Information Measure Estimation and Applications: Boosting the Effective Sample Size from n to $n \ln n$

Jiantao Jiao (Stanford EE)

Joint work with:

Kartik Venkat Yanjun Han Tsachy Weissman Stanford EE Tsinghua EE Stanford EE

Information Theory, Learning, and Big Data Workshop

March 17th, 2015

Observe \boldsymbol{n} samples from discrete distribution \boldsymbol{P} with support size \boldsymbol{S}

we want to estimate

$$\begin{split} H(P) &= \sum_{i=1}^{S} -p_i \ln p_i \quad \text{(Shannon'48)} \\ F_{\alpha}(P) &= \sum_{i=1}^{S} p_i^{\alpha}, \quad \alpha > 0 \quad \text{(Diversity, Simpson index, Rényi entropy, etc)} \end{split}$$

Start with entropy: $H(P) = \sum_{i=1}^{S} -p_i \ln p_i$.

Question

Optimal estimator for H(P) given n samples?

Start with entropy: $H(P) = \sum_{i=1}^{S} -p_i \ln p_i$.

Question

Optimal estimator for H(P) given n samples?

• No unbiased estimator, cannot calculate minimax estimator...

(Lehmann and Casella'98)

Start with entropy: $H(P) = \sum_{i=1}^{S} -p_i \ln p_i$.

Question

Optimal estimator for H(P) given n samples?

• No unbiased estimator, cannot calculate minimax estimator...

(Lehmann and Casella'98)

Empirical Entropy

$$H(P_n) = \sum_{i=1}^{S} -\hat{p}_i \ln \hat{p}_i$$

where \hat{p}_i is the empirical frequency of symbol i

• $H(P_n)$ is the Maximum Likelihood Estimator (MLE)

Empirical Entropy

$$H(P_n) = \sum_{i=1}^{S} -\hat{p}_i \ln \hat{p}_i$$

where \hat{p}_i is the empirical frequency of symbol i

• $H(P_n)$ is the Maximum Likelihood Estimator (MLE)

Theorem

The MLE $H(P_n)$ is asymptotically efficient. (Hájek–Le Cam theory)

Optimal estimator for finite samples unknown :(

Question

How about using MLE when n is finite?

Optimal estimator for finite samples unknown :(

Question

How about using MLE when n is finite?

We will show it is a very bad idea in general.

Denote by \mathcal{M}_S distributions with support size S.

Boosting the Effective Sample Size

Jiantao Jiao (Stanford University)

$$R_n^{\max}(F, \hat{F}) \stackrel{\Delta}{=} \qquad \mathbb{E}_P[(F(P) - \hat{F})^2]$$

$$R_n^{\max}(F, \hat{F}) \stackrel{\Delta}{=} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P[(F(P) - \hat{F})^2]$$

$$R_n^{\max}(F, \hat{F}) \stackrel{\Delta}{=} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P[(F(P) - \hat{F})^2]$$

Minimax risk $\stackrel{\Delta}{=} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P[(F(P) - \hat{F}))^2]$

$$R_n^{\max}(F, \hat{F}) \stackrel{\Delta}{=} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P[(F(P) - \hat{F})^2]$$

Minimax risk $\stackrel{\Delta}{=} \inf_{\text{all } \hat{F}} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P[(F(P) - \hat{F}))^2]$

Denote by \mathcal{M}_S distributions with support size S.

$$R_n^{\max}(F, \hat{F}) \stackrel{\Delta}{=} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P[(F(P) - \hat{F})^2]$$

Minimax risk $\stackrel{\Delta}{=} \inf_{\text{all } \hat{F}} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P[(F(P) - \hat{F}))^2]$

Notation:

• $a_n \asymp b_n \Leftrightarrow 0 < c \le \frac{a_n}{b_n} \le C < \infty$ • $a_n \gtrsim b_n \Leftrightarrow \frac{a_n}{b_n} \ge C > 0$

Denote by \mathcal{M}_S distributions with support size S.

$$\begin{split} R_n^{\max}(F, \hat{F}) &\stackrel{\Delta}{=} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P[(F(P) - \hat{F})^2] \\ \text{Minimax risk} &\stackrel{\Delta}{=} \inf_{\text{all } \hat{F}} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P[(F(P) - \hat{F}))^2] \end{split}$$

