Testing probability distributions using conditional samples

C. Canonne D. Ron R. Servedio

March 20, 2015
Plan of the talk

- The model
- Some results and tools in the model
- Application of the tools
Background and motivation

Property testing for probability distributions – the basic setup

- There is an unknown distribution D over $[N]$ that one can only access via (expensive) calls to some “oracle”
- There is a property \mathcal{P} of interest that D may or may not have
- The goal is to distinguish, using a sublinear number of oracle calls, between the two cases:

 (a) D has property \mathcal{P};
 (b) D is “ϵ-far” from all distributions that have property \mathcal{P} (w.r.t. some chosen metric).
Background and motivation

Property testing for probability distributions – the basic setup

- There is an unknown distribution D over $[N]$ that one can only access via (expensive) calls to some “oracle”
- There is a property \mathcal{P} of interest that D may or may not have
- The goal is to distinguish, using a sublinear number of oracle calls, between the two cases:
 (a) D has property \mathcal{P};
 (b) D is “ϵ-far” from all distributions that have property \mathcal{P} (w.r.t. some chosen metric).

Standard model of testing probability distributions:

The oracle is SAMP_D: at each call, it returns an i.i.d. draw from D.
Distribution testing (1)
In more detail.

Our metric: total variation distance ($\propto L_1$ distance)

$$d_{TV}(D_1, D_2) \overset{\text{def}}{=} \frac{1}{2} \| D_1 - D_2 \|_1 = \frac{1}{2} \sum_{i \in [N]} |D_1(i) - D_2(i)|.$$

Definition (Testing algorithm)

Let \mathcal{P} be a property of distributions over $[N]$, and ORACLE$_D$ be some type of oracle which provides access to D. A $q(\varepsilon, N)$-query ORACLE testing algorithm for \mathcal{P} is a (randomized) algorithm T which, given ε, N as input parameters and oracle access to an ORACLE$_D$ oracle, and for any distribution D over $[N]$, makes at most $q(\varepsilon, N)$ calls to ORACLE$_D$, and:

- if $D \in \mathcal{P}$ then, w.p. at least $2/3$, T outputs ACCEPT;
- if $d_{TV}(D, \mathcal{P}) \geq \varepsilon$ then, w.p. at least $2/3$, T outputs REJECT.
A few remarks

- “gray” area for $d_{TV}(D, \mathcal{P}) \in (0, \varepsilon)$;
- $2/3$ is completely arbitrary;
- extends to several oracles and distributions;
- our measure is the \# of oracle calls (not the running time).
Property \mathcal{P} ("being \mathcal{U}, the uniform distribution over $[N]$") \iff set $S_\mathcal{P}$ of distributions with this property ($S_\mathcal{P} = \{\mathcal{U}\}$)

Distance to \mathcal{P}:

$$d_{TV}(D, S_\mathcal{P}) = \min_{D' \in S_\mathcal{P}} d_{TV}(D, D') = d_{TV}(D, \mathcal{U})$$

Distribution testing in the standard model:

1. Draw a bunch of points from D;
2. "Process" them (for instance by counting the number of points drawn more than once: collision-based tester);
3. Output ACCEPT or REJECT based on the result.
Fact

In the standard SAMP_D model, many basic properties are “expensive” to test: any tester requires $\Omega(\sqrt{N})$ queries to test, even to accuracy $\varepsilon = 1/10$.

Examples:
- Testing uniformity: $\Theta(\sqrt{N}/\varepsilon^2)$ sample complexity [GR00, BFR+10, Pan08]
- Testing equivalence to a known distribution: $\tilde{\Theta}(\sqrt{N}/\varepsilon^2)$ [BFF+01, Pan08]
- Testing equivalence of two unknown distributions: $\Theta(\max\{N^{2/3}/\varepsilon^{4/3}, \sqrt{N\varepsilon^2}\})$ [BFR+10, Val11, CDVV13]
The lay of the land in the standard model

Fact

In the standard SAMP\(_D\) model, many basic properties are “expensive” to test: any tester requires \(\Omega(\sqrt{N})\) queries to test, even to accuracy \(\varepsilon = 1/10\).

