Learning and Testing Structured Distributions

Ilias Diakonikolas University of Edinburgh

> Simons Institute March 2015

This Talk

Algorithmic Framework for Distribution Estimation: Leads to *fast & robust* estimators for a wide variety of statistical models.

[Chan-D-Servedio-Sun, STOC'14] [Chan-D-Servedio-Sun, NIPS'14] [Acharya-D-Hegde-Li-Schmidt, PODS'15]

[Acharya-D-Li-Schmidt, manuscript'15]

Key Idea:

Exploit piecewise polynomial approximation for structured model estimation

This Talk

A family of optimal estimators for hypothesis testing for a wide variety of structured models.

"Given samples from a statistical model does it satisfy a given property?"

[Daskalakis-D-Servedio-Valiant-Valiant, SODA'13] [Chan-D-Valiant-Valiant, SODA'14] [D-Kane-Nikishkin, SODA'15]

[D-Kane-Nikishkin, manuscript'15] [Canonne-D-Gouleakis-Rubinfeld, manuscript'15]

Main Message of the Talk

We can algorithmically exploit the underlying structure to perform statistical estimation efficiently.

Outline

- Learning via Piecewise Polynomial Approximation
 - Introduction
 - Framework Overview
 - Statistical Efficiency
 - Computational Efficiency
 - Empirical Results
- Applications to other Inference Tasks
- Future Directions and Concluding Remarks

Outline

- Learning via Piecewise Polynomial Approximation
 - Introduction
 - Framework Overview
 - Statistical Efficiency
 - Computational Efficiency
 - Empirical Results
- Applications to other Inference Tasks
- Future Directions and Concluding Remarks

Distribution Learning (Density Estimation)

Given samples (observations) from an unknown probability distribution (model), construct an accurate estimate of the distribution.

- Classical Problem in Statistics
- Introduced by Karl Pearson (1891).
- Last fifteen years (TCS): computational aspects

Distribution Learning: History

- Histograms [Pearson, 1895]
- Kernel methods [M. Rosenblatt, 1956]
- Metric Entropy [A.N. Kolmogorov, 1960]
- Wavelets

[Donoho, Johnstone, Kerkyacharian, Picard, '90's]

Many others: Nearest Neighbor, Orthogonal Series, ...

Focus traditionally on sample size.

History

Nonparametric Estimation under "shape restrictions"

- Long line of work in statistics since the 1950's [Gre'56, Rao69, Weg70, Gro85, Bir87,...]
- Shape restrictions studied in early work: monotonicity, unimodality, concavity, convexity, Lipschitz continuity, ...
- Very active research area: log-concavity, *k*-monotonicity, ...
 [Balabdaoui-Wellner'07, Balabdaoui-Rufibach-Wellner'09, Walther'09, Dumbgen-Rufibach'09, Cule-Samworth'10, Koenker-Mizera'10, Guntuboyina-Sen'13, Doss-Wellner'13, Kim-Samworth'14]
- Standard tool in these settings: MLE

Distribution Learning: Definition

- Learning problem defined by family $\ensuremath{\mathcal{D}}$ of distributions
- Target distribution $p \in \mathcal{D}$ unknown to learner.
- Learner given sample of IID draws from p.

Output: with probability $\geq 9/10$ output h satisfying

$$\|h - p\|_1 \le \epsilon.$$

Goal: Sample optimal & computationally efficient algorithms

 \mathcal{D} • p

Agnostic Learning: Definition

- Learning problem defined by class ${\mathcal D}$ of distributions
- Target distribution p unknown to learner and let $OPT = \inf_{q \in D} ||p - q||_1$
- Learner given sample of IID draws from \boldsymbol{p}

Output: with probability $\geq 9/10$ output h satisfying

$$\|h - p\|_1 \le \text{OPT} + \epsilon.$$

Goal: Sample optimal & computationally efficient algorithms

Learning Arbitrary Discrete Distributions

Let \mathcal{D} be the set of all distributions over [N]. What is the best learning algorithm?

Simple answer (folklore):

- Algorithm with sample (and time) complexity $O(N/\epsilon^2)$.
- Information theoretic lower bound of $\Omega(N/\epsilon^2)$.

Learning Arbitrary Discrete Distributions

When can we do better?

Which distributions are easy to learn, which are hard (and why)?

Structure and Statistical Estimation

General Recipe for Statistical Estimation:

Given a "complex" distribution family \mathcal{D} .

