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Key Idea: 
Exploit piecewise polynomial approximation  

for structured model estimation  

Algorithmic Framework for Distribution Estimation: 
Leads to fast & robust estimators  

for a wide variety of statistical models. 



This Talk 

 
“Given samples from a statistical model does it satisfy a given property?” 

 
[Daskalakis-D-Servedio-Valiant-Valiant, SODA’13] 

[Chan-D-Valiant-Valiant, SODA’14] 
[D-Kane-Nikishkin, SODA’15] 

 
[D-Kane-Nikishkin, manuscript’15] 

[Canonne-D-Gouleakis-Rubinfeld, manuscript’15] 
 

A family of optimal estimators for hypothesis testing  
for a wide variety of structured models. 



Main Message of the Talk 

 
 
 
 

We can algorithmically exploit the underlying structure  
to perform statistical estimation efficiently. 
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Distribution Learning (Density Estimation)  

Given samples (observations) from an unknown probability distribution 
(model), construct an accurate estimate of the distribution. 
 
•  Classical Problem in Statistics 

•  Introduced by Karl Pearson (1891). 

•  Last fifteen years (TCS): computational aspects 



Distribution Learning: History 
 
•  Histograms [Pearson, 1895] 
 
•  Kernel methods [M. Rosenblatt, 1956] 
 
•  Metric Entropy [A.N. Kolmogorov, 1960] 
 
•  Wavelets  
      [Donoho, Johnstone, Kerkyacharian, Picard, ’90’s] 
 
 
Many others: Nearest Neighbor, Orthogonal Series, … 
 
Focus traditionally on sample size. 



Types of Structured Distributions 
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History 

Nonparametric Estimation under “shape restrictions” 
 
•  Long line of work in statistics since the 1950’s  
     [Gre’56, Rao69, Weg70, Gro85, Bir87,…] 
 
•  Shape restrictions studied in early work: monotonicity, unimodality, 
     concavity, convexity, Lipschitz continuity, … 
 
•  Very active research area: log-concavity, k-monotonicity, … 
     [Balabdaoui-Wellner’07, Balabdaoui-Rufibach-Wellner’09, Walther’09,  
      Dumbgen-Rufibach’09, Cule-Samworth’10, Koenker-Mizera’10,  
      Guntuboyina-Sen’13, Doss-Wellner’13, Kim-Samworth’14] 
 
•  Standard tool in these settings: MLE 
 

 
      



Distribution Learning: Definition  

•  Learning problem defined by family     of 
distributions 

 
•  Target distribution             unknown to learner. 

•  Learner given sample of IID draws from    .  

 
Output: with probability              output    satisfying 

 
 
 
 
Goal: Sample optimal & computationally efficient algorithms 
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Agnostic Learning: Definition  

•  Learning problem defined by class     of distributions 
 
•  Target distribution    unknown to learner and let 

•  Learner given sample of IID draws from  

 
Output: with probability              output    satisfying 

 
 
 
 
Goal: Sample optimal & computationally efficient algorithms 
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Learning Arbitrary Discrete Distributions 

Let      be the set of all distributions over       .           
What is the best learning algorithm?    

Simple answer (folklore): 

•  Algorithm with sample (and time) complexity                .  

•  Information theoretic lower bound of                . 

D [N ]

O(N/�
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Learning Arbitrary Discrete Distributions 

Learning an arbitrary distribution over      :        
                Sample size                                    

necessary and sufficient                    

When can we do better?  
Which distributions are easy to learn, which are 

hard (and why)? 

[N ]
Θ(N/�2)



Structure and Statistical Estimation 

General Recipe for Statistical Estimation: 
 
Given a “complex” distribution family    . 
 
1.   Find a “canonical” class of distributions    that 
       approximates     well.  
(For every            there is           such that          .) 
 
2.   Use samples from    to estimate it as if it was   .  

Reduction-based approach.  
Main difficulty: Algorithm for    should be robust to error in the data. 
 

