This Talk

Algorithmic Framework for Distribution Estimation: Leads to *fast & robust* estimators for a *wide variety* of statistical models.

[Chan-D-Servedio-Sun, STOC’14]
[Chan-D-Servedio-Sun, NIPS’14]
[Acharya-D-Hegde-Li-Schmidt, PODS’15]

[Acharya-D-Li-Schmidt, manuscript’15]

Key Idea:

Exploit piecewise polynomial approximation for structured model estimation
This Talk

A family of optimal estimators for hypothesis testing for a wide variety of structured models.

“Given samples from a statistical model does it satisfy a given property?”

[Daskalakis-D-Servedio-Valiant-Valiant, SODA’13]
[Chan-D-Valiant-Valiant, SODA’14]
[D-Kane-Nikishkin, SODA’15]

[D-Kane-Nikishkin, manuscript’15]
[Canonne-D-Gouleakis-Rubinfeld, manuscript’15]
Main Message of the Talk

We can algorithmically exploit the underlying structure to perform statistical estimation efficiently.
Outline

• Learning via Piecewise Polynomial Approximation
 ▪ Introduction
 ▪ Framework Overview
 ▪ Statistical Efficiency
 ▪ Computational Efficiency
 ▪ Empirical Results

• Applications to other Inference Tasks

• Future Directions and Concluding Remarks
Outline

• Learning via Piecewise Polynomial Approximation
 ▪ Introduction
 ▪ Framework Overview
 ▪ Statistical Efficiency
 ▪ Computational Efficiency
 ▪ Empirical Results

• Applications to other Inference Tasks

• Future Directions and Concluding Remarks
Distribution Learning (Density Estimation)

Given samples (observations) from an unknown probability distribution (model), construct an accurate estimate of the distribution.

- Classical Problem in Statistics
- Introduced by Karl Pearson (1891).
- Last fifteen years (TCS): computational aspects
Distribution Learning: History

- Histograms [Pearson, 1895]
- Kernel methods [M. Rosenblatt, 1956]
- Metric Entropy [A.N. Kolmogorov, 1960]
- Wavelets
 [Donoho, Johnstone, Kerkyacharian, Picard, ’90’s]

Many others: Nearest Neighbor, Orthogonal Series, …

Focus traditionally on sample size.
Types of Structured Distributions

• Distributions with “shape restrictions”

• Simple combinations of simple distributions

 Mixtures of simple distributions

 Sums of simple distributions

 Poisson Binomial Distributions
History

Nonparametric Estimation under “shape restrictions”

• Long line of work in statistics since the 1950’s
 [Gre’56, Rao69, Weg70, Gro85, Bir87,…]

• Shape restrictions studied in early work: monotonicity, unimodality, concavity, convexity, Lipschitz continuity, …

• Very active research area: log-concavity, k-monotonicity, …

• Standard tool in these settings: MLE
Distribution Learning: Definition

- Learning problem defined by family \mathcal{D} of distributions
- Target distribution $p \in \mathcal{D}$ unknown to learner.
- Learner given sample of IID draws from p.

Output: with probability $\geq 9/10$ output h satisfying

$$\|h - p\|_1 \leq \epsilon.$$

Goal: Sample optimal & computationally efficient algorithms
Agnostic Learning: Definition

- Learning problem defined by class \mathcal{D} of distributions
- Target distribution p unknown to learner and let
 \[\text{OPT} = \inf_{q \in \mathcal{D}} \|p - q\|_1 \]
- Learner given sample of IID draws from p

Output: with probability $\geq 9/10$ output h satisfying
\[\|h - p\|_1 \leq \text{OPT} + \epsilon. \]

Goal: Sample optimal & computationally efficient algorithms
Learning Arbitrary Discrete Distributions

Let \mathcal{D} be the set of all distributions over $[N]$.

What is the best learning algorithm?

Simple answer (folklore):

• Algorithm with sample (and time) complexity $O(N/\epsilon^2)$.
• Information theoretic lower bound of $\Omega(N/\epsilon^2)$.
Learning Arbitrary Discrete Distributions

Learning an *arbitrary* distribution over $[N]$:
Sample size $\Theta(N/\epsilon^2)$
necessary and sufficient

When can we do better?
Which distributions are easy to learn, which are hard (and why)?
General Recipe for Statistical Estimation:

Given a “complex” distribution family \mathcal{D}.

1. Find a “canonical” class of distributions \mathcal{C} that approximates \mathcal{D} well.
 (For every $p \in \mathcal{D}$ there is $q \in \mathcal{C}$ such that $p \approx q$.)

2. Use samples from p to estimate it as if it was q.

Reduction-based approach.
Main difficulty: Algorithm for \mathcal{C} should be robust to error in the data.

Question: Which “canonical” class should we use?
Piecewise polynomial distributions

- Distribution p is **t-piecewise degree-d** if there exists a partition of the domain into t intervals such that within each interval, the density of p is a degree-d polynomial.
- Let $\mathcal{P}_{t,d}$ be the family of all such distributions.

