart of a decision problem.
- Gives robust statistical methods.
- This talk: Minimax optimal strategies.

$$\sum_{t=1}^{T} \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_t)$$

$$\left(\sum_{t=1}^{T} \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_t)\right)$$

$$\inf_{a_1\in\mathcal{A}}$$

$$\left(\sum_{t=1}^{T} \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_t)\right)$$

$$\inf_{a_1\in\mathcal{A}} \sup_{y_1\in\mathcal{Y}}$$

$$\left(\sum_{t=1}^{T} \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_t)\right)$$

$$\inf_{a_1 \in \mathcal{A}} \sup_{y_1 \in \mathcal{Y}} \cdots \inf_{a_T \in \mathcal{A}}$$

$$\inf_{a_1 \in \mathcal{A}} \sup_{y_1 \in \mathcal{Y}} \cdots \inf_{a_T \in \mathcal{A}} \left(\sum_{t=1}^T \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^T \ell(a, y_t) \right)$$

$$\inf_{a_1 \in \mathcal{A}} \sup_{y_1 \in \mathcal{Y}} \cdots \inf_{a_T \in \mathcal{A}} \sup_{y_T \in \mathcal{Y}} \left(\sum_{t=1}^T \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^T \ell(a, y_t) \right)$$

The value of the game: Minimax Regret

$$V_T(\mathcal{Y}, \mathcal{A}) = \inf_{a_1 \in \mathcal{A}} \sup_{y_1 \in \mathcal{Y}} \cdots \inf_{a_T \in \mathcal{A}} \sup_{y_T \in \mathcal{Y}} \left(\sum_{t=1}^T \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^T \ell(a, y_t) \right)$$

The value of the game: Minimax Regret

$$V_{T}(\mathcal{Y}, \mathcal{A}) = \inf_{a_{1} \in \mathcal{A}} \sup_{y_{1} \in \mathcal{Y}} \cdots \inf_{a_{T} \in \mathcal{A}} \sup_{y_{T} \in \mathcal{Y}} \left(\sum_{t=1}^{T} \ell(a_{t}, y_{t}) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_{t}) \right)$$

Strategy:

$$S: \bigcup_{t=0}^{T} \mathcal{Y}^{t} \to \mathcal{A}.$$

The value of the game: Minimax Regret

$$V_{T}(\mathcal{Y}, \mathcal{A}) = \inf_{\mathbf{a}_{1} \in \mathcal{A}} \sup_{y_{1} \in \mathcal{Y}} \cdots \inf_{\mathbf{a}_{T} \in \mathcal{A}} \sup_{y_{T} \in \mathcal{Y}} \left(\sum_{t=1}^{T} \ell(\mathbf{a}_{t}, y_{t}) - \inf_{\mathbf{a} \in \mathcal{A}} \sum_{t=1}^{T} \ell(\mathbf{a}, y_{t}) \right)$$

Strategy:

$$S: \bigcup_{t=0}^{T} \mathcal{Y}^{t} \to \mathcal{A}.$$

$$V_{\mathcal{T}}(\mathcal{Y}, \mathcal{A}) = \inf_{\mathcal{S}} \sup_{y_1^T \in \mathcal{Y}^T} \left(\sum_{t=1}^T \ell\left(\mathcal{S}\left(y_1^{t-1}\right), y_t\right) - \inf_{a \in \mathcal{A}} \sum_{t=1}^T \ell(a, y_t) \right)$$

The value of the game: Minimax Regret

$$V_{T}(\mathcal{Y}, \mathcal{A}) = \inf_{\mathbf{a}_{1} \in \mathcal{A}} \sup_{y_{1} \in \mathcal{Y}} \cdots \inf_{\mathbf{a}_{T} \in \mathcal{A}} \sup_{y_{T} \in \mathcal{Y}} \left(\sum_{t=1}^{T} \ell(\mathbf{a}_{t}, y_{t}) - \inf_{\mathbf{a} \in \mathcal{A}} \sum_{t=1}^{T} \ell(\mathbf{a}, y_{t}) \right)$$

Minimax Optimal Strategy:

$$\begin{split} S^* : & \bigcup_{t=0}^T \mathcal{Y}^t \to \mathcal{A}. \\ V_T(\mathcal{Y}, \mathcal{A}) &= \inf_{\mathbf{S}} \sup_{y_1^T \in \mathcal{Y}^T} \left(\sum_{t=1}^T \ell\left(\mathbf{S}\left(y_1^{t-1}\right), y_t\right) - \inf_{a \in \mathcal{A}} \sum_{t=1}^T \ell(a, y_t) \right) \\ &= \sup_{y_1^T \in \mathcal{Y}^T} \left(\sum_{t=1}^T \ell\left(\mathbf{S}^*\left(y_1^{t-1}\right), y_t\right) - \inf_{a \in \mathcal{A}} \sum_{t=1}^T \ell(a, y_t) \right). \end{split}$$

Questions

• Minimax regret?

- Minimax regret?
- Optimal player's strategy?

- Minimax regret?
- Optimal player's strategy?
- Efficiently computable?

- Minimax regret?
- Optimal player's strategy?
- Efficiently computable?
- Optimal adversary's strategy?

- Minimax regret?
- Optimal player's strategy?
- Efficiently computable?
- Optimal adversary's strategy?
- How do they depend on ℓ ?

Questions

- Minimax regret?
- Optimal player's strategy?
- Efficiently computable?
- Optimal adversary's strategy?
- How do they depend on ℓ ?

loss, $\ell(a, y)$:

1 $||a-y||_2^2$,

 $a, y \in \mathbb{R}^d$.

Questions

- Minimax regret?
- Optimal player's strategy?
- Efficiently computable?
- Optimal adversary's strategy?
- How do they depend on ℓ ?

loss, $\ell(a, y)$:

1 $||a-y||_2^2$,

 $a, y \in \mathbb{R}^d$.

 $(x^{\top}a - y)^2.$

Questions

- Minimax regret?
- Optimal player's strategy?
- Efficiently computable?
- Optimal adversary's strategy?
- How do they depend on ℓ ?

loss, $\ell(a, y)$:

1 $||a-y||_2^2$,

 $a, y \in \mathbb{R}^d$.

- $(x^{\top}a y)^2.$

Online Prediction Games

Questions

- Minimax regret?
- Optimal player's strategy?
- Efficiently computable?
- Optimal adversary's strategy?
- How do they depend on ℓ , \mathcal{Y} , \mathcal{A} ?

loss, $\ell(a, y)$:

1 $||a-y||_2^2$,

 $a, y \in \mathbb{R}^d$.

 $(x^{\top}a - y)^2.$

Online Prediction Games

Questions

- Minimax regret?
- Optimal player's strategy?
- Efficiently computable?
- Optimal adversary's strategy?
- How do they depend on ℓ , \mathcal{Y} , \mathcal{A} ?

loss, $\ell(a, y)$:

1 $||a-y||_2^2$,

 $a, y \in \mathbb{R}^d$.

$$(x^{\top}a - y)^2.$$

Online Prediction Games

Questions

- Minimax regret?
- Optimal player's strategy?
- Efficiently computable?
- Optimal adversary's strategy?
- How do they depend on ℓ , \mathcal{Y} , \mathcal{A} ?

loss, $\ell(a, y)$:

 $a, y \in \mathbb{R}^d$.

$$(x^{\top}a - y)^2.$$

$$a \in \{p_{\theta} : \theta \in \Theta\}.$$

• Computing minimax optimal strategies.

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.
- Part 2: Euclidean loss.

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.
- Part 2: Euclidean loss.
- Part 3: Fixed design linear regression.

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.
- Part 2: Euclidean loss.
- Part 3: Fixed design linear regression.

The value of the game:

$$V_{T}(\mathcal{Y}, \mathcal{A}) = \inf_{a_{1} \in \mathcal{A}} \sup_{y_{1} \in \mathcal{Y}} \cdots \inf_{a_{T} \in \mathcal{A}} \sup_{y_{T} \in \mathcal{Y}} \left(\sum_{t=1}^{T} \ell(a_{t}, y_{t}) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_{t}) \right).$$

The value of the game:

$$V_{\mathcal{T}}(\mathcal{Y}, \mathcal{A}) = \inf_{a_1 \in \mathcal{A}} \sup_{y_1 \in \mathcal{Y}} \cdots \inf_{a_{\mathcal{T}} \in \mathcal{A}} \sup_{y_{\mathcal{T}} \in \mathcal{Y}} \left(\sum_{t=1}^{T} \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_t) \right).$$

$$V(y_1,\ldots,y_T):=-\min_{a}\sum_{t=1}^{l}\ell(a,y_t),$$

The value of the game:

$$V_{\mathcal{T}}(\mathcal{Y}, \mathcal{A}) = \inf_{a_1 \in \mathcal{A}} \sup_{y_1 \in \mathcal{Y}} \cdots \inf_{a_{\mathcal{T}} \in \mathcal{A}} \sup_{y_{\mathcal{T}} \in \mathcal{Y}} \left(\sum_{t=1}^{T} \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_t) \right).$$

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{T} \ell(a, y_t),$$

$$V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$$

The value of the game:

$$V_{\mathcal{T}}(\mathcal{Y}, \mathcal{A}) = \inf_{a_1 \in \mathcal{A}} \sup_{y_1 \in \mathcal{Y}} \cdots \inf_{a_{\mathcal{T}} \in \mathcal{A}} \sup_{y_{\mathcal{T}} \in \mathcal{Y}} \left(\sum_{t=1}^{T} \ell(a_t, y_t) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell(a, y_t) \right).$$

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{r} \ell(a, y_t),$$
 $V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$
 $V_T(\mathcal{Y}, \mathcal{A}) = V().$

To play the minimax strategy: after seeing y_1, \ldots, y_{t-1} ,

To play the minimax strategy: after seeing y_1, \ldots, y_{t-1} ,

lacktriangledown Compute V,

To play the minimax strategy: after seeing y_1, \ldots, y_{t-1} ,

- lacktriangledown Compute V,
- 2 Choose a_t as the minimizer of

$$\max_{y_t} \left(\ell(a_t, y_t) + V(y_1, \dots, y_t) \right)$$

To play the minimax strategy: after seeing y_1, \ldots, y_{t-1} ,

- lacktriangledown Compute V,
- 2 Choose a_t as the minimizer of

$$\max_{y_t} \left(\ell(a_t, y_t) + V(y_1, \dots, y_t) \right)$$

Difficult!