Question: Which “canonical” class should we use?  
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Piecewise polynomial distributions 

•  Distribution p is t-piecewise degree-d  if there exists a partition of 
the domain into t intervals such that within each interval, the density 
of p is a degree-d  polynomial.  

•  Let           be the family of all such distributions. 

0 1 

Pt,d



Overview of Framework 

Approximation 
(Existential Step) 

Agnostic Learner                 
          for  
(Algorithmic Step) 

p ∈ D

� > 0 Pt,d ≈�/2 D
Hypothesis 

h
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               with 

Pt,d
t, d s.t.:
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min t · (d+ 1) s.t.



Why Piecewise Polynomials? 

 
•  Analogy with PAC learning of Boolean functions  
     [Linial-Mansour-Nisan’93] 
 
•  Common method in statistics: fitting splines to data  
     [Wegman-Wright’83, Stone et al.’90’s, Willet-Nowak’07] 
    
•  Gives sample optimal and computationally efficient estimators for 

wide range of distribution families 



Results: Learning Structured Families 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Distribution 
Family  

Sample Size Parameters Reference 
 

monotone Birgé’87 

k-modal  Daskalakis-D-
Servedio’12 

monotone  
hazard rate 

Chan-D-Servedio-
Sun’ 13 

log-concave  
k-mixture 

Chan-D-Servedio-
Sun’ 14, D-Kane’15 

Gaussian  
k-mixture 

Chan-D-Servedio-
Sun’ 14 

Poisson/Binomial  
k-mixture 

Daskalakis-D-
Stewart’15 

Besov spaces Devore’ 98 

k-monotone Konovalov-
Leviatan’07 

O(k/�5/2)

O(log n/�3)

O(log(n/�)/�3)

�O(k/�2)

�O(k/�2)

O(k/�2+1/k)

O(k log n/�3)

t = k, d = �−1/k

t = log n/�, d = 0

t = k log n/�, d = 0

t = log(n/�), d = 0

t = k/
√
�, d = 1

t = k, d = log(k/�)

t = k, d = log(k/�)

Previous	
  work	
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  es3ma3on):	
  

Moitra-­‐Valiant’10	
  	
  
(1/�)Ω(k)

O(1/�2+1/α) t = �−1/α, d = �α�



Statistical Performance: Intuition (I) 

I1 I2 I3 I4 I5 I6 I7

Question: Let p, q be probability density functions. How many samples 
are required to distinguish between them? 
 
Partial Answer: If p, q have a few “crossings”, distinguishing is easy. 



Statistical Performance: Intuition (II) 

Question: Let p, q be probability density functions. How many samples 
are required to distinguish between them? 
 
Partial Answer: If p, q have a few “crossings”, distinguishing is easy. 
 
Typically, unbounded many crossings, but only a few are important. 



“Complexity measure” for learning a 
distribution family   

Definition. For                          and           , we define the       - distance 
between        as follows: 
 
 
 
 
 
Upper Bound on Sample Complexity: For a family of one-dimensional 
distributions     and          , let                         be the smallest integer 
such that for any                it holds 
                                                                        
 
Then, the parameter      is an upper bound on the sample complexity of 
agnostic learning for    .  
 
 
 

p, q : R → R+ k ≥ 1 Ak

p, q

D � > 0
p, q ∈ D

D

k = k(D, �)

k

I1 I2 I3 Ik

�p− q�Ak = sup
I=(Ii)ki=1

k�

i=1

|p(Ii)− q(Ii)|
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Statistical Estimator   
Lemma. For any     and          , let                      be such that for any 
               it holds                                             . Then there exists an 
agnostic learning algorithm for     using                samples. 
Proof Sketch.  
Consider the following procedure: 
1.  Draw                        samples from    and let       be the empirical distr. 
2.  Compute            that minimizes                     . 
 

