Learning Distributions from Samples

Sudeep Kamath

Joint work with

Alon Orlitsky

Dheeraj Pichapati

Ananda Theertha Suresh

Simons Institute, 17 Mar 2015

$$\underbrace{X_1,X_2,\ldots,X_n}_{} \sim \mathrm{i.i.d.} \ \ p = \underbrace{(p_1,p_2,\ldots,p_k)}_{})$$

$$\underbrace{X_1,X_2,\ldots,X_n}_{\text{Number of samples}} \sim \text{i.i.d.} \ \ p = \underbrace{(p_1,p_2,\ldots,p_k)}_{\text{Number of samples}}$$

L(p,q): loss for estimating p by q

L(p,q): loss for estimating p by q

Minimax Risk $r_{k,n}$

$$r_{k,n} := \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} L(p, q_{X^n})$$

 q_{x^n} is an estimator for p based on $x^n = (x_1, x_2, \dots, x_n)$

L(p,q): loss for estimating p by q

Minimax Risk $r_{k,n}$ $r_{k,n}:=\min_{q_{x^n}}\max_{p\in\Delta_k}\mathbb{E}\,L(p,q_{X^n})$ $q_{x^n} \text{ is an estimator for } p \text{ based on } x^n=(x_1,x_2,\ldots,x_n)$

Q: What is the **minimax risk** and the **optimal estimator** $q_{\mathbf{x}^n}$?

- Relative entropy: $D(p||q) = \sum_i p_i \log \frac{p_i}{q_i}$
 - compression, prediction

- Relative entropy: $D(p||q) = \sum_i p_i \log \frac{p_i}{q_i}$
 - compression, prediction
- ullet Chi squared distance: $\chi^2(p||q) = \left(\sum_i rac{p_i^2}{q_i}
 ight) 1$
 - multiple correspondence analysis

- Relative entropy: $D(p||q) = \sum_i p_i \log \frac{p_i}{q_i}$
 - compression, prediction
- \bullet Chi squared distance: $\chi^2(p||q) = \left(\sum_i \frac{p_i^2}{q_i}\right) 1$
 - multiple correspondence analysis
- ℓ_1 distance: $||p-q||_1 = \sum_i |p_i q_i|$
 - classification, machine learning

- Relative entropy: $D(p||q) = \sum_i p_i \log \frac{p_i}{q_i}$
 - compression, prediction
- \bullet Chi squared distance: $\chi^2(p||q) = \left(\sum_i \frac{p_i^2}{q_i}\right) 1$
 - multiple correspondence analysis
- ℓ_1 distance: $||p-q||_1 = \sum_i |p_i q_i|$
 - classification, machine learning
- ullet Hellinger distance: $H(p||q) = \sum_i (\sqrt{p_i} \sqrt{q_i})^2$
 - sequential and asymptotic statistics

- Relative entropy: $D(p||q) = \sum_i p_i \log \frac{p_i}{q_i}$
 - compression, prediction

f-divergence [Csiszár '63]:

$$D_f(p||q) = \sum_i q_i f\left(\frac{p_i}{q_i}\right)$$

where f is convex and f(1) = 0.

7

sequential and asymptotic statistics

- Relative entropy: $D(p||q) = \sum_i p_i \log \frac{p_i}{q_i}$
 - compression, prediction
- \bullet Chi squared distance: $\chi^2(p||q) = \left(\sum_i \frac{p_i^2}{q_i}\right) 1$
 - multiple correspondence analysis
- ℓ_1 distance: $||p-q||_1 = \sum_i |p_i q_i|$
 - classification, machine learning
- ullet Hellinger distance: $H(p||q) = \sum_i (\sqrt{p_i} \sqrt{q_i})^2$
 - sequential and asymptotic statistics

- Relative entropy: $D(p||q) = \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}$ (old story)
 - compression, prediction
- Chi squared distance: $\chi^2(p||q) = \left(\sum_i \frac{p_i^2}{q_i}\right) 1$ (new story)
 - multiple correspondence analysis
- ℓ_1 distance: $||p-q||_1 = \sum_i |p_i q_i|$
 - classification, machine learning
- ullet Hellinger distance: $H(p||q) = \sum_i (\sqrt{p_i} \sqrt{q_i})^2$
 - sequential and asymptotic statistics

