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Problem Setting

Observe n samples from discrete distribution P with support size S

we want to estimate

H(P ) =

S∑

i=1

−pi ln pi (Shannon’48)

Fα(P ) =

S∑

i=1

pαi , α > 0 (Diversity, Simpson index, Rényi entropy, etc)
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What was known?

Start with entropy: H(P ) =
∑S

i=1−pi ln pi.

Question

Optimal estimator for H(P ) given n samples?

No unbiased estimator, cannot calculate minimax estimator...

(Lehmann and Casella’98)

Classical asymptotics

Optimal estimator for H(P ) when n→∞?
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Classical problem

Empirical Entropy

H(Pn) =

S∑

i=1

−p̂i ln p̂i

where p̂i is the empirical frequency of symbol i

H(Pn) is the Maximum Likelihood Estimator (MLE)

Theorem

The MLE H(Pn) is asymptotically efficient. (Hájek–Le Cam theory)
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Is there something missing?

Optimal estimator for finite samples unknown :(

Question

How about using MLE when n is finite?

We will show it is a very bad idea in general.
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Our evaluation criterion: minimax decision theory

Denote by MS distributions with support size S.

Rmax
n (F, F̂ )

∆
= sup

P∈MS

EP [(F (P )− F̂ )2]

Minimax risk
∆
= inf

all F̂
sup

P∈MS

EP [(F (P )− F̂ ))2]

Notation:

an � bn ⇔ 0 < c ≤ an
bn
≤ C <∞

an & bn ⇔ an
bn
≥ C > 0

L2 Risk = Bias2 + Variance

EP [(F (P )− F̂ )2] =
(
F (P )− EP F̂

)2
+ Var(F̂ )
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Shall we analyze MLE non-asymptotically?

Theorem (J., Venkat, Han, Weissman’14)

Rmax
n (H,H(Pn)) � S2

n2︸︷︷︸
Bias2

+
ln2 S

n︸ ︷︷ ︸
Variance

, n & S

n� S ⇔ Consistency

Bias is dominating if n is not too large compared to S
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Can we reduce the bias?

Taylor series? (Taylor expansion of H(Pn) around Pn = P )

Requires n� S (Paninski’03)

Jackknife?

Requires n� S (Paninski’03)

Bootstrap?

Requires at least n� S (Han, J., Weissman’15)

Bayes estimator under Dirichlet prior?

Requires at least n� S (Han, J., Weissman’15)

Plug-in Dirichlet smoothed distribution?

Requires at least n� S (Han, J., Weissman’15)
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There are many more...

Coverage adjusted estimator (Chao, Shen’03, Vu, Yu, Kass’07)

BUB estimator (Paninski’03)

Shrinkage estimator (Hausser, Strimmer’09)

Grassberger estimator (Grassberger’08)

NSB estimator (Nemenman, Shafee, Bialek’02)

B-Splines estimator (Daub et al. 04)

Wagner, Viswanath, Kulkarni’11

Ohannessian, Tan, Dahleh’ 11

...

Recent breakthrough: Valiant and Valiant’11: the exact phase transition
of entropy estimation is n � S/ lnS

Linear Programming based estimator not shown to achieve minimax
rates (dependence on ε)

Another one achieves it for n . S1.03

lnS .

Not clear about other functionals
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Systematic improvement

Question

Can we find a systematic methodology to improve MLE, and achieve the
minimax rates for a wide class of functionals?

George Pólya: “the more general problem may be easier to solve than the
special problem”.
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Start from first principle

X ∼ B(n, p), if we use g(X) to estimate f(p):

Bias(g(X)) , f(p)− Epg(X)

= f(p)−
n∑

j=0

g(j)

(
n

j

)
pj(1− p)n−j

Only polynomials of order ≤ n can be estimated without bias

Ep
[
X(X − 1) . . . (X − r + 1)

n(n− 1) . . . (n− r + 1)

]
= pr, 0 ≤ r ≤ n

Bias corresponds to polynomial approximation error
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Minimize the maximum bias

What if we choose g(X) such that

g = arg min
g

sup
p∈[0,1]

|Bias(g(X))|

Paninski’03

It does not work for entropy. (Variance is too large!)

Best polynomial approximation:

Pk(x) , arg min
Pk∈Polyk

sup
x∈D
|f(x)− Pk(x)|
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We only approximate when the problem is hard!