Examples:

- Testing uniformity: \(\Theta(\sqrt{N}/\varepsilon^2)\) sample complexity [GR00, BFR\(_+\)10, Pan08]
- Testing equivalence to a known distribution: \(\tilde{\Theta}(\sqrt{N}/\varepsilon^2)\) [BFF\(_+\)01, Pan08];
- Testing equivalence of two unknown distributions: \(\Theta\left(\max\left\{\frac{N^{2/3}}{\varepsilon^{4/3}}, \frac{\sqrt{N}}{\varepsilon^2}\right\}\right)\) [BFR\(_+\)10, Val11, CDVV13]
Our model: a different oracle

More power to the tester

We consider a new model. Each oracle call:

- Testing algorithm specifies a subset S of the domain $[N]$;
- In response, gets a draw from D conditioned on it landing in S.

Models scenarios where a scientist/experimenter has some control over an ‘experiment’ to restrict the range of possible outcomes (e.g., by altering the conditions).
Our model: a different oracle

More power to the tester

We consider a new model. Each oracle call:

- Testing algorithm specifies a subset S of the domain $[N]$;
- In response, gets a draw from D conditioned on it landing in S.

Models scenarios where a scientist/experimenter has some control over an ‘experiment’ to restrict the range of possible outcomes (e.g., by altering the conditions).

Definition (COND oracle)

Fix a distribution D over $[N]$. A COND oracle for D, denoted COND_D, is defined as follows: The oracle is given as input a query set $S \subseteq [N]$ that has $D(S) > 0$, and returns an element $i \in S$, where the probability that element i is returned is $D_S(i) = D(i)/D(S)$, independently of all previous calls to the oracle.
Our model

Remark

- Generalizes the SAMP oracle \(S = [N] \);
- Provides a richer “algorithmic playground” (adaptiveness);
- Natural variants of the COND model only allow certain specific types of subsets to be queried:
 - PCOND: can query \([N] \) or 2-element sets \(\{i, j\} \);
 - ICOND can query intervals \([i, \ldots, j] \);
- similar model independently introduced by Chakraborty et al. [CFGM13].
Our model

Remark

- Generalizes the SAMP oracle ($S = [N]$);
- Provides a richer “algorithmic playground” (adaptiveness);
- Natural variants of the COND model only allow certain specific types of subsets to be queried:
 - PCOND: can query $[N]$ or 2-element sets $\{i, j\}$;
 - ICOND can query intervals $[i, \ldots, j]$;
- similar model independently introduced by Chakraborty et al. [CFGM13].
Our results

Question
Do COND oracles enable more efficient testing algorithms than SAMP oracles?
Our results

Question
Do COND oracles enable more efficient testing algorithms than SAMP oracles? Yes — in many cases, \textit{exponentially} more efficient.
Our results
Comparison of the COND and SAMP models on several testing problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Our results</th>
<th>Standard model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is $D = D^$ for a known $D^$?</td>
<td>$\tilde{O}\left(\frac{1}{\varepsilon^4}\right)$</td>
<td>$\tilde{\Theta}\left(\frac{\sqrt{N}}{\varepsilon^2}\right)$ [BFF$^+$01, Pan08]</td>
</tr>
<tr>
<td>COND_D</td>
<td>$\tilde{O}\left(\frac{\log^4 N}{\varepsilon^4}\right)$</td>
<td>$\Theta\left(\frac{\log N}{\log \log N}\right)$</td>
</tr>
<tr>
<td>PCOND_D</td>
<td>$\Omega\left(\sqrt{\frac{\log N}{\log \log N}}\right)$</td>
<td></td>
</tr>
<tr>
<td>Are D_1, D_2 (both unknown) equivalent?</td>
<td>$\tilde{O}\left(\frac{\log^5 N}{\varepsilon^4}\right)$</td>
<td>$\Theta\left(\max\left(\frac{N^{2/3}}{\varepsilon^{4/3}}, \frac{\sqrt{N}}{\varepsilon^2}\right)\right)$ [BFR$^+$10, Val11, CDVV13]</td>
</tr>
<tr>
<td>COND_{D_1, D_2}</td>
<td>$\tilde{O}\left(\frac{\log^6 N}{\varepsilon^{21}}\right)$</td>
<td></td>
</tr>
<tr>
<td>PCOND_{D_1, D_2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Comparison between the COND model and the standard model for these problems. The upper bounds are for testing $d_{TV} = 0$ vs. $d_{TV} \geq \varepsilon$.
Plan for rest of talk:

- sketch of testing uniformity and testing D vs. D^*
- introduce some tools: **Estimate-Neighborhood** and **Approx-Eval**
- use the tools: test equivalence of two unknown distributions
Recall the standard SAMP model uniformity testing bounds:

Theorem (Testing Uniformity with SAMP)

*Given SAMP_D, testing whether $D = \mathcal{U}$ versus D is ϵ-far from uniform requires $\Theta(\sqrt{N}/\epsilon^2)$ calls to SAMP_D.***
Recall the standard SAMP model uniformity testing bounds:

Theorem (Testing Uniformity with SAMP)

*Given SAMP$_D$, testing whether $D = \mathcal{U}$ versus D is ϵ-far from uniform requires $\Theta(\sqrt{N}/\epsilon^2)$ calls to SAMP$_D$.**

Lower bound sketch: Suppose D is either uniform over $[N]$, or uniform over a random subset of $[N]$ (hence far from uniform over $[N]$). In either case, $\sqrt{N}/100$ calls to SAMP$_D$ will w.v.h.p. result in a uniform random subset of $\sqrt{N}/100$ distinct elements of $[N]$ (birthday paradox), so can't distinguish.
Theorem (Testing Uniformity with PCOND)

There exists a $\tilde{O}(1/\varepsilon^2)$-query PCOND$_D$ tester for uniformity, i.e. it accepts w.p. at least $2/3$ if $D = \mathcal{U}$ and rejects w.p. at least $2/3$ if $d_{TV}(D, \mathcal{U}) \geq \varepsilon$.

High-level idea: Intuitively, if D is ε-far from uniform, it must have (a) a lot of points "very light" (noticeably less than $1/N$); and (b) a lot of weight on "very heavy" points (noticeably more than $1/N$). Sampling $\tilde{O}(1/\varepsilon)$ points uniformly, w.v.h.p. we get a type-(a) point, and sampling $\tilde{O}(1/\varepsilon)$ points according to D, w.v.h.p. we get a type-(b) point. Use PCOND to compare them, and get evidence that D is far from uniform.
Testing Uniformity (2)
Special case of testing identity to D^*

Theorem (Testing Uniformity with PCOND)

There exists a $\tilde{O}(1/\varepsilon^2)$-query PCOND$_D$ tester for uniformity, i.e. it accepts w.p. at least $2/3$ if $D = \mathcal{U}$ and rejects w.p. at least $2/3$ if $d_{TV}(D,\mathcal{U}) \geq \varepsilon$.

High-level idea: Intuitively, if D is ε-far from uniform, it must have

(a) a *lot of points* “very light” (noticeably less than $1/N$); and
(b) a *lot of weight* on “very heavy” points (noticeably more than $1/N$).

Sampling $\tilde{O}(1/\varepsilon)$ points uniformly, w.v.h.p. we get a type-(a) point, and sampling $\tilde{O}(1/\varepsilon)$ points according to D, w.v.h.p. we get a type-(b) point. Use PCOND to compare them, and get evidence that D is far from uniform.
Testing \(D\) versus \(D^*\) (1)

A more general problem: have \(\text{COND}_D\) access to \(D\), want to test equality to a fixed, known distribution \(D^*\).

The approach for uniformity does not work for general \(D^*\).

- For testing uniformity, \(O(1/\varepsilon)\) calls to \(\text{PCOND}\) will reveal when two points’ weights differ by at least a multiplicative \(1 + \varepsilon\).

