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This Talk

Algorithmic Framework for Distribution Estimation:
Leads to fast & robust estimators
for a wide variety of statistical models.

[Chan-D-Servedio-Sun, STOC’14]
[Chan-D-Servedio-Sun, NIPS’14]
[Acharya-D-Hegde-Li-Schmidt, PODS’15]

[Acharya-D-Li-Schmidt, manuscript’15]
Key ldea:

Exploit piecewise polynomial approximation
for structured model estimation




This Talk

A family of optimal estimators for hypothesis testing
for a wide variety of structured models.

“Given samples from a statistical model does it satisfy a given property?”

[Daskalakis-D-Servedio-Valiant-Valiant, SODA'13]
[Chan-D-Valiant-Valiant, SODA'14]
[D-Kane-Nikishkin, SODA'15]

[D-Kane-Nikishkin, manuscript’19]
[Canonne-D-Gouleakis-Rubinfeld, manuscript’15]



Main Message of the Talk

We can algorithmically exploit the underlying structure
to perform statistical estimation efficiently.
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Distribution Learning (Density Estimation)

Given samples (observations) from an unknown probability distribution
(model), construct an accurate estimate of the distribution.

» C(Classical Problem in Statistics
* Introduced by Karl Pearson (1891).

« Last fifteen years (TCS): computational aspects




Distribution Learning: History

« Histograms [Pearson, 1895] N

« Kernel methods [M. Rosenblatt, 1956]

* Metric Entropy [A.N. Kolmogorov, 1960]

 Wavelets
[Donoho, Johnstone, Kerkyacharian, Picard, '90’s]

Many others: Nearest Neighbor, Orthogonal Series, ...

Focus traditionally on sample size.



Types of Structured Distributions

« Distributions with “shape restrictions”

monotone
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« Simple combinations of simple distributions

Mixtures of simple distributions

mixtures of Gaussians

Sums of simple distributions

Poisson Binomial
Distributions




History

Nonparametric Estimation under “shape restrictions”

Long line of work in statistics since the 1950’s
[Gre’56, Rao69, Weg70, Gro85, Bir87,...]

« Shape restrictions studied in early work: monotonicity, unimodality,
concavity, convexity, Lipschitz continuity, ...

* Very active research area: log-concavity, k-monotonicity, ...

[Balabdaoui-Wellner'07, Balabdaoui-Rufibach-Wellner'09, Walther’'09,
Dumbgen-Rufibach’09, Cule-Samworth’10, Koenker-Mizera'10,
Guntuboyina-Sen’13, Doss-Wellner’13, Kim-Samworth’14]

« Standard tool in these settings: MLE



Distribution Learning: Definition

« Learning problem defined by family D of
distributions

« Target distribution p € D unknown to learner.

« Learner given sample of IID draws from p.
Output: with probability > 9/10 output & satisfying

1h =pl <

Goal: Sample optimal & computationally efficient algorithms



Agnostic Learning: Definition

« Learning problem defined by class D of distributions

« Target distribution p unknown to learner and let
OPT = infyep|lp — ¢l

« Learner given sample of IID draws from p p

Output: with probability > 9/10 output h satisfying

Ih — plly < OPT + .

Goal: Sample optimal & computationally efficient algorithms



Learning Arbitrary Discrete Distributions

Let D be the set of all distributions over [/V].
What is the best learning algorithm?

123 - N

Simple answer (folklore):
«  Algorithm with sample (and time) complexity O(IN/€?).

. Information theoretic lower bound of Q(NN/€?).



Learning Arbitrary Discrete Distributions

Learning an arbitrary distribution over [V |:
Sample size O(N/€?)
necessary and sufficient

123 - N

When can we do better?

Which distributions are easy to learn, which are
hard (and why)?




Structure and Statistical Estimation

General Recipe for Statistical Estimation:

Given a “complex” distribution family D.

1. Find a “canonical” class of distributions C that
approximates D well.

(For every p € D thereis ¢ € C suchthat p = q.)

2. Use samples from p to estimate it as if it was gq.

Reduction-based approach.
Main difficulty: Algorithm for C should be robust to error in the data.

Question: Which “canonical” class should we use?



Piecewise polynomial distributions

Distribution p is t-piecewise degree-d if there exists a partition of
the domain into ¢ intervals such that within each interval, the density

of p is a degree-d polynomial.
Let P: 4 be the family of all such distributions.

NN




Overview of Framework

Agnostic Learner

peD

t,d s.t.: Hypothesis
>

e >0 Pt,d ~e/2 D h

t-(d+1) s.t.

foreach p € D there is

q < Pt,d with \
lqg —pll1 < €/2

/

min

|h = plly < OPT +¢/2
<e€/2+¢€/2 \

\



Why Piecewise Polynomials?

* Analogy with PAC learning of Boolean functions
[Linial-Mansour-Nisan’93]

« Common method in statistics: fitting splines to data
[Wegman-Wright'83, Stone et al.’90’s, Willet-Nowak'07]

« Gives sample optimal and computationally efficient estimators for
wide range of distribution families



Results: Learning Structured Families

revious wor t =logn/e,d =0 Birgé’87

(parameter estimation):

: L _ _ Daskalakis-D-
Mmtra-Vallza(l;t) 10 t=klogn/e,d=0 Servedio'12
(1/e€) t = log(n/e),d = 0 Chan-D-Servedio-
hazard raw — 10g\n/€),a = Sun’ 13
log-concave Chan-D-Servedio-
k-mixture O(k/€5/2) t="k/ve d=1 Sun’ 14, D-Kane’15
Gaussian Chan-D-Servedio-
t=k,d=1 :
k-mixture ’ og(k/e) Sun’ 14
Poisson/Binomial ~ Daskalakis-D-
k-mixture O(k/€%) t =k,d=log(k/e) Stewart 15
Besov spaces 0(1/e2+1/0‘) t=¢e U g = [a] Devore’ 98
k-monotone O(k /2 +1/) t=Fk d=e /" Konovalov-

Leviatan’07



Statistical Performance: Intuition (I)

Question: Let p, g be probability density functions. How many samples
are required to distinguish between them?