To play the minimax strategy: after seeing y_1, \ldots, y_{t-1} ,

- lacktriangledown Compute V,
- 2 Choose a_t as the minimizer of

$$\max_{y_t} \left(\ell(a_t, y_t) + V(y_1, \dots, y_t) \right)$$

Difficult!

Efficient minimax optimal strategies

When is V a simple function of (statistics of) the history y_1, \ldots, y_t ?

Prediction Game	Efficient optimal strategy?

Efficient optimal strategy?

• Log loss: $\ell(\hat{p}, y) = -\log \hat{p}(y)$. (\hat{p} a density; C a probability model.)

Efficient optimal strategy?

- Log loss: $\ell(\hat{p}, y) = -\log \hat{p}(y)$. (\hat{p} a density; C a probability model.)
- Minimax optimal strategy: normalized maximum likelihood.[Shtarkov, 1987]

Prediction Game	Efficient optimal strategy?
Log loss	some cases

- Log loss: $\ell(\hat{p}, y) = -\log \hat{p}(y)$. (\hat{p} a density; C a probability model.)
- Minimax optimal strategy: normalized maximum likelihood.[Shtarkov, 1987]
- Computation difficult in general. Efficient special cases:
 - Multinomials

[Kontkanen, Myllymäki, 2005]

Prediction Game	Efficient optimal strategy?
Log loss	some cases

This talk:

- Log loss: $\ell(\hat{p}, y) = -\log \hat{p}(y)$. (\hat{p} a density; C a probability model.)
- Minimax optimal strategy: normalized maximum likelihood. [Shtarkov, 1987]
- When are simpler strategies optimal?

Efficient optimal strategy?
some cases 🗸

This talk:

- Log loss: $\ell(\hat{p}, y) = -\log \hat{p}(y)$. (\hat{p} a density; C a probability model.)
- Minimax optimal strategy: normalized maximum likelihood.[Shtarkov, 1987]
- When are simpler strategies optimal?
 - Sequential NML.
 - Bayesian prediction.

Prediction Game	Efficient optimal strategy?
Log loss	some cases ✓
Absolute loss, binary	

•
$$\mathcal{Y}=\{0,1\}$$
, $\mathcal{A}=[0,1]$, $\ell(a,y)=|a-y|$. (Also $\mathcal{C}\subset static$ experts.)

Efficient optimal strategy?
some cases 🗸

- $\mathcal{Y}=\{0,1\}$, $\mathcal{A}=[0,1]$, $\ell(a,y)=|a-y|$. (Also $\mathcal{C}\subset static$ experts.)
- Minimax optimal strategy: compare expected minimal cumulative loss for random futures.

[Cover, 1967], [Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, Warmuth, 1997],
[Cesa-Bianchi, Shamir, 2011], [Koolen, 2011], [Gravin, Peres, Sivan, 2014]

Efficient optimal strategy?
some cases 🗸
can be approximated

- $\mathcal{Y}=\{0,1\}$, $\mathcal{A}=[0,1]$, $\ell(a,y)=|a-y|$. (Also $\mathcal{C}\subset static$ experts.)
- Minimax optimal strategy: compare expected minimal cumulative loss for random futures.

[Cover, 1967], [Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, Warmuth, 1997],
[Cesa-Bianchi, Shamir, 2011], [Koolen, 2011], [Gravin, Peres, Sivan, 2014]

Prediction Game	Efficient optimal strategy?
Log loss	some cases
Absolute loss, binary	can be approximated
Experts, bounded loss	

• $\mathcal{Y} = \Delta$, linear loss, best cumulative loss is bounded.

Prediction Game	Efficient optimal strategy?
Log loss	some cases 🗸
Absolute loss, binary	can be approximated
Experts, bounded loss	

- $\mathcal{Y} = \Delta$, linear loss, best cumulative loss is bounded.
- Minimax optimal strategy: estimate survival probability.

[Abernethy, Warmuth, Yellin, 2008]

Efficient optimal strategy?
some cases 🗸
can be approximated
can be approximated

- $\mathcal{Y} = \Delta$, linear loss, best cumulative loss is bounded.
- Minimax optimal strategy: estimate survival probability.

[Abernethy, Warmuth, Yellin, 2008]

Prediction Game	Efficient optimal strategy?
Log loss	some cases 🗸
Absolute loss, binary	can be approximated
Experts, bounded loss	can be approximated
Quadratic loss	

•
$$\ell(a,y) = \frac{1}{2}||a-y||^2$$
.

Prediction Game	Efficient optimal strategy?
Log loss	some cases 🗸
Absolute loss, binary	can be approximated
Experts, bounded loss	can be approximated
Quadratic loss	unit ball

•
$$\ell(a,y) = \frac{1}{2} ||a-y||^2$$
,

• \mathcal{Y} =unit ball.

[Takimoto, Warmuth, 2000]

Prediction Game	Efficient optimal strategy?
Log loss	some cases ✓
Absolute loss, binary	can be approximated
Experts, bounded loss	can be approximated
Quadratic loss	

This talk:

• $\mathcal{Y} = \text{compact set}$, $\mathcal{A} \supseteq \text{co}(\mathcal{Y})$.

Prediction Game	Efficient optimal strategy?
Log loss	some cases 🗸
Absolute loss, binary	can be approximated
Experts, bounded loss	can be approximated
Quadratic loss	✓

This talk:

- $\mathcal{Y} = \text{compact set}$, $\mathcal{A} \supseteq \text{co}(\mathcal{Y})$.
- Efficient minimax optimal strategy.

Prediction Game	Efficient optimal strategy?
Log loss	some cases ✓
Absolute loss, binary	can be approximated
Experts, bounded loss	can be approximated
Quadratic loss	✓
Linear regression	

This talk:

• Fixed design: x_1, \ldots, x_T .

Prediction Game	Efficient optimal strategy?
Log loss	some cases 🗸
Absolute loss, binary	can be approximated
Experts, bounded loss	can be approximated
Quadratic loss	✓
Linear regression	

This talk:

- Fixed design: x_1, \ldots, x_T .
- $(y_1, \ldots, y_T) \in \text{box, ellipsoid.}$

Prediction Game	Efficient optimal strategy?
Log loss	some cases 🗸
Absolute loss, binary	can be approximated
Experts, bounded loss	can be approximated
Quadratic loss	✓
Linear regression	✓

This talk:

- Fixed design: x_1, \ldots, x_T .
- $(y_1, \ldots, y_T) \in \text{box, ellipsoid.}$
- Efficient minimax optimal strategy.

Prediction Game	Efficient optimal strategy?
Log loss	some cases ✓
Absolute loss, binary	can be approximated
Experts, bounded loss	can be approximated
Quadratic loss	✓
Linear regression	✓

Outline

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.
 - Normalized maximum likelihood.
 - SNML: predicting like there's no tomorrow.
 - Bayesian strategies.
 - Optimality = exchangeability.
- Part 2: Euclidean loss.
- Part 3: Fixed design linear regression.

Log loss $\ell(\hat{p}, y) = -\log \hat{p}(y).$

Comparison class

Parametric family of densities: $\mathcal{C} = \{p_{\theta} : \theta \in \Theta\}$, where $p_{\theta} : \mathcal{Y} \to \mathbb{R}^+$ is a parameterized probability density with respect to a reference measure λ on \mathcal{Y} .

Log loss

$$\ell(\hat{p}, y) = -\log \hat{p}(y).$$

Comparison class

Parametric family of densities: $\mathcal{C} = \{p_{\theta} : \theta \in \Theta\}$, where $p_{\theta} : \mathcal{Y} \to \mathbb{R}^+$ is a parameterized probability density with respect to a reference measure λ on \mathcal{Y} .

Log loss

$$\ell(\hat{p}, y) = -\log \hat{p}(y).$$

Comparison class

Parametric family of densities: $\mathcal{C} = \{p_{\theta} : \theta \in \Theta\}$, where $p_{\theta} : \mathcal{Y} \to \mathbb{R}^+$ is a parameterized probability density with respect to a reference measure λ on \mathcal{Y} .

Log loss

$$\ell(\hat{p},y) = -\log \hat{p}(y).$$

$$R(y_1^T, \hat{p}) =$$

Comparison class

Parametric family of densities: $\mathcal{C} = \{p_{\theta} : \theta \in \Theta\}$, where $p_{\theta} : \mathcal{Y} \to \mathbb{R}^+$ is a parameterized probability density with respect to a reference measure λ on \mathcal{Y} .

Log loss

$$\ell(\hat{p},y) = -\log \hat{p}(y).$$

$$R(y_1^T, \hat{p}) = \sum_{t=1}^T \ell(\hat{p}_t, y_t) -$$

Comparison class

Parametric family of densities: $\mathcal{C} = \{p_{\theta} : \theta \in \Theta\}$, where $p_{\theta} : \mathcal{Y} \to \mathbb{R}^+$ is a parameterized probability density with respect to a reference measure λ on \mathcal{Y} .