- But with a general \(D^*\), the actual ratios can be arbitrarily big or small. E.g., if \(D^*(x)/D^*(y) = \sqrt{N}\), need \(\Omega(\sqrt{N})\) calls to \(\text{PCOND}_D(\{x, y\})\) to distinguish \(D(x)/D(y) = \sqrt{N}\) from \(D(x)/D(y) = 2\sqrt{N}\).
Towards a fix: Adapt the algorithm to compare *points* with (carefully chosen) comparable *sets*. I.e., for carefully chosen $x \in [N]$ and $Y \subset [N]$, check (using COND_D) that $D(x)/D(Y)$ (approximately matches) the (known) value $D^*(x)/D^*(Y)$.

Theorem (Testing Equivalence to a known D^* with COND)

For any fixed known distribution D^, there is a $\tilde{O}(1/\varepsilon^4)$-query COND_D tester for equivalence to D^* (accepts w.p. at least $2/3$ if $D = D^*$ and rejects w.p. at least $2/3$ if $d_{TV}(D, D^*) \geq \varepsilon$).*
Our $\tilde{O}(1/\varepsilon^4)$-query algorithm uses COND$_D$, not just PCOND$_D$. In fact, no PCOND$_D$ algorithm can have query complexity independent of N:

Theorem (Lower bound for testing equivalence to D^* with PCOND)

There exists a distribution D^* over $[N]$ such that for $\varepsilon = 1/2$, any PCOND$_D$ tester that ε-tests equivalence to D^* must make $\Omega\left(\sqrt{\frac{\log N}{\log \log N}}\right)$ queries to PCOND$_D$.

Intuition: construct D^*, and distributions D far from D^*, so that any two points either have equal weight in both cases, or very skewed weights in both cases. This means pairwise comparisons don’t give new information.
Rest of the talk

Plan for rest of talk:

- sketch of testing uniformity and testing D vs. D^*
- introduce some tools: **Estimate-Neighborhood** and **Approx-Eval**
- use the tools: test equivalence of two unknown distributions
Some useful tools (1)

First tool: The low-level COMPARE

“Comparison is the death of joy.” – Mark Twain.

\[X \subseteq [N] \]
\[Y \subseteq [N] \]

\[D(X) \ll D(Y) \]
\[D(X) \approx D(Y) \]
\[D(X) \gg D(Y) \]

\[\rho \approx \frac{D(Y)}{D(X)} \]
Fix D. Given a point x, the γ-neighborhood of x is the set $U_\gamma(x)$ of points that have “roughly” the same weight as x (up to multiplicative $1 + \gamma$):

Definition (γ-Neighborhood)

$$
U_\gamma(x) \overset{\text{def}}{=} \{ y \in [N] : (1+\gamma)^{-1}D(x) \leq D(y) \leq (1+\gamma)D(x) \}, \quad \gamma \in [0, 1]
$$
Some useful tools (2)

Second tool: **Estimate-Neighborhood** procedure

Fix D. Given a point x, the γ-*neighborhood of* x is the set $U_\gamma(x)$ of points that have “roughly” the same weight as x (up to multiplicative $1 + \gamma$):

Definition (γ-Neighborhood)

$$U_\gamma(x) \stackrel{\text{def}}{=} \left\{ y \in [N] : (1+\gamma)^{-1}D(x) \leq D(y) \leq (1+\gamma)D(x) \right\}, \quad \gamma \in [0, 1]$$

How much weight does D put on the γ-neighborhood of x?

“Theorem”

There is an algorithm **Estimate-Neighborhood** which, given a point $x \in [N]$ and a parameter γ, gives a multiplicative $(1 \pm \varepsilon)$-approximation of $D(U_\gamma(x))$, and makes $\text{poly}(1/\varepsilon, 1/\gamma)$ many PCOND_D queries.
Some useful tools (3)