0
1

unbiased estimate

of best polynomial

approximation of

order lnn

lnn
n

“nonsmooth” “smooth”

f(p̂i)− f ′′(p̂i)p̂i(1−p̂i)
2n

p̂i

f(p)
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Why lnn
n threshold, lnn order?
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Approximation theory in functional estimation

Lepski, Nemirovski, Spokoiny’99, Cai and Low’11, Wu and Yang’14
(entropy estimation lower bound)

Duality with shrinkage (J., Venkat, Han, Weissman’14): a new field
to be explored!
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A class of functionals

Note Fα(P ) =
∑S

i=1 p
α
i , α > 0. [J., Venkat, Han, Weissman’14] showed

Minimax L2 rates L2 rates of MLE

H(P )

S2

(n lnn)2
+ ln2 S

n

S2

n2 + ln2 S
n

Fα(P ), 0 < α ≤ 1
2

S2

(n lnn)2α

S2

n2α

Fα(P ), 1
2 < α < 1

S2

(n lnn)2α
+ S2−2α

n

S2

n2α + S2−2α

n

Fα(P ), 1 < α < 3
2

(n lnn)−2(α−1)

n−2(α−1)

Fα(P ), α ≥ 3
2 n−1 n−1

Effective sample size enlargement

Minimax rate-optimal with n samples ⇔ MLE with n lnn samples
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Sample complexity perspectives

MLE Optimal

H(P ) Θ(S) Θ(S/ lnS)

Fα(P ), 0 < α < 1 Θ(S1/α) Θ(S1/α/ lnS)

Fα(P ), α > 1 Θ(1) Θ(1)

Existing literature on Fα(P ) for 0 < α < 2: minimax rates unknown,
sample complexity unknown, optimal schemes unknown..
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Unique features of our entropy estimator

One realization of a general methodology

Achieve the minimax rate (lower bound due to Wu and Yang’14)

S2

(n lnn)2
+

ln2 S

n

Agnostic to the knowledge of S

Jiantao Jiao (Stanford University) Boosting the Effective Sample Size March 17th, 2015 18 / 35



Unique features of our entropy estimator

One realization of a general methodology

Achieve the minimax rate (lower bound due to Wu and Yang’14)

S2

(n lnn)2
+

ln2 S

n

Agnostic to the knowledge of S

Jiantao Jiao (Stanford University) Boosting the Effective Sample Size March 17th, 2015 18 / 35



Unique features of our entropy estimator

One realization of a general methodology

Achieve the minimax rate (lower bound due to Wu and Yang’14)

S2

(n lnn)2
+

ln2 S

n

Agnostic to the knowledge of S

Jiantao Jiao (Stanford University) Boosting the Effective Sample Size March 17th, 2015 18 / 35



Unique features of our entropy estimator

Easily implementable: approximation order lnn, 500 order
approximation using 0.46s on PC. (Chebfun)
Empirical performance outperforms every available entropy estimator
(Code to be released this week, available upon request)

Some statisticians raised interesting questions: “We may not use this
estimator unless you prove it is adaptive.”

Jiantao Jiao (Stanford University) Boosting the Effective Sample Size March 17th, 2015 19 / 35



Unique features of our entropy estimator

Easily implementable: approximation order lnn, 500 order
approximation using 0.46s on PC. (Chebfun)
Empirical performance outperforms every available entropy estimator
(Code to be released this week, available upon request)

Some statisticians raised interesting questions: “We may not use this
estimator unless you prove it is adaptive.”

Jiantao Jiao (Stanford University) Boosting the Effective Sample Size March 17th, 2015 19 / 35



Adaptive estimation

Near-minimax estimator:

sup
P∈MS

EP
(
ĤOur −H(P )

)2
� inf

Ĥ
sup

P∈MS

EP
(
Ĥ −H(P )

)2

What if we know a priori H(P ) ≤ H? We want

sup
P∈MS(H)

EP
(
ĤOur −H(P )

)2
� inf

Ĥ
sup

P∈MS(H)
EP
(
Ĥ −H(P )

)2
,

where MS(H) = {P : H(P ) ≤ H,P ∈MS}.
Can our estimator satisfy all these requirements without knowing S and
H?
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ĤOur −H(P )

)2
� inf

Ĥ
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Our estimator is adaptive!

Han, J., Weissman’15 showed

Theorem

inf
Ĥ

sup
P∈MS(H)

EP |Ĥ −H(P )|2 �
{

S2

(n lnn)2
+ H lnS

n if S lnS ≤ enH lnn,
[
H

lnS ln
(
S lnS
nH lnn

)]2
otherwise.

(1)

For ε > H
lnS , it requires n & S1−ε/H

H (much smaller than S/ lnS for
small H!) to achieve root MSE ε.

MLE precisely requires n & lnS
H S1−ε/H .