$t = 4, \; d = 3$
Overview of Framework

Approximation (Existential Step)

\[p \in \mathcal{D}, \quad \epsilon > 0 \]

\[\exists t, d \text{ s.t.}: \mathcal{P}_{t,d} \approx \frac{\epsilon}{2} \mathcal{D} \]

Agnostic Learner for \(\mathcal{P}_{t,d} \) (Algorithmic Step)

\[\min t \cdot (d + 1) \text{ s.t. for each } p \in \mathcal{D} \text{ there is } q \in \mathcal{P}_{t,d} \text{ with } \|q - p\|_1 \leq \frac{\epsilon}{2} \]

\[\|h - p\|_1 \leq \text{OPT} + \frac{\epsilon}{2} \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} \]

Hypothesis \(h \)
Why Piecewise Polynomials?

- Analogy with PAC learning of Boolean functions
 [Linial-Mansour-Nisan’93]

- Common method in statistics: fitting splines to data
 [Wegman-Wright’83, Stone et al.’90’s, Willet-Nowak’07]

- Gives sample optimal and computationally efficient estimators for wide range of distribution families
Results: Learning Structured Families

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Sample Size</th>
<th>Parameters</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>monotone</td>
<td>$O(\log(n/\epsilon)/\epsilon^3)$</td>
<td>$t = \log n/\epsilon$, $d = 0$</td>
<td>Birgé’87</td>
</tr>
<tr>
<td>k-modal</td>
<td>$O(k/\epsilon^5/2)$</td>
<td>$t = k/\sqrt{\epsilon}$, $d = 1$</td>
<td>Daskalakis-D-Servedio’12</td>
</tr>
<tr>
<td>log-concave</td>
<td>$O(k/\epsilon^2)$</td>
<td>$t = k$, $d = \log(k/\epsilon)$</td>
<td>Chan-D-Servedio-Sun’13</td>
</tr>
<tr>
<td>Gaussian</td>
<td>$\widetilde{O}(k/\epsilon^2)$</td>
<td>$t = k$, $d = \log(k/\epsilon)$</td>
<td>Chan-D-Servedio-Sun’14, D-Kane’15</td>
</tr>
<tr>
<td>k-mixture</td>
<td>$\widetilde{O}(k/\epsilon^2)$</td>
<td>$t = k$, $d = \log(k/\epsilon)$</td>
<td></td>
</tr>
<tr>
<td>Poisson/Binomial</td>
<td>$\widetilde{O}(k/\epsilon^2)$</td>
<td>$t = k$, $d = \log(k/\epsilon)$</td>
<td>Daskalakis-D-Stewart’15</td>
</tr>
<tr>
<td>Besov spaces</td>
<td>$O(1/\epsilon^{2+1/\alpha})$</td>
<td>$t = \epsilon^{-1/\alpha}$, $d = \lceil \alpha \rceil$</td>
<td>Devore’ 98</td>
</tr>
<tr>
<td>k-monotone</td>
<td>$O(k/\epsilon^{2+1/k})$</td>
<td>$t = k$, $d = \epsilon^{-1/k}$</td>
<td>Konovalov-Leviatan’07</td>
</tr>
</tbody>
</table>

Previous work (parameter estimation): Moitra-Valiant’10

$\frac{1}{\epsilon} \Omega(k)$

hazard rate

$t = \log n/\epsilon, d = 0$
Question: Let p, q be probability density functions. How many samples are required to distinguish between them?

Partial Answer: If p, q have a few “crossings”, distinguishing is easy.
Question: Let p, q be probability density functions. How many samples are required to distinguish between them?

Partial Answer: If p, q have a few “crossings”, distinguishing is easy.

Typically, unbounded many crossings, but only a few are important.
“Complexity measure” for learning a distribution family

Definition. For $p, q : \mathbb{R} \to \mathbb{R}_+$ and $k \geq 1$, we define the A_k-distance between p, q as follows:

$$
\|p - q\|_{A_k} = \sup_{\mathcal{I}=(I_i)_{i=1}^k} \sum_{i=1}^k |p(I_i) - q(I_i)|
$$

Upper Bound on Sample Complexity: For a family of one-dimensional distributions \mathcal{D} and $\epsilon > 0$, let $k = k(\mathcal{D}, \epsilon)$ be the smallest integer such that for any $p, q \in \mathcal{D}$ it holds

$$
\|p - q\|_1 \approx_\epsilon \|p - q\|_{A_k}.
$$

Then, the parameter k is an upper bound on the sample complexity of agnostic learning for \mathcal{D}.
Statistical Estimator

Lemma. For any \mathcal{D} and $\epsilon > 0$, let $k = k(\mathcal{D}, \epsilon)$ be such that for any $p, q \in \mathcal{D}$ it holds $\|p - q\|_1 \leq \|p - q\|_{A_k} + \epsilon$. Then there exists an agnostic learning algorithm for \mathcal{D} using $O(k/\epsilon^2)$ samples.