Log loss

$$\ell(\hat{p},y) = -\log \hat{p}(y).$$

$$R(y_1^T, \hat{p}) = \sum_{t=1}^T \ell(\hat{p}_t, y_t) - \inf_{p \in \mathcal{C}} \sum_{t=1}^T \ell(p, y_t).$$

Strategies are joint densities

• A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .

Strategies are joint densities

- A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .
- Every strategy is a joint density:

$$\hat{p}(y_1,\ldots,y_T) =$$

Strategies are joint densities

- A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .
- Every strategy is a joint density:

$$\hat{p}(y_1,\ldots,y_T) = \hat{p}(y_1)\hat{p}(y_2|y_1)\cdots\hat{p}(y_T|y_1^{T-1}).$$

Strategies are joint densities

- A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .
- Every strategy is a joint density:

$$\hat{p}(y_1,\ldots,y_T) = \hat{p}(y_1)\hat{p}(y_2|y_1)\cdots\hat{p}(y_T|y_1^{T-1}).$$

• Regret wrt comparison
$$\mathcal{C} = \{p_{\theta}\}$$
 is log likelihood ratio:
$$R(y_1^T, \hat{p}) = \sum_{t=1}^T \ell(\hat{p}_t, y_t) - \inf_{p \in \mathcal{C}} \sum_{t=1}^T \ell(p, y_t)$$

Strategies are joint densities

- A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .
- Every strategy is a joint density:

$$\hat{p}(y_1,\ldots,y_T) = \hat{p}(y_1)\hat{p}(y_2|y_1)\cdots\hat{p}(y_T|y_1^{T-1}).$$

• Regret wrt comparison $\mathcal{C} = \{p_{\theta}\}$ is log likelihood ratio:

$$R(y_1^T, \hat{p}) = \sum_{t=1}^T \ell(\hat{p}_t, y_t) - \inf_{p \in \mathcal{C}} \sum_{t=1}^T \ell(p, y_t)$$
$$= \sup_{\theta \in \Theta} \log p_{\theta}(y_1^T) - \log \hat{p}(y_1^T).$$

Strategies are joint densities

- A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .
- Every strategy is a joint density:

$$\hat{p}(y_1,\ldots,y_T) = \hat{p}(y_1)\hat{p}(y_2|y_1)\cdots\hat{p}(y_T|y_1^{T-1}).$$

• Regret wrt comparison $\mathcal{C} = \{p_{\theta}\}$ is log likelihood ratio:

$$R(y_1^T, \hat{p}) = \sum_{t=1}^T \ell(\hat{p}_t, y_t) - \inf_{p \in \mathcal{C}} \sum_{t=1}^T \ell(p, y_t)$$
$$= \sup_{\theta \in \Theta} \log p_{\theta}(y_1^T) - \log \hat{p}(y_1^T).$$

Here,
$$p_{\theta}(y_1^T) = \prod_{t=1}^T p_{\theta}(y_t)$$
.

Many interpretations of prediction with log loss

Many interpretations of prediction with log loss

• Sequential probability prediction.

Many interpretations of prediction with log loss

- Sequential probability prediction.
- Sequential lossless data compression.

Many interpretations of prediction with log loss

- Sequential probability prediction.
- Sequential lossless data compression.
- Repeated gambling/investment.

Many interpretations of prediction with log loss

- Sequential probability prediction.
- Sequential lossless data compression.
- Repeated gambling/investment.

Long history in several communities.

[Kelly, 1956], [Solomonoff, 1964], [Kolmogorov, 1965], [Cover, 1974], [Rissanen, 1976, 1987, 1996], [Shtarkov, 1987], [Feder, Merhav and Gutman, 1992], [Freund, 1996], [Xie and Barron, 2000], [Cesa-Bianchi and Lugosi, 2001, 2006], [Grünwald, 2007]

$$p_{nml}^{(T)}(y_1^T) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^T).$$

$$p_{nml}^{(T)}(y_1^T) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^T).$$

NML is optimal [Shtarkov, 1987]

NML

$$p_{nml}^{(T)}(y_1^T) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^T).$$

NML is optimal

[Shtarkov, 1987]

1 NML equalizes regret: for any sequence y_1^T , regret is

$$\log \int_{\mathcal{Y}^T} \sup_{\theta \in \Theta} p_{\theta}(z^T) \, d\lambda^T(z^T).$$

NML

$$p_{nml}^{(T)}(y_1^T) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^T).$$

NML is optimal

[Shtarkov, 1987]

1 NML equalizes regret: for any sequence y_1^T , regret is

$$\log \int_{\mathcal{X}^T} \sup_{\theta \in \Theta} p_{\theta}(z^T) \, d\lambda^T(z^T).$$

Any strategy that does not equalize regret has strictly worse maximum regret.

$$p_{nml}^{(T)}(y_1\cdots y_T)\propto \sup_{\theta\in\Theta}p_{\theta}(y_1^T)$$

NML

$$p_{nml}^{(T)}(y_1\cdots y_T)\propto \sup_{\theta\in\Theta}p_{\theta}(y_1^T)$$

• To predict, we compute conditional distributions, marginalize.

NML

$$p_{nml}^{(T)}(y_1 \cdots y_T) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^T)$$

$$p_{nml}^{(T)}(y_t|y_1 \cdots y_{t-1}) = \frac{\int_{\mathcal{Y}^{T-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^T) d\lambda^{T-t}(z_{t+1}^T)}{\int_{\mathcal{Y}^{T-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_t^T) d\lambda^{T-t+1}(z_t^T)}$$

To predict, we compute conditional distributions, marginalize.

$$p_{nml}^{(T)}(y_1 \cdots y_T) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^T)$$

$$p_{nml}^{(T)}(y_t|y_1 \cdots y_{t-1}) = \frac{\int_{\mathcal{Y}^{T-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^T) d\lambda^{T-t}(z_{t+1}^T)}{\int_{\mathcal{Y}^{T-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_{t}^T) d\lambda^{T-t+1}(z_{t}^T)}$$

- To predict, we compute conditional distributions, marginalize.
- All that conditioning is computationally expensive!

$$p_{nml}^{(T)}(y_1 \cdots y_T) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^T)$$

$$p_{nml}^{(T)}(y_t|y_1 \cdots y_{t-1}) = \frac{\int_{\mathcal{Y}^{T-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^T) d\lambda^{T-t}(z_{t+1}^T)}{\int_{\mathcal{Y}^{T-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_{t}^T) d\lambda^{T-t+1}(z_{t}^T)}$$

- To predict, we compute conditional distributions, marginalize.
- All that conditioning is computationally expensive!
- When is a computationally cheaper strategy optimal?

$$\begin{aligned} p_{nml}^{(T)}(y_1 \cdots y_T) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_1^T) \\ p_{nml}^{(T)}(y_t | y_1 \cdots y_{t-1}) &= \frac{\int_{\mathcal{Y}^{T-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^T) \, d\lambda^{T-t}(z_{t+1}^T)}{\int_{\mathcal{Y}^{T-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_{t}^T) \, d\lambda^{T-t+1}(z_{t}^T)} \end{aligned}$$

- To predict, we compute conditional distributions, marginalize.
- All that conditioning is computationally expensive!
- When is a computationally cheaper strategy optimal?
 - Horizon-independent NML?

$$p_{nml}^{(T)}(y_1 \cdots y_T) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^T)$$

$$p_{nml}^{(T)}(y_t|y_1 \cdots y_{t-1}) = \frac{\int_{\mathcal{Y}^{T-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^T) d\lambda^{T-t}(z_{t+1}^T)}{\int_{\mathcal{Y}^{T-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_{t}^T) d\lambda^{T-t+1}(z_{t}^T)}$$

- To predict, we compute conditional distributions, marginalize.
- All that conditioning is computationally expensive!
- When is a computationally cheaper strategy optimal?
 - Horizon-independent NML?
 - Bayesian prediction?

Outline

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.
 - Normalized maximum likelihood.
 - SNML: predicting like there's no tomorrow.
 - Bayesian strategies.
 - Optimality = exchangeability.
- Part 2: Euclidean loss.
- Part 3: Fixed design linear regression.

Sequential Normalized Maximum Likelihood

Sequential Normalized Maximum Likelihood

Pretend that this is the last prediction we'll ever make.

Sequential Normalized Maximum Likelihood

$$p_{snml}(y_t|y_1^{t-1}) := p_{nml}^{(t)}(y_t|y_1^{t-1})$$

• Pretend that this is the last prediction we'll ever make.

Sequential Normalized Maximum Likelihood

$$p_{snml}(y_t|y_1^{t-1}) := p_{nml}^{\textcolor{red}{(t)}}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Pretend that this is the last prediction we'll ever make.

Sequential Normalized Maximum Likelihood

$$p_{\mathit{snml}}(y_t|y_1^{t-1}) := p_{\mathit{nml}}^{\textcolor{red}{(t)}}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

- Pretend that this is the last prediction we'll ever make.
- Simpler conditional calculation.

Sequential Normalized Maximum Likelihood

$$p_{snml}(y_t|y_1^{t-1}) := p_{nml}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

- Pretend that this is the last prediction we'll ever make.
- Simpler conditional calculation.
- Known to have asymptotically optimal regret.

[Takimoto and Warmuth, 2000], [Roos and Rissanen, 2008], [Kotłowski and Grünwald, 2011]

Sequential Normalized Maximum Likelihood

$$p_{\mathit{snml}}(y_t|y_1^{t-1}) = p_{\mathit{nml}}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Sequential Normalized Maximum Likelihood

$$p_{\mathit{snml}}(y_t|y_1^{t-1}) = p_{\mathit{nml}}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Theorem

Sequential NML is optimal iff p_{snml} is exchangeable.