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

- Empirical estimator is a bad idea
 - If $p_i > 0$ but $q_i = 0$, then $p_i \log \frac{p_i}{q_i} = \infty$

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

- Empirical estimator is a bad idea
 - If $p_i > 0$ but $q_i = 0$, then $p_i \log \frac{p_i}{q_i} = \infty$
- Cromwell's rule: Zero probability not assigned to any symbol

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

- Empirical estimator is a bad idea
 - If $p_i > 0$ but $q_i = 0$, then $p_i \log \frac{p_i}{q_i} = \infty$
- Cromwell's rule: Zero probability not assigned to any symbol

Oliver Cromwell [1599-1658]

"I beseech you, in the bowels of Christ, think it possible that you may be mistaken."

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

• Laplace estimator

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

Laplace estimator

Probability
$$\propto$$
 no. of occurrences $+$ 1 P(sunrise after n days) $=$ $\frac{n+1}{n+2}$

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

Laplace estimator

Probability
$$\propto$$
 no. of occurrences $+1$
P(sunrise after n days) $=\frac{n+1}{n+2}$

• Add- β estimator: Probability \propto no. of occurrences + β

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

Laplace estimator

Probability
$$\propto$$
 no. of occurrences $+$ 1 P(sunrise after n days) $=$ $\frac{n+1}{n+2}$

- Add- β estimator: Probability \propto no. of occurrences $+\beta$
- Cumulative risk or Minimax Redundancy:

$$\min_{q_{x^i}} \max_{p \in \Delta_k} \sum_{i=0}^{n-1} \mathbb{E}D(p||q_{X^i})$$

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n})$$

Laplace estimator

Probability
$$\propto$$
 no. of occurrences $+$ 1 P(sunrise after n days) $=$ $\frac{n+1}{n+2}$

- Add- β estimator: Probability \propto no. of occurrences $+ \beta$
- Cumulative risk or Minimax Redundancy:

$$\min_{q_{x^i}} \max_{p \in \Delta_k} \sum_{i=0}^{n-1} \mathbb{E}D(p||q_{X^i})$$

Add-1/2 is asymptotically optimal [Krichevsky-Trofimov '81]

Theorem (Braess-Sauer '04)

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n}) = \frac{k-1}{2n} + o\left(\frac{1}{n}\right)$$

$$\boxed{\frac{k-1}{2n} + o\left(\frac{1}{n}\right)} \leq r_{k,n} \leq \boxed{1.018 \times \frac{k-1}{2n} + o\left(\frac{1}{n}\right)}$$
 Lower bound \leftarrow [Krichevsky '98] \rightarrow Best add- β rule

Theorem (Braess-Sauer '04)

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}D(p||q_{X^n}) = \frac{k-1}{2n} + o\left(\frac{1}{n}\right)$$

Asymptotically optimum: varying-add- β rule, β varying with no. of occurrences

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \qquad \beta_2 = \beta_3 = \ldots = 3/4.$$

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \chi^2(p||q_{X^n}) = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \sum_i \frac{p_i^2}{q_i} - 1$$

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \chi^2(p||q_{X^n}) = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \sum_i \frac{p_i^2}{q_i} - 1$$

Cromwell's rule applies: no estimate q_i may be zero

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \chi^2(p||q_{X^n}) = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \sum_i \frac{p_i^2}{q_i} - 1$$

Cromwell's rule applies: no estimate q_i may be zero

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

For any $k \geq 2, n \geq 1$,

$$\frac{k-1}{n+k+1} - \frac{k(k-1)\left[\log(n+1)+1\right]}{4(n+k)(n+k+1)} \le r_{k,n} \le \frac{k-1}{n+1}$$

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \chi^2(p||q_{X^n}) = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \sum_i \frac{p_i^2}{q_i} - 1$$

Cromwell's rule applies: no estimate q_i may be zero

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

For any $k \geq 2, n \geq 1$,

$$\frac{k-1}{n+k+1} - \frac{k(k-1)\left[\log(n+1) + 1\right]}{4(n+k)(n+k+1)} \le r_{k,n} \le \frac{k-1}{n+1}$$

$$r_{k,n} = \frac{\text{For fixed } k,}{n} + O\left(\frac{\log n}{n^2}\right)$$

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \chi^2(p||q_{X^n}) = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \sum_i \frac{p_i^2}{q_i} - 1$$