Proof Sketch.

Consider the following procedure:
1. Draw $m = \Omega(k/\epsilon^2)$ samples from p and let \hat{p}_m be the empirical distr.
2. Compute $h \in \mathcal{D}$ that minimizes $\|h - \hat{p}_m\|_{A_k}$.

Analysis:

Empirical Process Theory (Vapnik, Chervonenkis, Dudley ~70’s)
Difficulties in Implementing Estimator

For any \mathcal{D} and $\epsilon > 0$, let $k = k(\mathcal{D}, \epsilon)$ be such that for any $p, q \in \mathcal{D}$ it holds $\|p - q\|_1 \leq \|p - q\|_{\mathcal{A}_k} + \epsilon$.

Algorithm:
1. Draw $m = \Omega(k/\epsilon^2)$ samples from p and let \hat{p}_m be the empirical distr.
2. Compute $h \in \mathcal{D}$ that minimizes $\|h - \hat{p}_m\|_{\mathcal{A}_k}$.

Main Issues:

1. How do we bound the value of $k = k(\mathcal{D}, \epsilon)$?

2. How do we efficiently perform the “projection” step? (Non-convex optimization problem)

Solution: Replace \mathcal{D} by $\mathcal{P}_{t,d}$ such that $\mathcal{D} \approx_{\epsilon/2} \mathcal{P}_{t,d}$.
Agnostically Learning Piecewise Polynomials

Application of general framework for $C = \mathcal{P}_{t,d}$ and $k = O(t(d + 1))$.

1. Draw $m = \Omega(t(d + 1)/\epsilon^2)$ samples from p.
2. Compute $h \in \mathcal{P}_{t,d}$ that minimizes $\|h - \hat{p}_m\|_{\mathcal{A}_k}$.

Still non-convex optimization problem…

Main Algorithmic Contribution:

Polynomial time algorithm for Step 2.
Agnostically Learning Piecewise Polynomials

Theorem [Chan-D-Servedio-Sun, STOC’14]

There exists an agnostic learning algorithm for $\mathcal{P}_{t,d}$ that uses

$$\tilde{O}(t(d + 1)/\epsilon^2)$$

samples and runs in time

$$\text{poly}(t, d + 1, 1/\epsilon).$$

Moreover, $\Omega(t(d + 1)/\epsilon^2)$ samples are information-theoretically necessary.

Recent Progress:

- Piecewise constant: near-linear time [Chan-D-Servedio-Sun, NIPS’14]
- **General Case:** $O(t(d + 1)/\epsilon^2)$ samples and $(t/\epsilon^2) \cdot \text{poly}(d)$ time.
 [Acharya-D-Li-Schmidt’15]
Overview of Techniques

- Empirical Process Theory
- Non-Convex Optimization Problem
- Convex Optimization, Dynamic Programming
- Information Theory
- Approximation Theory
- Piecewise Polynomial Approximation
Predictive performance of straightforward implementation: speed-up over recent implementations of the MLE.
Application in Databases: Succinct Representation of Data

[Acharya-D-Hegde-Li-Schmidt, PODS’15]: **Approximating Data Distributions by Histograms**

Classical problem in databases

Goal: Given data distribution, construct a succinct approximation (histogram). Minimize *computation time, approximation error.*

Our Result: Sample optimal, sample-linear time algorithm with optimal error (up to small constant factor).

Experimental Evaluation: Outperforms all previous algorithms for the problem by one to two orders of magnitude.
Empirical Results (I)
[Acharya-D-Hegde-Li-Schmidt, PODS’15]

- Two synthetic and one real-word data set (same as [Guha-Koudas-Shim’06])
Outline

• Learning via Piecewise Polynomial Approximation
 ▪ Introduction
 ▪ Framework Overview
 ▪ Statistical Efficiency
 ▪ Computational Efficiency
 ▪ Empirical Results

• Applications to other Inference Tasks

• Future Directions and Concluding Remarks
Additional Applications of Framework

Hypothesis Testing (Property Testing)

- Testing Identity of Structured Distributions [D-Kane-Nikishkin’15a, ‘15b]
 “Given samples from a structured distribution, is it uniform?”
 “Given samples from two structured distributions, are they the identical?”

- Testing Shape Restrictions [Canonne-D-Gouleakis-Rubinfeld’15]
 “Given samples from a (potentially arbitrary) distribution, is it structured?”
Outline

• Learning via Piecewise Polynomial Approximation
 ▪ Introduction
 ▪ Framework Overview
 ▪ Statistical Efficiency
 ▪ Computational Efficiency
 ▪ Empirical Results

• Applications to other Inference Tasks

• Future Directions and Concluding Remarks
Future Directions

Broad Context:

Complexity theory for statistical estimation

Specific Challenges:

• Agnostic proper learning

• “Instance optimal” (adaptive) algorithms

• Tradeoffs between sample size and computational efficiency

Thank you for your attention!