Sequential Normalized Maximum Likelihood

$$p_{snml}(y_t|y_1^{t-1}) = p_{nml}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Theorem

Sequential NML is optimal iff p_{snml} is exchangeable.

• p_{snml} is exchangeable means $p_{snml}(y_1, y_2, y_3, y_4) = p_{snml}(y_1, y_2, y_4, y_3) = \cdots = p_{snml}(y_4, y_3, y_2, y_1)$.

Sequential Normalized Maximum Likelihood

$$p_{\mathit{snml}}\big(y_t|y_1^{t-1}\big) = p_{\mathit{nml}}^{(t)}\big(y_t|y_1^{t-1}\big) \propto \sup_{\theta \in \Theta} p_{\theta}\big(y_1^t\big)$$

Theorem

Sequential NML is optimal iff p_{snml} is exchangeable.

Proof idea:

Sequential Normalized Maximum Likelihood

$$\textit{p}_{\textit{snml}}(\textit{y}_t|\textit{y}_1^{t-1}) = \textit{p}_{\textit{nml}}^{(t)}(\textit{y}_t|\textit{y}_1^{t-1}) \propto \sup_{\theta \in \Theta} \textit{p}_{\theta}(\textit{y}_1^t)$$

Theorem

Sequential NML is optimal iff p_{snml} is exchangeable.

Proof idea:

SNML's regret doesn't depend on last observation.

Sequential Normalized Maximum Likelihood

$$p_{snml}(y_t|y_1^{t-1}) = p_{nml}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Theorem

Sequential NML is optimal iff p_{snml} is exchangeable.

Proof idea:

- SNML's regret doesn't depend on last observation.
- (⇐) Exchangeability implies regret is independent of observations.
 Hence SNML is an equalizer: same as NML.

Sequential Normalized Maximum Likelihood

$$p_{\mathit{snml}}(y_t|y_1^{t-1}) = p_{\mathit{nml}}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Theorem

Sequential NML is optimal iff p_{snml} is exchangeable.

Proof idea:

- SNML's regret doesn't depend on last observation.
- (\Leftarrow) Exchangeability implies regret is independent of observations. Hence SNML is an equalizer: same as NML.
- $(\Rightarrow) p_{nml}^{(T)}(y_1^T)$ is permutation-invariant.

Outline

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.
 - Normalized maximum likelihood.
 - SNML: predicting like there's no tomorrow.
 - Bayesian strategies.
 - Optimality = exchangeability.
- Part 2: Euclidean loss.
- Part 3: Fixed design linear regression.

Bayesian strategies

For prior π on Θ :

$$ho_\pi(y_1^t) = \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta)$$

Bayesian strategies

For prior π on Θ :

$$p_\pi(y_1^t) = \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta)$$

• Sequential update to prior.

Bayesian strategies

For prior π on Θ :

$$egin{aligned} p_\pi(y_1^t) &= \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta) \ p_\pi(heta|y_1^t) \propto p_\pi(heta|y_1^{t-1}) p_ heta(y_t). \end{aligned}$$

Sequential update to prior.

Bayesian strategies

For prior π on Θ :

$$egin{aligned} p_\pi(y_1^t) &= \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta) \ p_\pi(heta|y_1^t) \propto p_\pi(heta|y_1^{t-1}) p_ heta(y_t). \end{aligned}$$

- Sequential update to prior.
- Jeffreys prior:

$$\pi(\theta) \propto \sqrt{|I(\theta)|},$$

Bayesian strategies

For prior π on Θ :

$$p_{\pi}(y_1^t) = \int_{\theta \in \Theta} p_{\theta}(y_1^t) d\pi(\theta)$$

 $p_{\pi}(\theta|y_1^t) \propto p_{\pi}(\theta|y_1^{t-1})p_{\theta}(y_t).$

- Sequential update to prior.
- Jeffreys prior:

$$\pi(\theta) \propto \sqrt{|I(\theta)|},$$

Attractive properties (e.g., invariant to parameterization).

Bayesian strategies

For prior π on Θ :

$$egin{aligned} p_\pi(y_1^t) &= \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta) \ p_\pi(heta|y_1^t) \propto p_\pi(heta|y_1^{t-1}) p_ heta(y_t). \end{aligned}$$

- Sequential update to prior.
- Jeffreys prior:

$$\pi(\theta) \propto \sqrt{|I(\theta)|},$$

- Attractive properties (e.g., invariant to parameterization).
- Asymptotically optimal regret for exponential families.

Optimality

Optimality

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.

Optimality

- NML = SNML.
- p_{snml} exchangeable.
- NML = Bayesian.

Optimality

- \bullet NML = SNML.
- p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.

Optimality

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- **⊙** SNML = Bayesian.

Optimality

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.

Optimality

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.
 - If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.

Optimality

- \bullet NML = SNML.
- 2 p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.
- If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.
- If any Bayesian strategy is optimal, it uses Jeffreys prior.

Optimality

- \bullet NML = SNML.
- p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.
- If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.
- If any Bayesian strategy is optimal, it uses Jeffreys prior.
- Why?

Optimality

- \bullet NML = SNML.
- p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.
- If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.
- If any Bayesian strategy is optimal, it uses Jeffreys prior.
- Why? If NML=SNML, then we can consider long time horizons, so the asymptotics emerge.

Optimality

For regular p_{θ} (asymptotically normal maximum likelihood estimator, Fisher information well-behaved, integrals exist), the following are equivalent:

- NML = SNML.
- 2 p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.

Jeffreys prior is the only candidate.

- If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.
- If any Bayesian strategy is optimal, it uses Jeffreys prior.
- Why? If NML=SNML, then we can consider long time horizons, so the asymptotics emerge. Asymptotic normality of the MLE implies

Online density estimation with log loss

Online density estimation with log loss

Extensions

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

• One-dimensional exponential families:

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

Extensions

 $[\mathsf{B.,\ Gr\"{u}}\mathsf{nwald,\ Harremo\"{e}s,\ Hedayati,\ Kotłowski,\ 2013}]$

One-dimensional exponential families:

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

ullet p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) \Leftrightarrow

Extensions

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

- p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) \Leftrightarrow
 - **1** Gaussian distributions with fixed variance $\sigma^2 > 0$,

Extensions

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

- p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) ⇔
 - **1** Gaussian distributions with fixed variance $\sigma^2 > 0$,
 - 2 gamma distributions with fixed shape k > 0,

Extensions

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

- p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) ⇔
 - **1** Gaussian distributions with fixed variance $\sigma^2 > 0$,
 - 2 gamma distributions with fixed shape k > 0,
 - Tweedie exponential family of order 3/2,

Extensions

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

- p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) ⇔
 - **1** Gaussian distributions with fixed variance $\sigma^2 > 0$,
 - 2 gamma distributions with fixed shape k > 0,
 - Tweedie exponential family of order 3/2,
 - Or smooth transformations.

Outline

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.
- Part 2: Euclidean loss.
 - The role of the smallest ball.
 - The simplex and the ball.
 - Sub-game optimal strategies on ellipsoids.
- Part 3: Fixed design linear regression.

$$\ell(\hat{y}, y) = \frac{1}{2} \|\hat{y} - y\|^2.$$

Constraints

Adversary chooses $y_n \in \mathcal{Y}$, where $\mathcal{Y} \subseteq \mathbb{R}^d$.

$$\ell(\hat{y}, y) = \frac{1}{2} \|\hat{y} - y\|^2.$$

Constraints

Adversary chooses $y_n \in \mathcal{Y}$, where $\mathcal{Y} \subseteq \mathbb{R}^d$. Strategy chooses $\hat{y}_n \in \mathbb{R}^d$.

$$\ell(\hat{y}, y) = \frac{1}{2} \|\hat{y} - y\|^2.$$

Constraints

Adversary chooses $y_n \in \mathcal{Y}$, where $\mathcal{Y} \subseteq \mathbb{R}^d$. Strategy chooses $\hat{y}_n \in \mathbb{R}^d$.

$$\ell(\hat{y}, y) = \frac{1}{2} \|\hat{y} - y\|^2.$$

$$\mathsf{Regret} \ = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{a \in \mathbb{R}^d} \sum_{t=1}^n \ell(a, y_t).$$

The smallest ball: $B_{\mathcal{Y}}$

The smallest ball containing \mathcal{Y} is $B_{\mathcal{Y}} = \{ y \in \mathbb{R}^d : \|y - c\| \le r \}$, with $c = \arg\min_c \max_{y \in \mathcal{Y}} \|y - c\|$, $r = \min_c \max_{y \in \mathcal{Y}} \|y - c\|$.

The smallest ball: B_y

The smallest ball containing \mathcal{Y} is $B_{\mathcal{Y}} = \{ y \in \mathbb{R}^d : \|y - c\| \le r \}$, with $c = \arg\min_c \max_{y \in \mathcal{Y}} \|y - c\|$, $r = \min_c \max_{y \in \mathcal{Y}} \|y - c\|$.

Main Theorem

For closed, bounded $\mathcal{Y} \subset \mathbb{R}^d$:

Minimax strategy is
$$a_{n+1}^* = n\alpha_{n+1} \frac{1}{n} \sum_{t=1}^n y_t + (1 - n\alpha_{n+1})c$$
.