Third tool: Approximate-EVAL oracle

EVAL oracle

An \textit{EVAL}_D simulator for \(D \) is a procedure ORACLE such that the output of ORACLE on input \(i^* \in [N] \) is \(D(i^*) \in [0, 1] \), the amount of probability \(D \) puts on \(i^* \).
Some useful tools (3)
Third tool: \textsc{Approximate-EVAL} oracle

\begin{center}
\begin{tcolorbox}
\textbf{(Approximate) EVAL oracle}

Ideally, an \((\varepsilon, \delta)\)-approximate \(\text{EVAL}_D\) simulator for \(D\) would be a randomized procedure \textsc{Oracle} such that w.p. \(1 - \delta\) the output of \textsc{Oracle} on input \(i^* \in [N]\) is a value \(\hat{D}(i^*) \in [0, 1]\) such that
\[\hat{D}(i^*) \in [1 - \varepsilon, 1 + \varepsilon] D(i^*).\]
\end{tcolorbox}
\end{center}

- **Bad news:** Can't achieve this efficiently for every \(i^*\): how to tell whether \(D(i^*)\) is \(1/2^{2^N}\) or \(1/2^{2^{2^N}}\)?

- **Good news:** Can achieve this for every \(i^*\) except for an “error set” of mass at most \(\varepsilon\) (where we may say “don’t know”).
Some useful tools (3)

Third tool: Approximate-EVAL oracle

(Approximate) EVAL oracle

An \((\varepsilon, \delta)\)-approximate \(\text{EVAL}_D\) simulator for \(D\) is a randomized procedure \(\text{ORACLE}\) s.t. for each \(\varepsilon\), there is a fixed set \(S^{(\varepsilon)} \subset [N]\) with \(D(S^{(\varepsilon)}) < \varepsilon\) for which the following holds. For all \(i^* \in [N]\), \(\text{ORACLE}(i^*)\) is either a value \(\hat{D}(i^*) \in [0, 1]\) or Unknown, and furthermore:

(i) If \(i^* \not\in S^{(\varepsilon)}\) then w.p. \(1 - \delta\) the output of \(\text{ORACLE}\) on input \(i^*\) is a value \(\hat{D}(i^*) \in [0, 1]\) such that \(\hat{D}(i^*) \in [1 - \varepsilon, 1 + \varepsilon]D(i^*)\);

(i) If \(i^* \in S^{(\varepsilon)}\) then w.p. \(1 - \delta\) the procedure either outputs Unknown or outputs a value \(\hat{D}(i^*) \in [0, 1]\) such that \(\hat{D}(i^*) \in [1 - \varepsilon, 1 + \varepsilon]D(i^*)\).
Some useful tools (3)

Third tool: \textsc{Approximate-EVAL} oracle

\textbf{(Approximate) EVAL oracle}

An \((\varepsilon, \delta)\)-approximate \(\text{EVAL}^D\) simulator for \(D\) is a randomized procedure \textsc{Oracle} s.t. for each \(\varepsilon\), there is a \textbf{fixed} set \(S^{(\varepsilon)} \subset [N]\) with \(D(S^{(\varepsilon)}) < \varepsilon\) for which the following holds. For all \(i^* \in [N]\), \textsc{Oracle}(\(i^*\)) is either a value \(\hat{D}(i^*) \in [0, 1]\) or Unknown, and furthermore:

(i) If \(i^* \notin S^{(\varepsilon)}\) then w.p. \(1 - \delta\) the output of \textsc{Oracle} on input \(i^*\) is a value \(\hat{D}(i^*) \in [0, 1]\) such that \(\hat{D}(i^*) \in [1 - \varepsilon, 1 + \varepsilon] D(i^*)\);

(ii) If \(i^* \in S^{(\varepsilon)}\) then w.p. \(1 - \delta\) the procedure either outputs Unknown or outputs a value \(\hat{D}(i^*) \in [0, 1]\) such that \(\hat{D}(i^*) \in [1 - \varepsilon, 1 + \varepsilon] D(i^*)\).

\textbf{Theorem}

\textit{There is an algorithm} \textsc{Approx-Eval} \textit{which uses} \(\tilde{O}\left(\frac{(\log N)^5 \cdot (\log(1/\delta))^2}{\varepsilon^3}\right)\) \textit{calls to} \textsc{Cond}^D, \textit{and is an} \((\varepsilon, \delta)\)-\textit{approximate} \(\text{EVAL}^D\) \textit{simulator.}
Let $i^* \in [N]$.