Notation:

•
$$a_n \asymp b_n \Leftrightarrow 0 < c \le \frac{a_n}{b_n} \le C < \infty$$

• $a_n \gtrsim b_n \Leftrightarrow \frac{a_n}{b_n} \ge C > 0$

$$L_2 \operatorname{Risk} = \operatorname{Bias}^2 + \operatorname{Variance}$$
$$\mathbb{E}_P[(F(P) - \hat{F})^2] = \left(F(P) - \mathbb{E}_P \hat{F}\right)^2 + \operatorname{Var}(\hat{F})$$

 $n \gg S \Leftrightarrow \mathsf{Consistency}$

Bias is dominating if n is not too large compared to S

- Taylor series? (Taylor expansion of $H(P_n)$ around $P_n = P$)
 - Requires $n \gg S$ (Paninski'03)

• Taylor series? (Taylor expansion of $H(P_n)$ around $P_n = P$)

- Requires $n \gg S$ (Paninski'03)
- Jackknife?
 - Requires $n \gg S$ (Paninski'03)

• Taylor series? (Taylor expansion of $H(P_n)$ around $P_n = P$)

- Requires $n \gg S$ (Paninski'03)
- Jackknife?
 - Requires $n \gg S$ (Paninski'03)
- Bootstrap?
 - Requires at least $n \gg S$ (Han, J., Weissman'15)

- Taylor series? (Taylor expansion of $H(P_n)$ around $P_n = P$)
 - Requires $n \gg S$ (Paninski'03)
- Jackknife?
 - Requires $n \gg S$ (Paninski'03)
- Bootstrap?
 - Requires at least $n \gg S$ (Han, J., Weissman'15)
- Bayes estimator under Dirichlet prior?
 - Requires at least $n \gg S$ (Han, J., Weissman'15)

- Taylor series? (Taylor expansion of $H(P_n)$ around $P_n = P$)
 - Requires $n \gg S$ (Paninski'03)
- Jackknife?
 - Requires $n \gg S$ (Paninski'03)
- Bootstrap?
 - Requires at least $n \gg S$ (Han, J., Weissman'15)
- Bayes estimator under Dirichlet prior?
 - Requires at least $n \gg S$ (Han, J., Weissman'15)
- Plug-in Dirichlet smoothed distribution?
 - Requires at least $n \gg S$ (Han, J., Weissman'15)

There are many more...

- Coverage adjusted estimator (Chao, Shen'03, Vu, Yu, Kass'07)
- BUB estimator (Paninski'03)
- Shrinkage estimator (Hausser, Strimmer'09)
- Grassberger estimator (Grassberger'08)
- NSB estimator (Nemenman, Shafee, Bialek'02)
- B-Splines estimator (Daub et al. 04)
- Wagner, Viswanath, Kulkarni'11
- Ohannessian, Tan, Dahleh' 11

• ...

There are many more...

- Coverage adjusted estimator (Chao, Shen'03, Vu, Yu, Kass'07)
- BUB estimator (Paninski'03)
- Shrinkage estimator (Hausser, Strimmer'09)
- Grassberger estimator (Grassberger'08)
- NSB estimator (Nemenman, Shafee, Bialek'02)
- B-Splines estimator (Daub et al. 04)
- Wagner, Viswanath, Kulkarni'11
- Ohannessian, Tan, Dahleh' 11

Recent breakthrough: Valiant and Valiant'11: the exact phase transition of entropy estimation is $n \asymp S/\ln S$

...

There are many more...

- Coverage adjusted estimator (Chao, Shen'03, Vu, Yu, Kass'07)
- BUB estimator (Paninski'03)
- Shrinkage estimator (Hausser, Strimmer'09)
- Grassberger estimator (Grassberger'08)
- NSB estimator (Nemenman, Shafee, Bialek'02)
- B-Splines estimator (Daub et al. 04)
- Wagner, Viswanath, Kulkarni'11
- Ohannessian, Tan, Dahleh' 11

```
• ...
```

Recent breakthrough: Valiant and Valiant'11: the exact phase transition of entropy estimation is $n\asymp S/\ln S$

- Linear Programming based estimator not shown to achieve minimax rates (dependence on ϵ)
- Another one achieves it for $n \lesssim \frac{S^{1.03}}{\ln S}$.
- Not clear about other functionals

Question

Can we find a systematic methodology to improve MLE, and achieve the minimax rates for a wide class of functionals?