The smallest ball: B_y

The smallest ball containing \mathcal{Y} is $B_{\mathcal{Y}} = \{y \in \mathbb{R}^d : \|y - c\| \le r\}$, with $c = \arg\min_c \max_{y \in \mathcal{Y}} \|y - c\|$, $r = \min_c \max_{y \in \mathcal{Y}} \|y - c\|$.

Main Theorem

For closed, bounded $\mathcal{Y} \subset \mathbb{R}^d$:

Minimax strategy is
$$a_{n+1}^* = n\alpha_{n+1} \frac{1}{n} \sum_{t=1}^n y_t + (1 - n\alpha_{n+1})c$$
.

Optimal regret is
$$V(\mathcal{Y}) = \frac{r^2}{2} \sum_{n=1}^{T} \alpha_n$$
.

The simplex case

Suppose $\mathcal Y$ is a set of d+1 affinely independent points in $\mathbb R^d$, all lying on the surface of the smallest ball.

The simplex case

Suppose $\mathcal Y$ is a set of d+1 affinely independent points in $\mathbb R^d$, all lying on the surface of the smallest ball.

Use sufficient statistics:
$$s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$$

The simplex case

Suppose \mathcal{Y} is a set of d+1 affinely independent points in \mathbb{R}^d , all lying on the surface of the smallest ball.

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2} \left(\alpha_n ||s_n||^2 - \sigma_n^2 + r^2 \sum_{t=n+1}^T \alpha_t \right).$$

The simplex case

Suppose \mathcal{Y} is a set of d+1 affinely independent points in \mathbb{R}^d , all lying on the surface of the smallest ball.

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2} \left(\alpha_n \|s_n\|^2 - \sigma_n^2 + r^2 \sum_{t=n+1}^T \alpha_t \right).$$

$$\alpha_T = \frac{1}{T},$$

$$\alpha_t = \alpha_{t+1}^2 + \alpha_{t+1}$$

The simplex case

Suppose \mathcal{Y} is a set of d+1 affinely independent points in \mathbb{R}^d , all lying on the surface of the smallest ball.

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2} \left(\alpha_n \|s_n\|^2 - \sigma_n^2 + r^2 \sum_{t=n+1}^T \alpha_t \right).$$

Minimax strategy: affine in state

$$a_{n+1}^* - c = n\alpha_{n+1} \frac{s_n}{n}.$$

$$\alpha_T = \frac{1}{T},$$

$$\alpha_t = \alpha_{t+1}^2 + \alpha_{t+1}$$

The simplex case

Suppose \mathcal{Y} is a set of d+1 affinely independent points in \mathbb{R}^d , all lying on the surface of the smallest ball.

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2} \left(\alpha_n ||s_n||^2 - \sigma_n^2 + r^2 \sum_{t=n+1}^T \alpha_t \right).$$

Minimax strategy: affine in state

$$a_{n+1}^* - c = n\alpha_{n+1} \frac{s_n}{n}.$$

$$a_{n+1}^* = n\alpha_{n+1}\bar{y}_n + (1 - n\alpha_{n+1})c$$

$$\alpha_T = \frac{1}{T}$$

$$\alpha_t = \alpha_{t+1}^2 + \alpha_{t+1}$$

The simplex case

Suppose \mathcal{Y} is a set of d+1 affinely independent points in \mathbb{R}^d , all lying on the surface of the smallest ball.

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2} \left(\alpha_n \|s_n\|^2 - \sigma_n^2 + r^2 \sum_{t=n+1}^T \alpha_t \right).$$

Minimax strategy: affine in state

$$a_{n+1}^* - c = n\alpha_{n+1} \frac{s_n}{n}.$$

 $a_{n+1}^* = n\alpha_{n+1} \bar{y}_n + (1 - n\alpha_{n+1})c$

$$a_{n+1}^* = n\alpha_{n+1}\bar{y}_n + (1 - n\alpha_{n+1})\alpha_{n+1}$$

$$\alpha_T = \frac{1}{T},$$
 $\alpha_t = \alpha_{t+1}^2 + \alpha_{t+1} \le \frac{1}{t}.$

The simplex case

Suppose \mathcal{Y} is a set of d+1 affinely independent points in \mathbb{R}^d , all lying on the surface of the smallest ball.

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2} \left(\alpha_n ||s_n||^2 - \sigma_n^2 + r^2 \sum_{t=n+1}^T \alpha_t \right).$$

Minimax strategy: affine in state

$$a_{n+1}^* - c = n\alpha_{n+1} \frac{s_n}{n}.$$

$$a_{n+1}^* = n\alpha_{n+1}\bar{y}_n + (1 - n\alpha_{n+1})c$$

Maximin distribution: same mean.

$$\alpha_T = \frac{1}{T},$$
 $\alpha_t = \alpha_{t+1}^2 + \alpha_{t+1} \le \frac{1}{t}.$

Minimax regret for simplex

$$V(\mathcal{Y}) = \frac{r^2}{2} \sum_{t=1}^{T} \alpha_t$$

$$\alpha_T = \frac{1}{T},$$

$$\alpha_t = \alpha_{t+1}^2 + \alpha_{t+1}$$

Minimax regret for simplex

$$V(\mathcal{Y}) = \frac{r^2}{2} \sum_{t=1}^{T} \alpha_t$$

$$\alpha_T = \frac{1}{T},$$

$$\alpha_t = \alpha_{t+1}^2 + \alpha_{t+1} \le \frac{1}{t}.$$

Minimax regret for simplex

$$V(y) = \frac{r^2}{2} \sum_{t=1}^{T} \alpha_t \le \frac{r^2}{2} (1 + \log T).$$

$$\alpha_T = \frac{1}{T},$$
 $\alpha_t = \alpha_{t+1}^2 + \alpha_{t+1} \le \frac{1}{t}.$

Proof idea

$$egin{aligned} V(y_1, \dots, y_T) &:= -\min_{a} \sum_{t=1} \ell(a, y_t), \ V(y_1, \dots, y_{t-1}) &:= \min_{a_t} \max_{y_t} \left(\ell(a_t, y_t) + V(y_1, \dots, y_t)
ight). \end{aligned}$$

Proof idea

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{T} \ell(a, y_t),$$

$$V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$$

The final $V(y_1, \ldots, y_T)$ is a (convex) quadratic in the state.

Proof idea

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{I} \ell(a, y_t),$$

$$V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$$

The final $V(y_1, \ldots, y_T)$ is a (convex) quadratic in the state.

$$V(y_1,\ldots,y_{t-1}) := \min_{a_t} \max_{p_t} \mathbb{E}_{y_t \sim p_t} \left(\ell(a_t,y_t) + V(y_1,\ldots,y_t) \right)$$

Proof idea

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{T} \ell(a, y_t),$$

$$V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$$

The final $V(y_1, \ldots, y_T)$ is a (convex) quadratic in the state.

$$\begin{split} V(y_1,\ldots,y_{t-1}) &:= \min_{\substack{a_t \\ p_t}} \max_{\substack{p_t \\ p_t \\ a_t}} \mathbb{E}_{y_t \sim p_t} \left(\ell(a_t,y_t) + V(y_1,\ldots,y_t) \right) \\ &= \max_{\substack{p_t \\ p_t \\ a_t}} \min_{\substack{a_t \\ a_t \\ p_t \\ a_t}} \mathbb{E}_{y_t \sim p_t} \left(\ell(a_t,y_t) + V(y_1,\ldots,y_t) \right). \end{split}$$

Proof idea

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{T} \ell(a, y_t),$$

$$V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$$

The final $V(y_1, \ldots, y_T)$ is a (convex) quadratic in the state.

$$\begin{split} V(y_1,\ldots,y_{t-1}) &:= \min_{\substack{a_t \\ p_t}} \max_{\substack{p_t \\ p_t \\ a_t}} \mathbb{E}_{y_t \sim p_t} \left(\ell(a_t,y_t) + V(y_1,\ldots,y_t) \right) \\ &= \max_{\substack{p_t \\ p_t \\ a_t}} \min_{\substack{a_t \\ a_t \\ p_t \\ a_t}} \mathbb{E}_{y_t \sim p_t} \left(\ell(a_t,y_t) + V(y_1,\ldots,y_t) \right). \end{split}$$

At each step, the unconstrained maximizer in $\{p \in \mathbb{R}^{d+1} : 1^{\top}p = 1\}$ keeps the value-to-go a quadratic function.

Proof idea

$$V(y_1, \dots, y_T) := -\min_{a} \sum_{t=1}^{T} \ell(a, y_t),$$
 $V(y_1, \dots, y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, \dots, y_t)).$

The final $V(y_1, \ldots, y_T)$ is a (convex) quadratic in the state.

$$\begin{split} V(y_1,\ldots,y_{t-1}) &:= \min_{\substack{a_t \\ p_t}} \max_{\substack{p_t \\ p_t \\ a_t}} \mathbb{E}_{y_t \sim p_t} \left(\ell(a_t,y_t) + V(y_1,\ldots,y_t) \right) \\ &= \max_{\substack{p_t \\ p_t \\ a_t}} \min_{\substack{a_t \\ a_t \\ p_t \\ a_t}} \mathbb{E}_{y_t \sim p_t} \left(\ell(a_t,y_t) + V(y_1,\ldots,y_t) \right). \end{split}$$

At each step, the unconstrained maximizer in $\{p \in \mathbb{R}^{d+1} : 1^\top p = 1\}$ keeps the value-to-go a quadratic function.

When the simplex points are on the surface of the smallest ball, the maximizer is a probability distribution.