Compute $\text{APPROX-EVAL}_\varepsilon$.

If $i^* \in S(\varepsilon)$,

- If $\hat{D}(i) = \text{Unknown}$, return Unknown.
- Otherwise, return $\hat{D}(i)$.

If $i^* \notin S(\varepsilon)$, return Unknown or $\hat{D}(i)$.
Some useful tools (4)

Third tool: \textsc{Approximate-Eval} oracle

\[S_0 = [N] \]

\textit{Scan over heavy elements: } \textit{i not amongst them?}

\begin{itemize}
 \item \[S_1 \]
 \item \[S'_1 \]
\end{itemize}

\textit{Scan over heavy elements: } \textit{i not amongst them?}

\begin{itemize}
 \item \[S_2 \]
 \item \[S'_2 \]
\end{itemize}

\textit{...}

\begin{itemize}
 \item \[S_{k-1} \]
 \item \[S_k = \{i\} \]
 \item \[S'_k \]
\end{itemize}

\textbf{Figure:} Execution of \textsc{Approx-Eval} on some \textit{i}: scan over heavy elements, randomly partition the light ones, recurse; finally get an estimate of \(D(i) \) by multiplying estimates at each branching.
Applications

Testing equivalence of two unknown distributions D_1, D_2

Given an oracle for D_1 and a separate oracle for D_2, distinguish $D_1 = D_2$ vs. $d_{TV}(D_1, D_2) \geq \varepsilon$.

Two different approaches:

1. with PCOND and Estimate-Neighborhood – finding "representatives" points for both distributions;
2. with COND and Approx-Eval – adapting an EVAL algorithm from [RS09].

Both approaches use poly(log N, $1/\varepsilon$) calls to the oracle.

Theorem [Acharya, Canonne, Kamath '14] Any tester for this problem must make $\Omega(\sqrt{\log \log N})$ COND queries.
Testing equivalence of two unknown distributions D_1, D_2

Given an oracle for D_1 and a separate oracle for D_2, distinguish $D_1 = D_2$ vs. $d_{TV}(D_1, D_2) \geq \varepsilon$.
Testing equivalence of two unknown distributions D_1, D_2

Given an oracle for D_1 and a separate oracle for D_2, distinguish $D_1 = D_2$ vs. $d_{TV}(D_1, D_2) \geq \epsilon$.

Two different approaches:

1. with PCOND and ESTIMATE-NEIGHBORHOOD – finding “representatives” points for both distributions;
2. with COND and APPROX-EVAL – adapting an EVAL algorithm from [RS09].

Both approaches use $\text{poly}(\log N, 1/\epsilon)$ calls to the oracle.
Applications

Testing equivalence of two unknown distributions D_1, D_2

Given an oracle for D_1 and a separate oracle for D_2, distinguish $D_1 = D_2$ vs. $d_{TV}(D_1, D_2) \geq \varepsilon$.

Two different approaches:

1. with PCOND and Estimate-Neighborhood – finding “representatives” points for both distributions;
2. with COND and Approx-Eval – adapting an EVAL algorithm from [RS09].

Both approaches use $\text{poly}(\log N, 1/\varepsilon)$ calls to the oracle.

Theorem

[Acharya, Canonne, Kamath '14] Any tester for this problem must make $\Omega(\sqrt{\log \log N}) \text{COND}_D$ queries.
Conclusion

- new model for studying probability distributions
- attempt to capture aspects of real-world settings where experimenter can do more than just SAMP
- allows significantly more query-efficient algorithms
- generalizing to other structured domains? (e.g., the Boolean hypercube $\{0, 1\}^n$)
- what about distribution learning in this framework
- more properties? (entropy, independence, ...)

C. Canonne, D. Ron, R. Servedio
Testing distributions with conditional samples
March 20, 2015 25 / 33
The end.

Thank you.

———, *Testing closeness of discrete distributions*, Tech. Report abs/1009.5397, 2010, This is a long version of [BFR+00].

Algorithm 1: PCOND\textsubscript{D}-TEST-UNIFORM

Set $t = \Theta(\log(\frac{1}{\varepsilon}))$.

