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X1, Xo,..., X, ~ i.i.d. p= (pl,pg,...,pk) € Ak
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]

Number of samples Alphabet size k-simplex

L(p, q): loss for estimating p by ¢

Minimax Risk 7 ,,

Tk = min max E L(p, gxn)
qzn pEAk

gzn is an estimator for p based on z" = (z1,22,...,2y)

Q: What is the minimax risk and the optimal estimator qx» ?
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Relevant measures of loss L(p, q)

Relative entropy: D(pl|q) = sz log —

e compression, prediction

Chi squared distance: X (pllq) = (Z pz> _

e multiple correspondence analysis
¢y distance: [|p — ql[1 = Z Ipi — ail
7
e classification, machine learning

Hellinger distance: H(p||q) = Z(\/E - Va)?

e sequential and asymptotic statistics

(old story)

(new story)
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Relative Entropy story

Tk = min max ED(p||gxn)
’ Qzn pEAL

@ Empirical estimator is a bad idea

o If p; > 0 but g; =0, then pilog& =00
G

K2

o Cromwell’s rule: Zero probability not assigned to any symbol

“l beseech you, in the bowels of Christ, think
it possible that you may be mistaken.”

Oliver Cromwell
[1599-1658]
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Relative Entropy story

Tk,n = min max ED(pl||gxn)
qzn pGAk

o Laplace estimator

Probability o no. of occurrences + 1
n+1

n+2

P(sunrise after n days) =

o Add-f estimator: Probability o< no. of occurrences + (8

o Cumulative risk or Minimax Redundancy:
n—1
minmax » ED(pl||q¢x:)
q,i PEAL 4
=0
Add-1/2 is asymptotically optimal [Krichevsky-Trofimov '81]
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Relative Entropy story

k—1 1
Fol—)|<rgn <

Theorem (Braess-Sauer '04)

Tk,n = min max ED(p||gx») =

qxn pGAk
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Relative Entropy story
kol —|—0<1) < rpn <1018 x 1 —|—0<1)
2n n ’ 2n n

Lower bound +— [Krichevsky '98] — Best add-f rule

Theorem (Braess-Sauer '04)

E—1 1
= mi ED n) = —— -
ez Iﬁlnn;rzrelii (pllax-) 2n o (n)

Asymptotically optimum: varying-add-$ rule,
[ varying with no. of occurrences

Bo=1/2, B1=1, Bo=pB3=...=3/4
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How many more stories to tell?

Relative entropy Chi squared distance

Asymptotically optimum: Asymptotically optimum:
varying-add-$ rule Laplace estimator
Bo=1/2, B =1, (add-1 rule)
=pf3=...=3/4
P2 = s / Why simpler? Luck!

@ Expected loss near boundaries depends erratically on loss
function and estimator

@ A coherent understanding of optimal estimator for all
f-divergence loss? Highly challenging!

o Eg. for Hellinger loss, best add-$ estimator can't meet natural
lower bound
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Summary

Minimax Risk 7 ,

P 5= min max EL(Z% an)
D qzn pEAL

gzn is an estimator for p based on z" = (1, 22,...,2y)

@ Non-asymptotic bounds for chi squared loss
o General formula for arbitrary f-divergence: difficult!

@ p; > a > 0: any add-f3 estimator optimal and simple formula
for minimax risk

“On learning distributions from their samples”
- coming soon on arxiv
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