Tradeoffs in Large Scale Learning:
Statistical Accuracy vs. Numerical Precision

Sham M. Kakade
Microsoft Research, New England
Statistical estimation involves optimization.

Problem:
- Find the minimizer w^* of
 \[L(\vec{w}) = \mathbb{E}[\text{loss}(\vec{w}, \text{point})] \]
- You only get n samples.

Example: Estimate a linear relationship with n points in d dimensions?
- Costly on large problems: $O(nd^2 + d^3)$ runtime, $O(d^2)$ memory
- How should we approximate our solution?
Statistics vs. Computation

Stochastic approximation
- e.g. stochastic gradient descent
- obtain poor accuracy, quickly?
- simple to implement

Numerical analysis
- e.g. (batch) gradient descent
- obtain high accuracy, slowly?
- more complicated

What would you do?
Machine learning at scale!

Vowpal Wabbit

The Vowpal Wabbit (VW) project is a fast out-of-core learning system sponsored by Microsoft Research and (previously) Yahoo! Research. Support is available through the mailing list.

Can we provide libraries to precisely do statistical estimation at scale?

Analogous to what was done with our linear algebra libraries? (LAPACK/BLAS)?
The Stochastic Optimization Problem

\[\min_w L(w) \text{ where } L(w) = \mathbb{E}_{\text{point} \sim D}[\text{loss}(w, \text{point})] \]

With \(N \) sampled points from \(D \),

\[p_1, p_2, \ldots, p_N \]

how do you estimate \(w^* \), the minima of \(P \)?

Your expected error/excess risk/regret is:

\[\mathbb{E}[L(\hat{w}_N) - L(w^*)] \]

Goal: Do well statistically. Do it quickly.
Without Computational Constraints...

What would you like to do?

Compute the empirical risk minimizer /M-estimator:

\[\hat{w}_N^{\text{ERM}} \in \arg\min_w \frac{1}{N} \sum_{i=1}^{N} \text{loss}(w, \rho_i). \]

Consider the ratio:

\[\frac{\mathbb{E}[L(\hat{w}_N^{\text{ERM}}) - L(w_*)]}{\mathbb{E}[L(\hat{w}_N) - L(w_*)]} . \]

Can you compete with the ERM on every problem efficiently?

S. M. Kakade (MSR)
This Talk

Theorem

For linear/logistic regression, generalized linear models, M-estimation, (i.e. assume “strong convexity” + “smoothness”), we provide a streaming algorithm which:

Computationally:
- single pass; memory is $O(\text{one sample})$
- trivially parallelizable

Statistically:
- achieves the statistical rate of the best fit on every problem (even considering constant factors)
- (super)-polynomially decreases the initial error

Related work: Juditsky & Polyak (1992); Dieuleveut & Bach (2014);
Outline

1. **Statistics:**
 the statistical rate of the ERM

2. **Computation:**
 optimizing sums of convex functions

3. **Computation + Statistics:**
 combine ideas
Precisely, what is the error of \hat{w}^ERM_N?

$$\sigma^2 := \frac{1}{2} \mathbb{E} \left[\| \nabla \text{loss}(w_*, p) \|^2 (\nabla^2 L(w_*))^{-1} \right]$$

Thm: (e.g. van der Vaart (2000)), Under regularity conditions, e.g.

- loss is convex (almost surely)
- loss is smooth (almost surely)
- $\nabla^2 L(w_*)$ exists and is positive definite.

we have,

$$\lim_{N \to \infty} \frac{\mathbb{E}[L(\hat{w}^\text{ERM}_N) - L(w_*)]}{\sigma^2 / N} = 1$$
optimizing sums of convex functions

$$\min_w L(w) \text{ where } L(w) = \frac{1}{N} \sum_{i=1}^{N} \text{loss}(w, p_i)$$

Assume:
- $L(w)$ is μ strongly convex
- loss is L-smooth
- $\kappa = L/\mu$ is the effective condition number
optimizing sums of convex functions

\[\min_w L(w) \text{ where } L(w) = \frac{1}{N} \sum_{i=1}^{N} \text{loss}(w, p_i) \]

Assume:
- \(L(w) \) is \(\mu \) strongly convex
- \(\text{loss} \) is \(L \)-smooth
- \(\kappa = L/\mu \) is the effective condition number

Stochastic Gradient Descent: (Robbins & Monro, ’51)