Cromwell's rule applies: no estimate q_i may be zero

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

For any $k \geq 2, n \geq 1$,

$$\frac{k-1}{n+k+1} - \frac{k(k-1)\left[\log(n+1) + 1\right]}{4(n+k)(n+k+1)} \le r_{k,n} \le \frac{k-1}{n+1}$$

$$r_{k,n} = \frac{\text{For fixed } k,}{n} + O\left(\frac{\log n}{n^2}\right)$$

Upper bound: Laplace estimator

$$r_{k,n} = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \chi^2(p||q_{X^n}) = \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E} \sum_i \frac{p_i^2}{q_i} - 1$$

Cromwell's rule applies: no estimate q_i may be zero

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

For any $k \geq 2, n \geq 1$,

$$\frac{k-1}{n+k+1} - \frac{k(k-1)\left[\log(n+1) + 1\right]}{4(n+k)(n+k+1)} \le r_{k,n} \le \frac{k-1}{n+1}$$

$$r_{k,n} = \frac{\text{For fixed } k,}{n} + O\left(\frac{\log n}{n^2}\right)$$

Upper bound: Laplace estimator

 $\mathsf{Alphabet} = \{1,2\}$

$$\begin{aligned} \text{Alphabet} &= \{1,2\} \\ p &= P(X=1), \\ 1-p &= P(X=2) \end{aligned}$$

$$\begin{aligned} \text{Alphabet} &= \{1, 2\} \\ p &= P(X = 1), \\ 1 - p &= P(X = 2) \end{aligned}$$

Expected loss under Laplace estimator =

$$\sum_{i=0}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \left(\frac{p^{2}}{\left(\frac{i+1}{n+2}\right)} + \frac{(1-p)^{2}}{\left(\frac{n-i+1}{n+2}\right)} - 1 \right)$$

$$\begin{aligned} \text{Alphabet} &= \{1, 2\} \\ p &= P(X = 1), \\ 1 - p &= P(X = 2) \end{aligned}$$

Expected loss under Laplace estimator =

$$\sum_{i=0}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \left(\frac{p^{2}}{\left(\frac{i+1}{n+2}\right)} + \frac{(1-p)^{2}}{\left(\frac{n-i+1}{n+2}\right)} - 1 \right) \leq \frac{1}{n}$$

... we had used an add- β estimator ... ?

$$\sum_{i=0}^{n} \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$\sum_{i=0}^{n} \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$\sum_{i=0}^{n} \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$\sum_{i=0}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \left(\frac{p^{2}}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^{2}}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

• n: number of samples

$$\sum_{i=0}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \left(\frac{p^{2}}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^{2}}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

- \bullet n: number of samples
- p

$$\sum_{i=0}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \left(\frac{p^{2}}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^{2}}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

- n: number of samples
- p = P(X = 1)

$$\sum_{i=0}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \left(\frac{p^{2}}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^{2}}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

- n: number of samples
- p=P(X=1)• β

$$\sum_{i=0}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \left(\frac{p^{2}}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^{2}}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

- n: number of samples
- p = P(X = 1)
- β : add- β estimator

$$\sum_{i=0}^{n} \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

- n: number of samples
- p = P(X = 1)
- β : add- β estimator

If i 1's and (n-i) 2's, probability estimate for X=1 is

$$\frac{i+\beta}{n+2\beta}$$

$$\sum_{i=0}^{n} \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$F_n^{eta}(p) := \sum_{i=0}^n inom{n}{i} p^i (1-p)^{n-i} \left(rac{p^2}{\left(rac{i+eta}{n+2eta}
ight)} + rac{(1-p)^2}{\left(rac{n-i+eta}{n+2eta}
ight)} - 1
ight)$$

$$F_n^{\beta}(p) := \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$F_n^{\beta}(p) := \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$F_n^{\beta}(p) := \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$F_n^{\beta}(p) := \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$F_n^{\beta}(p) := \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$F_n^{\beta}(p) := \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$\max_{p \in [0,1]} F_n^{\beta}(p) \sim \frac{c(\beta)}{n}$$