Partial Answer: If p, g have a few “crossings”, distinguishing is easy.
A




Statistical Performance: Intuition (1)

Question: Let p, g be probability density functions. How many samples
are required to distinguish between them?

Partial Answer: If p, g have a few “crossings”, distinguishing is easy.

Typically, unbounded many crossings, but only a few are important.

A




“Complexity measure” for learning a
distribution family

Definition. For p,¢ : R — R, and k£ > 1, we define the A, - distance
between p, g as follows:

k
lp—qlla, = sup > |p(L) — q(L)]
I=(Ii)f_q i=1

Il 12 ]3 [k
I I || I I | I || I I

Upper Bound on Sample Complexity: For a family of one-dimensional
distributions D ande > 0, let k = k(D,€) be the smallest integer
such that for any p,q € D it holds

lp — qll1 = |lp — ¢l 4, -

Then, the parameter k is an upper bound on the sample complexity of
agnostic learning for D.



Statistical Estimator

Lemma. Forany D and ¢ > 0, let k = k(D, €) be such that for any

p,q € Ditholds ||p — q||1 < |lp — ql|4, + €. Then there exists an
agnostic learning algorithm for D using O(k/e*) samples.

Proof Sketch.
Consider the following procedure:
1. Draw m = Q(k/e*) samples from p and let p,,, be the empirical distr.

2. Compute h € D that minimizes||h — D || 4, .

Analysis:
Empirical Process Theory (Vapnik, Chervonenkis, Dudley ~70’s)



Difficulties in Implementing Estimator

\_

4 Forany Dand e > 0, let k = k(D,e) be such that forany p,q € D )

itholds [|lp — ql[1 < [lp — qlla, +e€
Algorithm:

1. Draw m = Q(k/e*) samples from p and let Pm be the empirical distr.

2. Compute h € D that minimizes ||h — D || 4, .

J

Main Issues:
1. How do we bound the value of k = k(D, €)?

2. How do we efficiently perform the “projection” step?
(Non-convex optimization problem)

Solution: Replace D by P; 4 suchthat D =5 P; 4



Agnostically Learning Piecewise Polynomials

-
Application of general framework for C = P; 4 and k = O(t(d + 1)).

1. Draw m = Q(t(d + 1) /€*) samples from p.
2. Compute h € P; 4 that minimizes ||k — Din|| 4, .

\

Still non-convex optimization problem...

Main Algorithmic Contribution:

Polynomial time algorithm for Step 2.



Agnostically Learning Piecewise Polynomials

Georem [Chan-D-Servedio-Sun, STOC’'14] \

There exists an agnostic learning algorithm for P; 4 that uses
O(t(d+1)/e?)

samples and runs in time
poly(t,d + 1,1/¢).

@)reover, Q(t(d + 1)/€*) samples are information-theoretically necessary)

Recent Progress:

» Piecewise constant: near-linear time [Chan-D-Servedio-Sun, NIPS’14]
- General Case: O(t(d + 1)/¢*) samples and (t/€?) - poly(d) time.
[Acharya-D-Li-Schmidt’15]



Overview of Techniques




Running time

lllustrative Empirical Results
[Acharya-D-Li-Schmidt "15]

Predictive performance of straightforward implementation:
speed-up over recent implementations of the MLE.
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Application in Databases: Succinct
Representation of Data

[Acharya-D-Hegde-Li-Schmidt, PODS’15]: Approximating Data
Distributions by Histograms

Classical problem in databases

[Gibbons-Matias-Poosala' 97, Jagadish et al. '98, Chaudhuri-Motwani-
Narasayya '98, Thaper-Guha-Indyk-Koudas '02, Gilbert et al. '02, Guha-
Koudas-Shim '06, Indyk-Levi-Rubinfeld'12.]

Goal: Given data distribution, construct a succinct approximation
(histogram). Minimize computation time, approximation error.

Our Result: Sample optimal, sample-linear time algorithm with optimal
error (up to small constant factor).

Experimental Evaluation: Outperforms all previous algorithms for the
problem by one to two orders of magnitude.



Empirical Results (1)
[Acharya-D-Hegde-Li-Schmidt, PODS'15]

« Two synthetic and one real-word data set (same as [Guha-Koudas-
Shim’06])
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Additional Applications of Framework

Hypothesis Testing (Property Testing)

« Testing Identity of Structured Distributions [D-Kane-Nikishkin’15a, ‘“15b]
“Given samples from a structured distribution, is it uniform?”

“Given samples from two structured distributions, are they the identical?”
« Testing Shape Restrictions [Canonne-D-Gouleakis-Rubinfeld’15]

“Given samples from a (potentially arbitrary) distribution, is it structured?”
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Future Directions

Broad Context:
Complexity theory for statistical estimation
Specific Challenges:
« Agnostic proper learning
« “Instance optimal” (adaptive) algorithms
« Tradeoffs between sample size and computational efficiency

Thank you for your attention!