The n⇒ n lnn phenomenon is still true!
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Understanding the generality

“Can you deal with cases where the non-differentiable regime is not just a
point?”
We consider L1(P,Q) =

∑S
i=1 |pi − qi|.

Breakthrough by Valiant and Valiant’11: MLE requires n� S
samples, optimal is S

lnS !

However, VV’11’s construction only proves to be optimal when
S

lnS . n . S.
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Applying our general methodology

The minimax L2 rate is S
n lnn , while MLE is S

n .

The n⇒ n lnn is still true!

We show that VV’11 cannot achieve it when n & S.

However, is that easy to do? The nonsmooth regime is a whole line! How
to cover it?

Use a small square
[
0, lnn

n

]2
?

Use a band?

Use some other shape?
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Bad news

Best polynomial approximation in 2D is not unique.

There exists no efficient algorithm to compute it.

Some polynomial that achieves best approximation rate cannot be
used in our methodology.

All nonsmooth regime design methods mentioned before fail.

Solution: hints from our paper “Minimax estimation of functionals of
discrete distributions”, or wait for soon-be-finished paper “Minimax
estimation of divergence functions”.
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Significant difference in phase transitions

One may think: “Who cares about a lnn improvement?”
Take sequence n = 2S/ lnS, S equally (on log) sampled from 102 to 107.
For each n, S, sample 20 times from a uniform distribution.

The scale of S/n

S/n ∈ [2.2727, 8.0590]
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Significant improvement!
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Mutual Information I(PXY )

Mutual information:

I(PXY ) = H(PX) +H(PY )−H(PXY )

Theorem (J., Venkat, Han, Weissman’14)

n⇒ n lnn also holds.
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Learning Tree Graphical Models

d-dimensional random vector with alphabet size S

X = (X1, X2, . . . , Xd)

Suppose p.m.f. has tree structure

PX =

d∏

i=1

PXi|Xπ(i) ,

X3

X2X5

X6X4

X1

Fig. 1. Diagram of an approximating dependence tree structure. In this exam-
ple, P̂T ≈ PX6

(·)PX1|X6
(·)PX3|X6

(·)PX4|X3
(·)PX2|X3

(·)PX5|X2
(·).

of second order distributions serves as an approximation of
the full joint.

PXn (·) ≈
n∏

i=1

PXπ(i)|Xπ(j(i))
(·) .

This approximation has a tree dependence structure. Depen-
dence tree structures have graphical representations as trees,
which are graphs where all the nodes are connected and there
are no loops. This follows because application of the chain
rule induces a dependence structure which has no loops (e.g.,
no terms of the form PA|B (a|b)PB|C (b|c)PC|A (c|a)), and
this is a reduction of that structure, so it does not introduce
any loops. An example of an approximating tree dependence
structure is shown in Figure 1. In general, the approximation
will not be exact. Denote each tree approximation of PXn (xn)
by P̂T (x

n). Each choice of π(·) and j(·) over {1, · · · , n}
completely specifies a tree structure T . Thus, the tree approx-
imation of the joint using the particular tree T is

P̂T (x
n
1 ) ,

n∏

i=1

PXπ(i)|Xπ(j(i))

(
xπ(i)|xπ(j(i))

)
. (4)

Denote the set of all possible trees T by T .
Chow and Liu’s method obtains the “best” such model

T ∈ T , where the “goodness” is defined in terms of Kullback-
Liebler (KL) distance between the original distribution and
the approximating distribution [11].

Theorem 1:

arg min
T∈T

D(PXn ||P̂T ) = arg max
T∈T

n∑

i=1

I(Xπ(i);Xπ(j(i))) (5)

See [11] for the proof. The optimization objective is equivalent
to maximizing a sum of mutual informations.

They also propose an efficient algorithm to identify this
approximating tree [11]. Calculate the mutual information
between each pair of random variables. Now consider a
complete, undirected graph, in which each of the random
variables is represented as a node. The mutual information
values can be thought of as weights for the corresponding
edges. Finding the dependence tree distribution that maximizes
the sum (5) is equivalent to the graph problem of finding a
tree of maximal weight [11]. Kruskal’s minimum spanning tree
algorithm [29] can be used to reduce the complete graph to a
tree with the largest sum of mutual informations [11]. If mutual
information values are not unique, there could be multiple
solutions. Kruskal’s algorithm has runtime of O(n log n) [30].