The ball case: $\mathcal{Y} = \{y : ||y - c|| \le r\}$

The ball case: $\mathcal{Y} = \{y : ||y - c|| \le r\}$

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

The ball case: $\mathcal{Y} = \{y : ||y - c|| \le r\}$

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2}\left(\alpha_n\|s_n\|^2-\sigma_n^2+r^2\sum_{t=n+1}^T\alpha_t\right).$$

The ball case: $\mathcal{Y} = \{y : ||y - c|| \le r\}$

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2} \left(\alpha_n ||s_n||^2 - \sigma_n^2 + r^2 \sum_{t=n+1}^T \alpha_t \right).$$

Minimax strategy: affine in state

$$a_{n+1}^* - c = n\alpha_{n+1} \frac{s_n}{n}.$$

The ball case:
$$\mathcal{Y} = \{y : ||y - c|| \le r\}$$

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2} \left(\alpha_n ||s_n||^2 - \sigma_n^2 + r^2 \sum_{t=n+1}^T \alpha_t \right).$$

Minimax strategy: affine in state

$$a_{n+1}^* - c = n\alpha_{n+1} \frac{s_n}{n}.$$
 $a_{n+1}^* = n\alpha_{n+1} \bar{y}_n + (1 - n\alpha_{n+1})c$

$$a_{n+1}^* = n\alpha_{n+1}\bar{y}_n + (1 - n\alpha_{n+1})\alpha_{n+1}$$

The ball case:
$$\mathcal{Y} = \{y : ||y - c|| \le r\}$$

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2.$

Value-to-go: quadratic in state

$$\frac{1}{2}\left(\alpha_n\|s_n\|^2-\sigma_n^2+r^2\sum_{t=n+1}^T\alpha_t\right).$$

Minimax strategy: affine in state

$$a_{n+1}^* - c = n\alpha_{n+1} \frac{s_n}{n}.$$

 $a_{n+1}^* = n\alpha_{n+1} \bar{y}_n + (1 - n\alpha_{n+1})c$

$$a_{n+1}^* = n\alpha_{n+1}\bar{y}_n + (1 - n\alpha_{n+1})\alpha_{n+1}$$

Maximin distribution: same mean.

The ball case: $\mathcal{Y} = \{y : ||y - c|| \le r\}$

Use sufficient statistics: $s_n = \sum_{t=1}^n (y_t - c), \qquad \sigma_n^2 = \sum_{t=1}^n \|y_t - c\|^2$.

Value-to-go: quadratic in state

$$\frac{1}{2} \left(\alpha_n ||s_n||^2 - \sigma_n^2 + r^2 \sum_{t=n+1}^T \alpha_t \right). \qquad a_{n+1}^* - c = n\alpha_{n+1} \frac{1}{n}.$$

$$a_{n+1}^* - c = n\alpha_{n+1} \frac{1}{n}.$$

$$a_{n+1}^* = n\alpha_{n+1} \bar{y}_n + (1 - n\alpha_{n+1})c$$

Minimax strategy: affine in state

$$a_{n+1}^* - c = n\alpha_{n+1} \frac{s_n}{n}.$$

$$a_{n+1}^* = n\alpha_{n+1}\bar{y}_n + (1 - n\alpha_{n+1})\alpha_{n+1}$$

Maximin distribution: same mean.

Minimax regret for ball

$$V(\mathcal{Y}) = \frac{r^2}{2} \sum_{t=1}^{T} \alpha_t.$$

Proof idea

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{r} \ell(a, y_t),$$

$$V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$$

Proof idea

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{r} \ell(a, y_t),$$

$$V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$$

The final $V(y_1, \ldots, y_T)$ is a (convex) quadratic in the state.

Proof idea

$$V(y_1, \dots, y_T) := -\min_{a} \sum_{t=1}^{r} \ell(a, y_t),$$

$$V(y_1, \dots, y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, \dots, y_t)).$$

The final $V(y_1, \ldots, y_T)$ is a (convex) quadratic in the state.

$$V(y_1,\ldots,y_{t-1}) := \min_{\substack{a_t \ y_t}} \max_{y_t} \left(\ell(a_t,y_t) + V(y_1,\ldots,y_t)\right).$$

Proof idea

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{r} \ell(a, y_t),$$

$$V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$$

The final $V(y_1, \ldots, y_T)$ is a (convex) quadratic in the state.

$$V(y_1,\ldots,y_{t-1}):=\min_{\substack{a_t\\y_t}}\max_{y_t}\left(\ell(a_t,y_t)+V(y_1,\ldots,y_t)\right).$$

At each step, the inner maximum is of a (convex) quadratic criterion with a single quadratic constraint. This is a rare example of a nonconvex problem where strong duality holds.

Proof idea

$$V(y_1, ..., y_T) := -\min_{a} \sum_{t=1}^{T} \ell(a, y_t),$$

$$V(y_1, ..., y_{t-1}) := \min_{a_t} \max_{y_t} (\ell(a_t, y_t) + V(y_1, ..., y_t)).$$

The final $V(y_1, \ldots, y_T)$ is a (convex) quadratic in the state.

$$V(y_1,\ldots,y_{t-1}) := \min_{a_t} \max_{y_t} \left(\ell(a_t,y_t) + V(y_1,\ldots,y_t) \right).$$

At each step, the inner maximum is of a (convex) quadratic criterion with a single quadratic constraint. This is a rare example of a nonconvex problem where strong duality holds. Evaluating the dual gives the recurrence for the value-to-go.

The general case: closed, bounded $\mathcal{Y} \subset \mathbb{R}^d$

The general case: closed, bounded $\mathcal{Y} \subset \mathbb{R}^d$

Recall: the smallest ball containing \mathcal{Y} is $B_{\mathcal{Y}} = \{x \in \mathbb{R}^d : ||x - c|| \le r\}$.

The general case: closed, bounded $\mathcal{Y} \subset \mathbb{R}^d$

Recall: the smallest ball containing \mathcal{Y} is $B_{\mathcal{Y}} = \{x \in \mathbb{R}^d : ||x - c|| \le r\}$. A Lagrange dual argument shows that the optimal center is in the convex hull of a set of *contact points* of \mathcal{Y} at radius r.

The general case: closed, bounded $\mathcal{Y} \subset \mathbb{R}^d$

Recall: the smallest ball containing \mathcal{Y} is $\mathcal{B}_{\mathcal{Y}} = \{x \in \mathbb{R}^d : ||x - c|| \le r\}$.

A Lagrange dual argument shows that the optimal center is in the convex hull of a set of *contact points* of $\mathcal Y$ at radius r.

From Carathéodory's Theorem, there is an affinely independent subset S of these contact points, with $|S| \le d + 1$.

The general case: closed, bounded $\mathcal{Y} \subset \mathbb{R}^d$

Recall: the smallest ball containing \mathcal{Y} is $B_{\mathcal{Y}} = \{x \in \mathbb{R}^d : ||x - c|| \le r\}$.

A Lagrange dual argument shows that the optimal center is in the convex hull of a set of *contact points* of $\mathcal Y$ at radius r.

From Carathéodory's Theorem, there is an affinely independent subset S of these contact points, with $|S| \le d + 1$.

From below

$$\mathcal{Y}\supseteq S$$
, so $V(\mathcal{Y})\geq V(S)=rac{r^2}{2}\sum_{i=1}^T lpha_i.$

The general case: closed, bounded $\mathcal{Y} \subset \mathbb{R}^d$

Recall: the smallest ball containing \mathcal{Y} is $B_{\mathcal{Y}} = \{x \in \mathbb{R}^d : ||x - c|| \le r\}$.

A Lagrange dual argument shows that the optimal center is in the convex hull of a set of *contact points* of $\mathcal Y$ at radius r.

From Carathéodory's Theorem, there is an affinely independent subset S of these contact points, with $|S| \le d + 1$.

From below

$$\mathcal{Y}\supseteq S$$
, so $V(\mathcal{Y})\geq V(S)=rac{r^2}{2}\sum_{i=1}^T lpha_i.$

From above

$$\mathcal{Y} \subseteq B_{\mathcal{Y}}$$
, so $V(\mathcal{Y}) \leq V(B_{\mathcal{Y}}) = \frac{r^2}{2} \sum_{i=1}^{T} \alpha_i$.

Main result: the role of the smallest ball

The smallest ball: $B_{\mathcal{Y}}$

The smallest ball containing \mathcal{Y} is $B_{\mathcal{Y}} = \{ y \in \mathbb{R}^d : \|y - c\| \le r \}$, with $c = \arg\min_c \max_{y \in \mathcal{Y}} \|y - c\|$, $r = \min_c \max_{y \in \mathcal{Y}} \|y - c\|$.

Main Theorem

For closed, bounded $\mathcal{Y} \subset \mathbb{R}^d$:

Minimax strategy is
$$a_{n+1}^* = n\alpha_{n+1} \frac{1}{n} \sum_{t=1}^n y_t + (1 - n\alpha_{n+1})c$$
.

Optimal regret is
$$V(\mathcal{Y}) = \frac{r^2}{2} \sum_{n=1}^{T} \alpha_n$$
.

Minimax regret

$$V(\mathcal{Y}) = \frac{r^2}{2} \sum_{t=1}^{T} \alpha_t$$

Minimax regret

$$V(\mathcal{Y}) = \frac{r^2}{2} \sum_{t=1}^{T} \alpha_t = \frac{r^2}{2} \left(\log T - \log \log T + O\left(\frac{\log \log T}{\log T}\right) \right).$$

Minimax regret

$$V(\mathcal{Y}) = \frac{r^2}{2} \sum_{t=1}^{T} \alpha_t = \frac{r^2}{2} \left(\log T - \log \log T + O\left(\frac{\log \log T}{\log T}\right) \right).$$

• Minimax regret depends on the radius of the smallest ball.

- Minimax regret depends on the radius of the smallest ball.
- The minimax strategy is simple: shrink the sample average towards the center of the smallest ball.