George Pólya: "the more general problem may be easier to solve than the special problem".

 $X \sim \mathsf{B}(n,p)$, if we use g(X) to estimate f(p):

$$\begin{aligned} \mathsf{Bias}(g(X)) &\triangleq f(p) - \mathbb{E}_p g(X) \\ &= f(p) - \sum_{j=0}^n g(j) \binom{n}{j} p^j (1-p)^{n-j} \end{aligned}$$

< 67 ▶

э

 $X \sim \mathsf{B}(n,p)$, if we use g(X) to estimate f(p):

$$\begin{aligned} \mathsf{Bias}(g(X)) &\triangleq f(p) - \mathbb{E}_p g(X) \\ &= f(p) - \sum_{j=0}^n g(j) \binom{n}{j} p^j (1-p)^{n-j} \end{aligned}$$

• Only polynomials of order $\leq n$ can be estimated without bias

$$\mathbb{E}_p\left[\frac{X(X-1)\dots(X-r+1)}{n(n-1)\dots(n-r+1)}\right] = p^r, \quad 0 \le r \le n$$

Bias corresponds to polynomial approximation error

Minimize the maximum bias

What if we choose g(X) such that

$$g = \arg\min_{g} \sup_{p \in [0,1]} |\mathsf{Bias}(g(X))|$$

Minimize the maximum bias

What if we choose g(X) such that

$$g = \arg\min_g \sup_{p \in [0,1]} |\mathsf{Bias}(g(X))|$$

Paninski'03

It does not work for entropy. (Variance is too large!)

Minimize the maximum bias

What if we choose g(X) such that

$$g = \arg\min_g \sup_{p \in [0,1]} |\mathsf{Bias}(g(X))|$$

Paninski'03

It does not work for entropy. (Variance is too large!)

Best polynomial approximation:

$$P_k(x) \triangleq \arg \min_{P_k \in \mathsf{Poly}_k} \sup_{x \in D} |f(x) - P_k(x)|$$

We only approximate when the problem is hard!

Jiantao Jiao (Stanford University)

Boosting the Effective Sample Size

March 17th, 2015

13 / 35

We only approximate when the problem is hard!

We only approximate when the problem is hard!

13 / 35

Why $\frac{\ln n}{n}$ threshold, $\ln n$ order?

73

О НАИЛУЧШЕМ ПРИБЛИЖЕНИИ |x|^p ПРИ ПОМОЩИ МНОГОЧЛЕНОВ ВЕСЬМА ВЫСОКОЙ СТЕПЕНИ*

В статье дается асимптотическое значение наилучшего приближения $E_n|x|^p$ в отрезке [-1, +1] при помощи многочленов весьма высокой степени.

1. В настоящей статье дается доказательство того факта, что наилучие приближение $E_n |x|^p$ на отрезке [-1, +1] при помощи многочлено весьма высокой степени п удовлетворяет асимптотическому равенству

$$E_n |x|^p \sim \frac{\mu(p)}{n^p} \quad (n \to \infty),$$

где p(p) не зависит от n.

Исходным пунктом нашего исследования будет формула

Jiantao Jiao (Stanford University)

Boosting the Effective Sample Size

14 / 35

KP

M

zde
- Lepski, Nemirovski, Spokoiny'99, Cai and Low'11, Wu and Yang'14 (entropy estimation lower bound)
- Duality with shrinkage (J., Venkat, Han, Weissman'14): a new field to be explored!