Linear convergence:
Strohmer & Vershynin (2009), Yu & Nesterov (2010),
Le Roux, Schmidt, Bach (2012), Shalev-Shwartz & Zhang, (2013),
(SVRG) Johnson & Zhang (2013)
SGD update rule: at each time t,

sample a point p

$$w \leftarrow w - \eta \nabla \text{loss}(w, p)$$
Stochastic Gradient Descent (SGD)

- **SGD update rule**: at each time t,

 sample a point ρ

 \[
 w \leftarrow w - \eta \nabla \text{loss}(w, \rho)
 \]
Stochastic Gradient Descent (SGD)

SGD update rule: at each time t,

sample a point p

$$w \leftarrow w - \eta \nabla \text{loss}(w, p)$$

Problem: even if $w = w_*$, the update changes w.

How do you fix this?
Stochastic Variance Reduced Gradient (SVRG)

1. **exact gradient computation:** at stage s, using \tilde{w}_s, compute:

$$\nabla L(\tilde{w}_s) = \frac{1}{N} \sum_{i=1}^{N} \nabla \text{loss}(\tilde{w}_s, p_i)$$

2. **corrected SGD:** initialize $w \leftarrow \tilde{w}_s$. for m steps,

 sample a point p

 $$w \leftarrow w - \eta \left(\nabla \text{loss}(w, p) - \nabla \text{loss}(\tilde{w}_s, p) + \nabla L(\tilde{w}_s) \right)$$

3. **update and repeat:** $\tilde{w}_{s+1} \leftarrow w$.

Two ideas:

- If $\tilde{w}_s = w^*$, then no update.
- Unbiased updates: blue term is mean 0.
exact gradient computation: at stage \(s \), using \(\tilde{w}_s \), compute:

\[
\nabla L(\tilde{w}_s) = \frac{1}{N} \sum_{i=1}^{N} \nabla \text{loss}(\tilde{w}_s, p_i)
\]

corrected SGD: initialize \(w \leftarrow \tilde{w}_s \). for \(m \) steps,

sample a point \(p \)

\[
w \leftarrow w - \eta \left(\nabla \text{loss}(w, p) - \nabla \text{loss}(\tilde{w}_s, p) + \nabla L(\tilde{w}_s) \right)
\]

update and repeat: \(\tilde{w}_{s+1} \leftarrow w \).

Two ideas:
- If \(\tilde{w} = w_* \), then no update.
- unbiased updates: blue term is mean 0.
SVRG has linear convergence

- **Thm:** (Johnson & Zhang, ’13) SVRG has linear convergence, for fixed η.

\[
\mathbb{E}[L(\tilde{w}_s) - L(w^*)] \leq e^{-s} \cdot (L(\tilde{w}_0) - L(w^*))
\]

- many recent algorithms with similar guarantees
 Yu & Nesterov ’10; Shalev-Shwartz & Zhang ’13

- **Issues:** must store dataset, requires many passes

What about the statistical rate?
Our problem:

$$\min_w L(w) \text{ where } L(w) = \mathbb{E}[\text{loss}(w, \text{point})]$$

(Streaming model) We obtain one sample at a time.
1. estimate the gradient: at stage s, using \tilde{w}_s, with k_s fresh samples, estimate $\hat{\nabla}L(\tilde{w}_s)$

2. corrected SGD: initialize $w \leftarrow \tilde{w}_s$. for m steps:

 sample a point

 $w \leftarrow w - \eta \left(\nabla \text{loss}(w, p) - \nabla \text{loss}(\tilde{w}_s, p) + \hat{\nabla}L(\tilde{w}_s) \right)$

3. update and repeat: $\tilde{w}_{s+1} \leftarrow w$

single pass; memory of O(one parameter); parallelizable
Theorem (Frostig, Ge, Kakade, & Sidford ’14)

- κ effective condition number
- choose $p > 2$
- schedule: increasing batch size $k_s = 2k_{s-1}$. fixed m and $\eta = \frac{1}{2^p}$.

If total sample size N is larger than multiple of κ (depends on p), then

$$ \mathbb{E}[L(\hat{w}_N) - L(w_*)] \leq 1.5 \frac{\sigma^2}{N} + \frac{L(\hat{w}_0) - L(w_*)}{(\frac{N}{\kappa})^p}$$

σ^2 / N is the ERM rate.

- general case: use self-concordance
We can obtain (nearly) the same rate as the ERM in a single pass.