- Minimax regret depends on the radius of the smallest ball.
- The minimax strategy is simple: shrink the sample average towards the center of the smallest ball.
- For the simplex and the ball, the strategy is sub-game optimal.

- Minimax regret depends on the radius of the smallest ball.
- The minimax strategy is simple: shrink the sample average towards the center of the smallest ball.
- For the simplex and the ball, the strategy is sub-game optimal.
- Sub-game optimal strategies for other cases?

- Minimax regret depends on the radius of the smallest ball.
- The minimax strategy is simple: shrink the sample average towards the center of the smallest ball.
- For the simplex and the ball, the strategy is sub-game optimal.
- Sub-game optimal strategies for other cases?

Extensions:

- Minimax regret depends on the radius of the smallest ball.
- The minimax strategy is simple: shrink the sample average towards the center of the smallest ball.
- For the simplex and the ball, the strategy is sub-game optimal.
- Sub-game optimal strategies for other cases?

Extensions:

Sub-game optimal strategies for ellipsoids.

- Minimax regret depends on the radius of the smallest ball.
- The minimax strategy is simple: shrink the sample average towards the center of the smallest ball.
- For the simplex and the ball, the strategy is sub-game optimal.
- Sub-game optimal strategies for other cases?

Extensions:

- Sub-game optimal strategies for ellipsoids.
- Changing losses: $\ell_n(a, y) = (a y)^{\top} W_n(a y)$.

- Minimax regret depends on the radius of the smallest ball.
- The minimax strategy is simple: shrink the sample average towards the center of the smallest ball.
- For the simplex and the ball, the strategy is sub-game optimal.
- Sub-game optimal strategies for other cases?

Extensions:

- Sub-game optimal strategies for ellipsoids.
- Changing losses: $\ell_n(a, y) = (a y)^{\top} W_n(a y)$.
- Hilbert space.

Outline

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.
- Part 2: Euclidean loss.
- Part 3: Fixed design linear regression.
 - Minimax strategy is regularized least squares.
 - Box and ellipsoidal constraints.

Protocol

Given: T;

Protocol

Given: T; $x_1, \ldots, x_T \in \mathbb{R}^p$;

Protocol

Given: T; $x_1, \ldots, x_T \in \mathbb{R}^p$; $\mathcal{Y} \subset \mathbb{R}^T$.

Protocol

Given: T; $x_1, \ldots, x_T \in \mathbb{R}^p$; $\mathcal{Y} \subset \mathbb{R}^T$.

For t = 1, 2, ..., T:

Protocol

Given: T; $x_1, \ldots, x_T \in \mathbb{R}^p$; $\mathcal{Y} \subset \mathbb{R}^T$.

For t = 1, 2, ..., T:

• Learner predicts $\hat{y}_t \in \mathbb{R}$

Protocol

- Learner predicts $\hat{y}_t \in \mathbb{R}$
- ullet Adversary reveals $y_t \in \mathbb{R}$

Protocol

- ullet Learner predicts $\hat{y}_t \in \mathbb{R}$
- ullet Adversary reveals $y_t \in \mathbb{R} \quad (y_1^{\mathcal{T}} \in \mathcal{Y})$

Protocol

- Learner predicts $\hat{y}_t \in \mathbb{R}$
- ullet Adversary reveals $y_t \in \mathbb{R} \quad (y_1^T \in \mathcal{Y})$
- Learner incurs loss $(\hat{y}_t y_t)^2$.

Protocol

- Learner predicts $\hat{y}_t \in \mathbb{R}$
- Adversary reveals $y_t \in \mathbb{R}$ $(y_1^T \in \mathcal{Y})$
- Learner incurs loss $(\hat{y}_t y_t)^2$.

$$\mathsf{Regret} = \sum_{t=1}^T (\hat{y}_t - y_t)^2 - \min_{\beta \in \mathbb{R}^p} \sum_{t=1}^T \left(\beta^\top x_t - y_t \right)^2.$$

Ordinary least squares (linear model, uncorrelated errors)

Given $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^p \times \mathbb{R}$,

Ordinary least squares

(linear model, uncorrelated errors)

Given $(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^p \times \mathbb{R}$, choose

$$\hat{\beta} = \left(\sum_{t=1}^{n} x_t x_t^{\top}\right)^{-1} \sum_{t=1}^{n} x_t y_t,$$

Ordinary least squares

(linear model, uncorrelated errors)

Given $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^p \times \mathbb{R}$, choose

$$\hat{\beta} = \left(\sum_{t=1}^{n} x_t x_t^{\top}\right)^{-1} \sum_{t=1}^{n} x_t y_t,$$

and for a subsequent $x \in \mathbb{R}^p$, predict

$$\hat{y} = x^{\top} \hat{\beta} = x^{\top} \left(\sum_{t=1}^{n} x_t x_t^{\top} \right)^{-1} \sum_{t=1}^{n} x_t y_t,$$

Ordinary least squares

(linear model, uncorrelated errors)

Given $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^p \times \mathbb{R}$, choose

$$\hat{\beta} = \left(\sum_{t=1}^{n} x_t x_t^{\top}\right)^{-1} \sum_{t=1}^{n} x_t y_t,$$

and for a subsequent $x \in \mathbb{R}^p$, predict

$$\hat{y} = x^{\top} \hat{\beta} = x^{\top} \left(\sum_{t=1}^{n} x_t x_t^{\top} \right)^{-1} \sum_{t=1}^{n} x_t y_t,$$

A sequential version of OLS

$$\hat{y}_{n+1} := x_{n+1}^{\top} \left(\sum_{t=1}^{n} x_t x_t^{\top} \right)^{-1} \sum_{t=1}^{n} x_t y_t.$$

Ordinary least squares

(linear model, uncorrelated errors)

Given $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^p \times \mathbb{R}$, choose

$$\hat{\beta} = \left(\sum_{t=1}^{n} x_t x_t^{\top}\right)^{-1} \sum_{t=1}^{n} x_t y_t,$$

and for a subsequent $x \in \mathbb{R}^p$, predict

$$\hat{\mathbf{y}} = \mathbf{x}^{\top} \hat{\boldsymbol{\beta}} = \mathbf{x}^{\top} \left(\sum_{t=1}^{n} \mathbf{x}_{t} \mathbf{x}_{t}^{\top} \right)^{-1} \sum_{t=1}^{n} \mathbf{x}_{t} \mathbf{y}_{t},$$

A sequential version of ridge regression

$$\hat{y}_{n+1} := x_{n+1}^{\top} \left(\sum_{t=1}^{n} x_t x_t^{\top} + \lambda I \right)^{-1} \sum_{t=1}^{n} x_t y_t.$$

Fix $x_1, \ldots, x_T \in \mathbb{R}^p$.

Fix
$$x_1, \ldots, x_T \in \mathbb{R}^p$$
.

$$\mathcal{Y} = \{(y_1,\ldots,y_T): |y_t| \leq B_t\}.$$

Sufficient statistics

Fix
$$x_1, \ldots, x_T \in \mathbb{R}^p$$
.

$$\mathcal{Y} = \{(y_1,\ldots,y_T): |y_t| \leq B_t\}.$$

Sufficient statistics

Fix
$$x_1, \ldots, x_T \in \mathbb{R}^p$$
.

$$\mathcal{Y} = \{(y_1,\ldots,y_T): |y_t| \leq B_t\}.$$

Use sufficient statistics: $s_n = \sum_{t=1}^n y_t x_t$

$$\hat{y}_{n+1}^* = x_{n+1}^\top C_{n+1} s_n.$$

Sufficient statistics

Fix
$$x_1, \ldots, x_T \in \mathbb{R}^p$$
.

$$\mathcal{Y} = \{(y_1,\ldots,y_T): |y_t| \leq B_t\}.$$

Use sufficient statistics: $s_n = \sum_{t=1}^n y_t x_t$

$$\hat{y}_{n+1}^* = x_{n+1}^\top C_{n+1} s_n.$$

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} +$$

Sufficient statistics

Fix $x_1, \ldots, x_T \in \mathbb{R}^p$.

$$\mathcal{Y} = \{(y_1,\ldots,y_T): |y_t| \leq B_t\}.$$

Use sufficient statistics: $s_n = \sum_{t=1}^n y_t x_t$

$$\hat{y}_{n+1}^* = x_{n+1}^\top C_{n+1} s_n.$$

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^I \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

Sufficient statistics

Fix
$$x_1, \ldots, x_T \in \mathbb{R}^p$$
.

$$\mathcal{Y} = \{(y_1,\ldots,y_T): |y_t| \leq B_t\}.$$

Use sufficient statistics: $s_n = \sum_{t=1}^n y_t x_t$

$$\hat{y}_{n+1}^* = x_{n+1}^\top C_{n+1} s_n.$$

$$\begin{aligned} & \text{Maximin distribution:} \\ & \text{Pr}\left(\pm B_{n+1}\right) = \frac{1}{2} \pm \frac{x_{n+1}^{\top} C_{n+1} s_n}{2B_{n+1}} \end{aligned}$$

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^I \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

Sufficient statistics

Fix
$$x_1, \ldots, x_T \in \mathbb{R}^p$$
.

$$\mathcal{Y} = \{(y_1,\ldots,y_T): |y_t| \leq B_t\}.$$

Use sufficient statistics: $s_n = \sum_{t=1}^n y_t x_t$

Value-to-go: quadratic

$$s_n^{\top} C_n s_n - \sigma_n^2 + \sum_{t=n+1}^T B_t^2 x_t^{\top} C_t x_t.$$

$$\hat{y}_{n+1}^* = x_{n+1}^\top C_{n+1} s_n.$$

$$\begin{aligned} & \text{Maximin distribution:} \\ & \text{Pr}\left(\pm B_{n+1}\right) = \frac{1}{2} \pm \frac{x_{n+1}^{\top} C_{n+1} s_n}{2B_{n+1}} \end{aligned}$$

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^T \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

Sufficient statistics

Fix $x_1, \ldots, x_T \in \mathbb{R}^p$.