Analysis:  
  Empirical Process Theory (Vapnik, Chervonenkis, Dudley ~70’s) 
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Difficulties in Implementing Estimator 
For any     and          , let                        be such that for any 
it holds                                            .  
Algorithm: 
1.  Draw                        samples from    and let       be the empirical distr. 
2.  Compute            that minimizes                     . 

Main Issues: 
 
1.  How do we bound the value of                     ? 

2.  How do we efficiently perform the “projection” step? 
      (Non-convex optimization problem) 

Solution: Replace      by          such that 
 
 
 
 
 

D � > 0 p, q ∈ D
�p− q�1 ≤ �p− q�Ak + �

m = Ω(k/�2) p �pm
h ∈ D �h− �pm�Ak

k = k(D, �)

k = k(D, �)
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Agnostically Learning Piecewise Polynomials 

Application of general framework for                 and                            . 
1.  Draw                                   samples from   .    
2.  Compute                 that minimizes                     . 
 
 
Still non-convex optimization problem… 
 
Main Algorithmic Contribution: 
 

Polynomial time algorithm for Step 2. 
 

C = Pt,d k = O(t(d+ 1))
p

�h− �pm�Ak

m = Ω(t(d+ 1)/�2)
h ∈ Pt,d



Agnostically Learning Piecewise Polynomials 

Theorem [Chan-D-Servedio-Sun, STOC’14] 
 
There exists an agnostic learning algorithm for         that uses  
                           
 
samples and runs in time    
    
 
Moreover,                           samples are information-theoretically necessary.  

Pt,d

�O(t(d+ 1)/�2)

poly(t, d+ 1, 1/�).

Ω(t(d+ 1)/�2)

Recent Progress: 
 
•  Piecewise constant: near-linear time [Chan-D-Servedio-Sun, NIPS’14] 
•  General Case:                         samples and                          time. 
     [Acharya-D-Li-Schmidt’15] 
	
  

O(t(d+ 1)/�2) (t/�2) · poly(d)



Overview of Techniques 
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Illustrative Empirical Results 
[Acharya-D-Li-Schmidt ’15] 

Predictive performance of straightforward implementation:  
speed-up over recent implementations of the MLE. 



Application in Databases: Succinct 
Representation of Data 

[Acharya-D-Hegde-Li-Schmidt, PODS’15]: Approximating Data 
Distributions by Histograms 
 
Classical problem in databases  
[Gibbons-Matias-Poosala' 97, Jagadish et al. '98, Chaudhuri-Motwani-
Narasayya '98, Thaper-Guha-Indyk-Koudas '02, Gilbert et al. '02, Guha-
Koudas-Shim '06, Indyk-Levi-Rubinfeld'12.] 
 
Goal: Given data distribution, construct a succinct approximation 
(histogram). Minimize computation time, approximation error. 
 
Our Result: Sample optimal, sample-linear time algorithm with optimal 
error (up to small constant factor). 

Experimental Evaluation: Outperforms all previous algorithms for the 
problem by one to two orders of magnitude. 



Empirical Results (I) 
 [Acharya-D-Hegde-Li-Schmidt, PODS’15] 

  
•  Two synthetic and one real-word data set (same as [Guha-Koudas-

Shim’06]) 
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Additional  Applications of Framework  

Hypothesis Testing (Property Testing) 
 
•  Testing Identity of Structured Distributions [D-Kane-Nikishkin’15a, ‘15b] 
 
“Given samples from a structured distribution, is it uniform?” 
 
“Given samples from two structured distributions, are they the identical?” 
 
•  Testing Shape Restrictions [Canonne-D-Gouleakis-Rubinfeld’15] 
 
“Given samples from a (potentially arbitrary) distribution, is it structured?” 
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Future Directions 

Broad Context:  
 

Complexity theory for statistical estimation 
 
Specific Challenges: 
 
•  Agnostic proper learning 
 
•  “Instance optimal” (adaptive) algorithms 

•  Tradeoffs between sample size and computational efficiency 

Thank you for your attention! 