1. Find a "canonical" class of distributions C that approximates D well.

(For every $p \in \mathcal{D}$ there is $q \in \mathcal{C}$ such that $p \approx q$.)

2. Use samples from p to estimate it as if it was q.

Reduction-based approach.

Main difficulty: Algorithm for C should be **robust to error** in the data.

Question: Which "canonical" class should we use?

Piecewise polynomial distributions

- Distribution *p* is *t*-piecewise degree-*d* if there exists a partition of the domain into *t* intervals such that within each interval, the density of *p* is a degree-*d* polynomial.
- Let $\mathcal{P}_{t,d}$ be the family of all such distributions.

Overview of Framework

Why Piecewise Polynomials?

- Analogy with PAC learning of Boolean functions [Linial-Mansour-Nisan'93]
- Common method in statistics: fitting splines to data [Wegman-Wright'83, Stone et al.'90's, Willet-Nowak'07]
- Gives sample optimal and computationally efficient estimators for wide range of distribution families

Results: Learning Structured Families

	Distribution	Sample Size	Parameters	Reference
	Previous work	$\epsilon^3)$	$t = \log n/\epsilon, d = 0$	Birgé'87
	(parameter estimation Moitra-Valiant'10 $(1 + 1) \Omega(k)$		$t = k \log n / \epsilon, d = 0$	Daskalakis-D- Servedio'12
	$(1/\epsilon)^{\Omega(k)}$ hazard raw	$O(\log(n/\epsilon)/\epsilon^3)$	$t = \log(n/\epsilon), d = 0$	Chan-D-Servedio- Sun' 13
	log-concave <i>k</i> -mixture	$O(k/\epsilon^{5/2})$	$t = k/\sqrt{\epsilon}, d = 1$	Chan-D-Servedio- Sun' 14, D-Kane'15
	Gaussian <i>k</i> -mixture	$\widetilde{O}(k/\epsilon^2)$	$t = k, d = \log(k/\epsilon)$	Chan-D-Servedio- Sun' 14
	Poisson/Binomial <i>k</i> -mixture	$\widetilde{O}(k/\epsilon^2)$	$t = k, d = \log(k/\epsilon)$	Daskalakis-D- Stewart'15
	Besov spaces	$O(1/\epsilon^{2+1/\alpha})$	$t = \epsilon^{-1/\alpha}, d = \lceil \alpha \rceil$	Devore' 98
	k-monotone	$O(k/\epsilon^{2+1/k})$	$t = k, d = \epsilon^{-1/k}$	Konovalov- Leviatan'07

Statistical Performance: Intuition (I)

Question: Let p, q be probability density functions. How many samples are required to distinguish between them?

Partial Answer: If *p*, *q* have a few "crossings", distinguishing is easy.

Statistical Performance: Intuition (II)

Question: Let p, q be probability density functions. How many samples are required to distinguish between them?

Partial Answer: If *p*, *q* have a few "crossings", distinguishing is easy.

Typically, unbounded many crossings, but only a few are important.

"Complexity measure" for learning a distribution family

Definition. For $p, q : \mathbb{R} \to \mathbb{R}_+$ and $k \ge 1$, we define the \mathcal{A}_k - distance between p, q as follows:

Upper Bound on Sample Complexity: For a family of one-dimensional distributions \mathcal{D} and $\epsilon > 0$, let $k = k(\mathcal{D}, \epsilon)$ be the smallest integer such that for any $p, q \in \mathcal{D}$ it holds

$$\|p-q\|_1 \approx_{\epsilon} \|p-q\|_{\mathcal{A}_k}.$$

Then, the parameter k is an upper bound on the sample complexity of agnostic learning for \mathcal{D} .

Statistical Estimator

Lemma. For any \mathcal{D} and $\epsilon > 0$, let $k = k(\mathcal{D}, \epsilon)$ be such that for any $p, q \in \mathcal{D}$ it holds $||p - q||_1 \leq ||p - q||_{\mathcal{A}_k} + \epsilon$. Then there exists an agnostic learning algorithm for \mathcal{D} using $O(k/\epsilon^2)$ samples.

Proof Sketch.

Consider the following procedure:

- 1. Draw $m = \Omega(k/\epsilon^2)$ samples from p and let \hat{p}_m be the empirical distr.
- 2. Compute $h \in \mathcal{D}$ that minimizes $||h \hat{p}_m||_{\mathcal{A}_k}$.