$$F_n^{\beta}(p) := \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i} \left(\frac{p^2}{\left(\frac{i+\beta}{n+2\beta}\right)} + \frac{(1-p)^2}{\left(\frac{n-i+\beta}{n+2\beta}\right)} - 1 \right)$$

$$\max_{p \in [0,1]} F_n^{\beta}(p) \sim \frac{c(\beta)}{n}$$

$$c(\beta) \begin{cases} = 1 & \beta = 1 \\ > 1 & \beta \neq 1 \end{cases}$$

Relative entropy

Asymptotically optimum: varying-add- β rule

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \beta_2 = \beta_3 = \dots = 3/4.$$

Relative entropy

Asymptotically optimum: varying-add- β rule

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \beta_2 = \beta_3 = \dots = 3/4.$$

Chi squared distance

Relative entropy

Asymptotically optimum: varying-add- β rule

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \beta_2 = \beta_3 = \dots = 3/4.$$

Chi squared distance

Asymptotically optimum: Laplace estimator (add-1 rule)

Relative entropy

Asymptotically optimum: varying-add- β rule

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \beta_2 = \beta_3 = \dots = 3/4.$$

Chi squared distance

Asymptotically optimum: Laplace estimator (add-1 rule)

Why simpler?

Relative entropy

Asymptotically optimum: varying-add- β rule

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \beta_2 = \beta_3 = \dots = 3/4.$$

Chi squared distance

Asymptotically optimum: Laplace estimator (add-1 rule)

Why simpler? Luck!

Relative entropy

Asymptotically optimum: varying-add- β rule

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \beta_2 = \beta_3 = \dots = 3/4.$$

Chi squared distance

Asymptotically optimum: Laplace estimator (add-1 rule)

Why simpler? Luck!

 Expected loss near boundaries depends erratically on loss function and estimator

Relative entropy

Asymptotically optimum: varying-add- β rule

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \beta_2 = \beta_3 = \dots = 3/4.$$

Chi squared distance

Asymptotically optimum: Laplace estimator (add-1 rule)

Why simpler? Luck!

- Expected loss near boundaries depends erratically on loss function and estimator
- A coherent understanding of optimal estimator for all f-divergence loss?

Relative entropy

Asymptotically optimum: varying-add- β rule

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \beta_2 = \beta_3 = \dots = 3/4.$$

Chi squared distance

Asymptotically optimum: Laplace estimator (add-1 rule)

Why simpler? Luck!

- Expected loss near boundaries depends erratically on loss function and estimator
- A coherent understanding of optimal estimator for all f-divergence loss? Highly challenging!

Relative entropy

Asymptotically optimum: varying-add- β rule

$$\beta_0 = 1/2, \qquad \beta_1 = 1, \beta_2 = \beta_3 = \dots = 3/4.$$

Chi squared distance

Asymptotically optimum: Laplace estimator (add-1 rule)

Why simpler? Luck!

- Expected loss near boundaries depends erratically on loss function and estimator
- A coherent understanding of optimal estimator for all f-divergence loss? Highly challenging!
- \bullet Eg. for Hellinger loss, best add- β estimator can't meet natural lower bound

Avoid simplex boundaries and look at f-divergence loss

Avoid simplex boundaries and look at f-divergence loss

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

Suppose $p=(p_1,p_2,\ldots,p_k)$ satisfies $p_i\geq\alpha>0$ for all i.

Avoid simplex boundaries and look at f-divergence loss

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

Suppose $p=(p_1,p_2,\ldots,p_k)$ satisfies $p_i\geq \alpha>0$ for all i. Let f be convex, thrice-differentiable, sub-exponential with f(1)=0.