Select $q = \Theta(1)$ points i_1, \ldots, i_q uniformly

\begin{verbatim}
for j = 1 to t do
 Call the oracle $s_j = \Theta(2^j t)$ times to get $h_1, \ldots, h_{s_j} \sim D$
 Draw s_j points $\ell_1, \ldots, \ell_{s_j}$ uniformly from $[N]$
 for all pairs $(x, y) = (i_r, h_r')$ and $(x, y) = (i_r, \ell_{r'})$ do
 Get a good estimate of $D(x)/D(y)$.
 Reject if the value is not in $[1 - 2^{j-5} \frac{\varepsilon}{4}, 1 + 2^{j-5} \frac{\varepsilon}{4}]$
 end for
end for
Accept
\end{verbatim}
Testing Uniformity (4)

Proof (Outline).

Sample complexity by the setting of t, q and the calls to COMPARE

Completeness unless COMPARE fails to output a correct value, no rejection

Soundness Suppose D is ε-far from \mathcal{U}; refinement of the previous approach by bucketing low and high points:

$$H_j \overset{\text{def}}{=} \left\{ h \mid \left(1 + 2^{j-1} \frac{\varepsilon}{4}\right) \frac{1}{N} \leq D(h) < \left(1 + 2^j \frac{\varepsilon}{4}\right) \frac{1}{N} \right\}$$

$$L_j \overset{\text{def}}{=} \left\{ \ell \mid \left(1 - 2^j \frac{\varepsilon}{4}\right) \frac{1}{N} < D(\ell) \leq \left(1 - 2^{j-1} \frac{\varepsilon}{4}\right) \frac{1}{N} \right\}$$

for $j \in [t - 1]$, with also H_0, L_0, H_t, L_t to cover everything; each loop iteration on l.3 “focuses” on a particular bucket.

+ Chernoff and union bounds.
Some useful tools (5)

The (slightly) higher-level subroutine $\text{Estimate-Neighborhood}$

Given as input a point x, parameters $\gamma, \beta, \eta \in (0, 1/2]$ and PCOND_D access, the procedure $\text{Estimate-Neighborhood}$ outputs a pair $(\hat{w}, \alpha) \in [0, 1] \times (\gamma, 2\gamma)$ such that w.h.p

1. If $D(U_\alpha(x)) \geq \beta$, then $\hat{w} \in [1 - \eta, 1 + \eta] \cdot D(U_\alpha(x))$, and (…)

2. If $D(U_\alpha(x)) < \beta$, then $\hat{w} \leq (1 + \eta) \cdot \beta$, and (…)

$\text{Estimate-Neighborhood}$ performs $\tilde{O}\left(\frac{1}{\gamma^2 \eta^4 \beta^3}\right)$ queries.
Some useful tools (5)

The (slightly) higher-level subroutine \textsc{Estimate-Neighborhood}

Given as input a point x, parameters $\gamma, \beta, \eta \in (0, 1/2]$ and PCOND_D access, the procedure \textsc{Estimate-Neighborhood} outputs a pair $(\hat{w}, \alpha) \in [0, 1] \times (\gamma, 2\gamma)$ such that w.h.p

1. If $D(U_\alpha(x)) \geq \beta$, then $\hat{w} \in [1 - \eta, 1 + \eta] \cdot D(U_\alpha(x))$, and (\ldots)
2. If $D(U_\alpha(x)) < \beta$, then $\hat{w} \leq (1 + \eta) \cdot \beta$, and (\ldots)

\textsc{Estimate-Neighborhood} performs $\tilde{O}\left(\frac{1}{\gamma^2 \eta^4 \beta^3}\right)$ queries.

Remark

Does not estimate exactly $D(U_\gamma(x))$.
$U_{2\gamma}$

$U_{\alpha+\theta}$

U_{α}

U_{γ}

\sim no weight
Some useful tools (6)

Figure: (Rough) idea of the “binary descent” on i for \textsc{Approx-Eval}: get an estimate of $D(i)$ by multiplying estimates at each branching.