Use sufficient statistics:
$$s_n = \sum_{t=1}^n y_t x_t$$
, $\sigma_n^2 = \sum_{t=1}^n y_t^2$.

$$\mathcal{Y} = \{ (y_1, \dots, y_T) : |y_t| \le B_t \}.$$

$$\sigma_n^2 = \sum_{t=1}^n y_t^2.$$

Value-to-go: quadratic

$$s_n^{\top} C_n s_n - \sigma_n^2 + \sum_{t=n+1}^I B_t^2 x_t^{\top} C_t x_t.$$

Minimax* strategy: linear

$$\hat{y}_{n+1}^* = x_{n+1}^\top C_{n+1} s_n.$$

Maximin distribution:

$$\Pr(\pm B_{n+1}) = \frac{1}{2} \pm \frac{x_{n+1}^{\top} C_{n+1} s_n}{2B_{n+1}}$$

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^T \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

Sufficient statistics

Fix $x_1, \ldots, x_T \in \mathbb{R}^p$.

Use sufficient statistics:
$$s_n = \sum_{t=1}^n y_t x_t$$
, $\sigma_n^2 = \sum_{t=1}^n y_t^2$.

$$\mathcal{Y} = \{ (y_1, \dots, y_T) : |y_t| \le B_t \}.$$

$$\sigma_*^2 = \sum_{t=1}^n |y_t^2|^2$$

Value-to-go: quadratic

$$s_n^{\top} C_n s_n - \sigma_n^2 + \sum_{t=n+1}^T B_t^2 x_t^{\top} C_t x_t.$$

$$*$$
 provided: $B_n \geq \sum_{t=1}^{n-1} \left| x_n^{ op} C_n x_t \right| B_t.$

Minimax* strategy: linear

$$\hat{y}_{n+1}^* = x_{n+1}^\top C_{n+1} s_n.$$

Maximin distribution:

$$\Pr(\pm B_{n+1}) = \frac{1}{2} \pm \frac{x_{n+1}^{\top} C_{n+1} s_n}{2B_{n+1}}$$

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^T \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

Box constraints

$$\mathcal{Y} = \{(y_1, \dots, y_T) : |y_n| \le B_n\}$$
 $B_n \ge \sum_{t=1}^{n-1} |x_n^\top C_n x_t| B_t.$

Box constraints

$$\mathcal{Y} = \{(y_1,\ldots,y_T): |y_n| \leq B_n\}$$
 $B_n \geq \sum_{t=1}^{n-1} |x_n^\top C_n x_t| B_t.$

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}.$$

Box constraints

$$\mathcal{Y} = \{(y_1, \dots, y_T) : |y_n| \le B_n\}$$
 $B_n \ge \sum_{t=1}^{n-1} |x_n^\top C_n x_t| B_t.$

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}.$$

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^I \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

Box constraints

$$\mathcal{Y} = \{(y_1, \dots, y_T) : |y_n| \le B_n\}$$
 $B_n \ge \sum_{t=1}^{n-1} |x_n^\top C_n x_t| B_t.$

$$Regret = \sum_{t=1}^{I} B_t^2 x_t^{\top} C_t x_t.$$

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}.$$

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^T \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

Box constraints

$$\mathcal{Y} = \{(y_1, \dots, y_T) : |y_n| \le B_n\}$$
 $B_n \ge \sum_{t=1}^{n-1} |x_n^\top C_n x_t| B_t.$

$$\mathsf{Regret} = \sum_{t=1}^{I} B_t^2 x_t^{\top} C_t x_t.$$

Minimax strategy: linear

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}.$$

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^T \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

c.f. ridge regression:

$$\sum_{t=0}^{n} x_{t} x_{t}^{\top} + \lambda I.$$

Box constraints

$$\mathcal{Y} = \{(y_1, \dots, y_T) : |y_n| \le B_n\}$$
 $B_n \ge \sum_{t=1}^{n-1} |x_n^\top C_n x_t| B_t.$

$$\mathsf{Regret} = \sum_{t=1}^{T} B_t^2 x_t^{\top} C_t x_t.$$

Minimax strategy: linear

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}.$$

Optimal shrinkage

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^T \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

$$\sum_{t=0}^{n} x_{t} x_{t}^{\top} + \lambda I.$$

Box constraints

$$\mathcal{Y} = \{(y_1, \dots, y_T) : |y_n| \le B_n\}$$
 $B_n \ge \sum_{t=1}^{n-1} |x_n^\top C_n x_t| B_t.$

$$Regret = \sum_{t=1}^{r} B_t^2 x_t^{\top} C_t x_t.$$

Minimax strategy: linear

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}.$$

Optimal shrinkage

$$C_n^{-1} = \sum_{t=1}^n x_t x_t^{\top} + \sum_{t=n+1}^T \frac{x_t^{\top} C_t x_t}{1 + x_t^{\top} C_t x_t} x_t x_t^{\top}.$$

c.f. ridge regression:
$$\sum_{t=0}^{n} x_t x_t^{\top} + \lambda I.$$

Ellipsoid constraints

$$\mathcal{Y}_R = \left\{ (y_1, \dots, y_T) : \sum_{t=1}^T y_t^2 x_t^\top C_t x_t \leq R \right\}.$$

Ellipsoid constraints

$$\mathcal{Y}_R = \left\{ (y_1, \dots, y_T) : \sum_{t=1}^T y_t^2 x_t^\top C_t x_t \leq R \right\}.$$

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}.$$

Ellipsoid constraints

$$\mathcal{Y}_R = \left\{ (y_1, \dots, y_T) : \sum_{t=1}^T y_t^2 x_t^\top C_t x_t \leq R \right\}.$$

Minimax regret = R.

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}.$$

Ellipsoid constraints

$$\mathcal{Y}_R = \left\{ (y_1, \dots, y_T) : \sum_{t=1}^T y_t^2 x_t^\top C_t x_t \leq R \right\}.$$

Minimax regret = R.

Minimax strategy: linear

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}. \qquad (MM)$$

Equalizer property

For all y_1, \ldots, y_T ,

Regret of (MM) =
$$\sum_{t=1}^{I} (\hat{y}_t - y_t)^2 - \min_{\beta \in \mathbb{R}^p} \sum_{t=1}^{I} (\beta^\top x_t - y_t)^2$$

=

Ellipsoid constraints

$$\mathcal{Y}_R = \left\{ (y_1, \dots, y_T) : \sum_{t=1}^T y_t^2 x_t^\top C_t x_t \leq R \right\}.$$

Minimax regret = R.

Minimax strategy: linear

$$\hat{y}_n^* = x_n^\top C_n s_{n-1}. \qquad (MM)$$

Equalizer property

For all y_1, \ldots, y_T ,

Regret of (MM) =
$$\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 - \min_{\beta \in \mathbb{R}^p} \sum_{t=1}^{T} (\beta^\top x_t - y_t)^2$$
$$= \sum_{t=1}^{T} y_t^2 x_t^\top C_t x_t.$$

• $\hat{y}_n^* = x_n^\top C_n s_{n-1}$ is minimax optimal for two families of label constraints:

box constraints and problem-weighted ℓ_2 norm constraints.

- $\hat{y}_n^* = x_n^\top C_n s_{n-1}$ is minimax optimal for two families of label constraints:
 - box constraints and problem-weighted ℓ_2 norm constraints.
- Strategy does not need to know the constraints.

- $\hat{y}_n^* = x_n^\top C_n s_{n-1}$ is minimax optimal for two families of label constraints: box constraints and problem-weighted ℓ_2 norm constraints.
- Strategy does not need to know the constraints.
- Regret is $O(p \log T)$.

- $\hat{y}_n^* = x_n^\top C_n s_{n-1}$ is minimax optimal for two families of label constraints: box constraints and problem-weighted ℓ_2 norm constraints.
- Strategy does not need to know the constraints.
- Regret is $O(p \log T)$.
- Conjecture: $O(p \log(T/p))$.

- $\hat{y}_n^* = x_n^\top C_n s_{n-1}$ is minimax optimal for two families of label constraints: box constraints and problem-weighted ℓ_2 norm constraints.
- Strategy does not need to know the constraints.
- Regret is $O(p \log T)$.
- Conjecture: $O(p \log(T/p))$.
- Adversarial order for a fixed set $\{x_1, \dots, x_T\}$?

- $\hat{y}_n^* = x_n^\top C_n s_{n-1}$ is minimax optimal for two families of label constraints: box constraints and problem-weighted ℓ_2 norm constraints.
- Strategy does not need to know the constraints.
- Regret is $O(p \log T)$.
- Conjecture: $O(p \log(T/p))$.
- Adversarial order for a fixed set $\{x_1, \dots, x_T\}$?
- Adversarial choice of x_1, \ldots, x_T ?

Outline

- Computing minimax optimal strategies.
- Prediction games with simple minimax optimal strategies.
- Part 1: Log loss.
 - Normalized maximum likelihood.
 - SNML and Bayesian strategies: optimality = exchangeability.
- Part 2: Euclidean loss.
 - The role of the smallest ball.
 - The simplex and the ball.
- Part 3: Fixed design linear regression.
 - Minimax strategy is regularized least squares.
 - Box and ellipsoidal constraints.