Avoid simplex boundaries and look at f-divergence loss

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

Suppose $p=(p_1,p_2,\ldots,p_k)$ satisfies $p_i\geq \alpha>0$ for all i. Let f be convex, thrice-differentiable, sub-exponential with f(1)=0.

$$r_{k,n}(\alpha) = \min_{q_{x^n}} \max_{p \in \Delta_k, \textcolor{red}{p_i \geq \alpha}} \textcolor{red}{D_f(p||q_{X^n})}$$

Avoid simplex boundaries and look at f-divergence loss

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

Suppose $p=(p_1,p_2,\ldots,p_k)$ satisfies $p_i\geq \alpha>0$ for all i. Let f be convex, thrice-differentiable, sub-exponential with f(1)=0.

$$r_{k,n}(\alpha) = \min_{q_{x^n}} \max_{p \in \Delta_k, \mathbf{p}_i \ge \alpha} \mathbf{D}_f(p||q_{X^n}) = \frac{(k-1)f''(1)}{2n} + o\left(\frac{1}{n}\right)$$

Avoid simplex boundaries and look at f-divergence loss

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

Suppose $p=(p_1,p_2,\ldots,p_k)$ satisfies $p_i\geq \alpha>0$ for all i. Let f be convex, thrice-differentiable, sub-exponential with f(1)=0.

$$r_{k,n}(\alpha) = \min_{q_{X^n}} \max_{p \in \Delta_k, \frac{\mathbf{p}_i \geq \alpha}{2}} \frac{\mathbf{D}_{\mathbf{f}}(p||q_{X^n})}{2n} = \frac{(k-1)f''(1)}{2n} + o\left(\frac{1}{n}\right)$$

Any add- β rule for $\beta > 0$ is asymptotically optimal.

Avoid simplex boundaries and look at f-divergence loss

Theorem (K.-Orlitsky-Pichapati-Suresh '15)

Suppose $p=(p_1,p_2,\ldots,p_k)$ satisfies $p_i\geq \alpha>0$ for all i. Let f be convex, thrice-differentiable, sub-exponential with f(1)=0.

$$r_{k,n}(\alpha) = \min_{q_{X^n}} \max_{p \in \Delta_k, \frac{\mathbf{p}_i \geq \alpha}{2}} \frac{\mathbf{D}_{\mathbf{f}}(p||q_{X^n})}{2n} = \frac{(k-1)f''(1)}{2n} + o\left(\frac{1}{n}\right)$$

Any add- β rule for $\beta > 0$ is asymptotically optimal.

Minimax Risk $r_{k,n}$

$$r_{k,n} := \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}L(p, q_{X^n})$$

 q_{x^n} is an estimator for p based on $x^n=(x_1,x_2,\ldots,x_n)$

Minimax Risk $r_{k,n}$

$$r_{k,n} := \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}L(p, q_{X^n})$$

 q_{x^n} is an estimator for p based on $x^n = (x_1, x_2, \dots, x_n)$

Non-asymptotic bounds for chi squared loss

Minimax Risk $r_{k,n}$

$$r_{k,n} := \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}L(p, q_{X^n})$$

 q_{x^n} is an estimator for p based on $x^n = (x_1, x_2, \dots, x_n)$

- Non-asymptotic bounds for chi squared loss
- ullet General formula for arbitrary f-divergence

Minimax Risk $r_{k,n}$

$$r_{k,n} := \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}L(p, q_{X^n})$$

 q_{x^n} is an estimator for p based on $x^n = (x_1, x_2, \dots, x_n)$

- Non-asymptotic bounds for chi squared loss
- General formula for arbitrary f-divergence: difficult!

Minimax Risk $r_{k,n}$

$$r_{k,n} := \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}L(p, q_{X^n})$$

 q_{x^n} is an estimator for p based on $x^n = (x_1, x_2, \dots, x_n)$

- Non-asymptotic bounds for chi squared loss
- General formula for arbitrary f-divergence: difficult!
- $p_i \geq \alpha > 0$: any add- β estimator optimal and simple formula for minimax risk

Minimax Risk $r_{k,n}$

$$r_{k,n} := \min_{q_{x^n}} \max_{p \in \Delta_k} \mathbb{E}L(p, q_{X^n})$$

 q_{x^n} is an estimator for p based on $x^n = (x_1, x_2, \dots, x_n)$

- Non-asymptotic bounds for chi squared loss
- General formula for arbitrary f-divergence: difficult!
- $p_i \geq \alpha > 0$: any add- β estimator optimal and simple formula for minimax risk

"On learning distributions from their samples" - coming soon on arxiv