Analysis:

Empirical Process Theory (Vapnik, Chervonenkis, Dudley ~70's)

Difficulties in Implementing Estimator

For any \mathcal{D} and $\epsilon > 0$, let $k = k(\mathcal{D}, \epsilon)$ be such that for any $p, q \in \mathcal{D}$ it holds $||p - q||_1 \le ||p - q||_{\mathcal{A}_k} + \epsilon$. Algorithm:

- 1. Draw $m = \Omega(k/\epsilon^2)$ samples from p and let \hat{p}_m be the empirical distr.
- 2. Compute $h \in \mathcal{D}$ that minimizes $||h \hat{p}_m||_{\mathcal{A}_k}$.

Main Issues:

- 1. How do we bound the value of $k = k(\mathcal{D}, \epsilon)$?
- How do we efficiently perform the "projection" step?
 (Non-convex optimization problem)

Solution: Replace \mathcal{D} by $\mathcal{P}_{t,d}$ such that $\mathcal{D} \approx_{\epsilon/2} \mathcal{P}_{t,d}$

Agnostically Learning Piecewise Polynomials

Application of general framework for $C = P_{t,d}$ and k = O(t(d+1)).

- 1. Draw $m = \Omega(t(d+1)/\epsilon^2)$ samples from p.
- 2. Compute $h \in \mathcal{P}_{t,d}$ that minimizes $||h \hat{p}_m||_{\mathcal{A}_k}$.

Still non-convex optimization problem...

Main Algorithmic Contribution:

Polynomial time algorithm for Step 2.

Agnostically Learning Piecewise Polynomials

Theorem [Chan-D-Servedio-Sun, STOC'14]

There exists an agnostic learning algorithm for $\mathcal{P}_{t,d}$ that uses

 $\widetilde{O}(t(d+1)/\epsilon^2)$

samples and runs in time

 $\operatorname{poly}(t, d+1, 1/\epsilon).$

Moreover, $\Omega(t(d+1)/\epsilon^2)$ samples are information-theoretically necessary.

Recent Progress:

- Piecewise constant: near-linear time [Chan-D-Servedio-Sun, NIPS'14]
- General Case: $O(t(d+1)/\epsilon^2)$ samples and $(t/\epsilon^2) \cdot poly(d)$ time. [Acharya-D-Li-Schmidt'15]

Overview of Techniques

Illustrative Empirical Results [Acharya-D-Li-Schmidt '15]

Predictive performance of straightforward implementation:

speed-up over recent implementations of the MLE.

Application in Databases: Succinct Representation of Data

[Acharya-D-Hegde-Li-Schmidt, PODS'15]: Approximating Data Distributions by Histograms

Classical problem in databases

[Gibbons-Matias-Poosala' 97, Jagadish et al. '98, Chaudhuri-Motwani-Narasayya '98, Thaper-Guha-Indyk-Koudas '02, Gilbert et al. '02, Guha-Koudas-Shim '06, Indyk-Levi-Rubinfeld'12.]

Goal: Given data distribution, construct a succinct approximation (histogram). Minimize computation time, approximation error.

Our Result: Sample optimal, sample-linear time algorithm with optimal error (up to small constant factor).

Experimental Evaluation: Outperforms all previous algorithms for the problem by one to two orders of magnitude.

Empirical Results (I) [Acharya-D-Hegde-Li-Schmidt, PODS'15]

 Two synthetic and one real-word data set (same as [Guha-Koudas-Shim'06])

Outline

- Learning via Piecewise Polynomial Approximation
 - Introduction
 - Framework Overview
 - Statistical Efficiency
 - Computational Efficiency
 - Empirical Results
- Applications to other Inference Tasks
- Future Directions and Concluding Remarks

Additional Applications of Framework

Hypothesis Testing (Property Testing)

• Testing Identity of Structured Distributions [D-Kane-Nikishkin'15a, '15b]

"Given samples from a structured distribution, is it uniform?"

"Given samples from two structured distributions, are they the identical?"

• Testing Shape Restrictions [Canonne-D-Gouleakis-Rubinfeld'15]

"Given samples from a (potentially arbitrary) distribution, is it structured?"

Outline

- Learning via Piecewise Polynomial Approximation
 - Introduction
 - Framework Overview
 - Statistical Efficiency
 - Computational Efficiency
 - Empirical Results
- Applications to other Inference Tasks
- Future Directions and Concluding Remarks

Future Directions

Broad Context:

Complexity theory for statistical estimation

Specific Challenges:

- Agnostic proper learning
- "Instance optimal" (adaptive) algorithms
- Tradeoffs between sample size and computational efficiency

Thank you for your attention!