IV. MAIN RESULT: CAUSAL DEPENDENCE TREE
APPROXIMATIONS

In situations where there are multiple random processes, the
Chow and Liu method can be used. However, it will consider
all possible arrangements of all the variables, “mixing” the
processes and timings to find the best approximation. An alter-
native approach, which would maintain causality and keep the
processes separate, is to find an approximation to the full joint
probability by identifying causal dependencies between the
processes themselves. In particular, consider finding a causal
dependence tree structure, where instead of conditioning on
a variable using one auxiliary variable as in Chow and Liu,
the conditioning is on a process using one auxilliary pro-
cess. A causal dependence tree has a corresponding graphical
representation as a directed tree graph, or “arborescence.”
An arborescence is a graph with all of the nodes connected
by directed arrows, such that there is one node with no
incoming edges, the “root,” and all other nodes have exactly
one incoming edge [30].

Consider the joint distribution PAM of M random processes
A1, A2, · · · , AM , each of length n. Denote realizations of
these processes as ~a1, ~a2, · · · ,~aM respectively. The joint
distribution of the processes can be approximated in an anal-
ogous manner as before, except that instead of permuting the
index of the set of random variables, consider permutations
on the index set of the processes themselves. For a given
joint probability distribution PAM (~aM ) and tree T, denote the
corresponding approximating causal dependence tree induced
probability to be

P̂T (~a
M ) ,

M∏

h=1

PAπ(h)||Aπ(j(h))
(~aπ(h)||~aπ(j(h))). (6)

Let TC denote the set of all causal dependence trees.

As before, the goal is to obtain the “best” such model T,
where the “goodness” is defined in terms of KL distance
between the original distribution and the approximating
distribution.

Theorem 2:

arg min
T∈TC

D(P ||P̂T ) = arg max
T∈TC

N∑

h=1

I(Aπ(j(h)) → Aπ(h)) (7)

Given n i.i.d. samples from PX , estimate underlying tree structure
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Chow–Liu algorithm (1968)

Natural approach: Maximum Likelihood!

Chow–Liu’68 solved it (2000 citations)

- Maximum Weight Spanning Tree (MWST)
- Empirical mutual information

Theorem (Chow, Liu’68)

EMLE = arg max
EQis a tree

∑

e∈EQ
I(P̂e)

Our approach

Replace empirical mutual information by better estimates!
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Original CL vs. Modified CL

We set d = 7, S = 300, a star graph, sweep n from 1k to 55k.

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of samples n

E
xp

ec
te

d 
w

ro
ng

−
ed

ge
s−

ra
tio

 

 

Original CL

Jiantao Jiao (Stanford University) Boosting the Effective Sample Size March 17th, 2015 30 / 35



8 fold improvement! [and even more]

We set d = 7, S = 300, a star graph, sweep n from 1k to 55k.
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What we did not talk about

How to analyze the bias of MLE

Why bootstrap and jackknife fail

Extensions in multivariate settings (`p distance)

Extensions in nonparametric estimation

Extensions in non-i.i.d. models

Applications in machine learning, medical imaging, computer vision,
genomics, etc
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Hindsight

Unbiased estimation:

approximation basis must satisfy unbiased equation (Kolmogorov’50)
basis have good approximation properties
additional variance incurred by approximation should not be large

Theory of functional estimation ⇔ Analytical properties of functions

The whole field of approximation theory, or even more
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Related work

O. Lepski, A. Nemirovski, and V. Spokoiny’99, “On estimation of the
Lr norm of a regression function”

T. Cai and M. Low’11, “Testing composite hypotheses, Hermite
polynomials and optimal estimation of a nonsmooth functional”,

Y. Wu and P. Yang’14, “Minimax rates of entropy estimation on large
alphabets via best polynomial approximation”,

J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi’14,“The
complexity of estimating Renyi entropy”
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Our work

J. Jiao, K. Venkat, Y. Han, T. Weissman, “Minimax estimation of functionals of
discrete distributions”, to appear in IEEE Transactions on Information Theory

J. Jiao, K. Venkat, Y. Han, T. Weissman, “Maximum likelihood estimation of
functionals of discrete distributrions”, available on arXiv

J. Jiao, K. Venkat, Y. Han, T. Weissman, “Beyond maximum likelihood: from
theory to practice”, available on arXiv

J. Jiao, Y. Han, T. Weissman, “Minimax estimation of divergence functions”, in
preparation.

Y. Han, J. Jiao, T. Weissman, “Adaptive estimation of Shannon entropy”,
available on arXiv

Y. Han, J. Jiao, T. Weissman, “Does Dirichlet prior smoothing solve the Shannon
entropy estimation problem?”, available on arXiv

Y. Han, J. Jiao, T. Weissman, “Bias correction using Taylor series, Bootstrap, and
Jackknife”, in preparation

Y. Han, J. Jiao, T. Weissman, “How to bound of gap of Jensen’s inequality?”, in
preparation

Thank you!
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