Note $F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, \alpha > 0$. [J., Venkat, Han, Weissman'14] showed

	Minimax L_2 rates	L_2 rates of MLE
H(P)		$\frac{S^2}{n^2} + \frac{\ln^2 S}{n}$
$F_{\alpha}(P), 0 < \alpha \le \frac{1}{2}$		$\frac{S^2}{n^{2\alpha}}$
$F_{\alpha}(P), \frac{1}{2} < \alpha < 1$		$\frac{S^2}{n^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$
$F_{\alpha}(P), 1 < \alpha < \frac{3}{2}$		$n^{-2(\alpha-1)}$
$F_{\alpha}(P), \alpha \ge \frac{3}{2}$	n^{-1}	n^{-1}

Note $F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, \alpha > 0$. [J., Venkat, Han, Weissman'14] showed

	Minimax L_2 rates	L_2 rates of MLE
H(P)	$\frac{S^2}{(n\ln n)^2} + \frac{\ln^2 S}{n}$	$\frac{S^2}{n^2} + \frac{\ln^2 S}{n}$
$F_{\alpha}(P), 0 < \alpha \le \frac{1}{2}$	$\frac{S^2}{(n\ln n)^{2\alpha}}$	$\frac{S^2}{n^{2\alpha}}$
$F_{\alpha}(P), \frac{1}{2} < \alpha < 1$	$\frac{S^2}{(n\ln n)^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$	$\frac{S^2}{n^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$
$F_{\alpha}(P), 1 < \alpha < \frac{3}{2}$	$(n\ln n)^{-2(\alpha-1)}$	$n^{-2(\alpha-1)}$
$F_{\alpha}(P), \alpha \ge \frac{3}{2}$	n^{-1}	n^{-1}

Note $F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, \alpha > 0$. [J., Venkat, Han, Weissman'14] showed

	Minimax L_2 rates	L_2 rates of MLE
H(P)	$\frac{S^2}{(n\ln n)^2} + \frac{\ln^2 S}{n}$	$\frac{S^2}{n^2} + \frac{\ln^2 S}{n}$
$F_{\alpha}(P), 0 < \alpha \le \frac{1}{2}$	$\frac{S^2}{(n\ln n)^{2\alpha}}$	$\frac{S^2}{n^{2\alpha}}$
$F_{\alpha}(P), \frac{1}{2} < \alpha < 1$	$\frac{S^2}{(n\ln n)^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$	$\frac{S^2}{n^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$
$F_{\alpha}(P), 1 < \alpha < \frac{3}{2}$	$(n\ln n)^{-2(\alpha-1)}$	$n^{-2(\alpha-1)}$
$F_{\alpha}(P), \alpha \ge \frac{3}{2}$	n^{-1}	n^{-1}

Effective sample size enlargement

Minimax rate-optimal with n samples \Leftrightarrow MLE with $n \ln n$ samples

Jiantao Jiao (Stanford University)

Boosting the Effective Sample Size

March 17th, 2015 16 / 35

	MLE	Optimal
H(P)	$\Theta(S)$	$\Theta(S/\ln S)$
$F_{\alpha}(P), 0 < \alpha < 1$	$\Theta(S^{1/\alpha})$	$\Theta(S^{1/\alpha}/\ln S)$
$F_{\alpha}(P), \alpha > 1$	$\Theta(1)$	$\Theta(1)$

Existing literature on $F_{\alpha}(P)$ for $0 < \alpha < 2$: minimax rates unknown, sample complexity unknown, optimal schemes unknown.

• One realization of a general methodology

- One realization of a general methodology
- Achieve the minimax rate (lower bound due to Wu and Yang'14)

$$\frac{S^2}{(n\ln n)^2} + \frac{\ln^2 S}{n}$$

- One realization of a general methodology
- Achieve the minimax rate (lower bound due to Wu and Yang'14)

$$\frac{S^2}{(n\ln n)^2} + \frac{\ln^2 S}{n}$$

 $\bullet\,$ Agnostic to the knowledge of S

• Easily implementable: approximation order $\ln n$, 500 order approximation using 0.46s on PC. (Chebfun) Empirical performance outperforms every available entropy estimator (Code to be released this week, available upon request)

 Easily implementable: approximation order ln n, 500 order approximation using 0.46s on PC. (Chebfun)
 Empirical performance outperforms every available entropy estimator (Code to be released this week, available upon request)

• Some statisticians raised interesting questions: "We may not use this estimator unless you prove it is adaptive."

Near-minimax estimator:

$$\sup_{P \in \mathcal{M}_S} \mathbb{E}_P \left(\hat{H}^{\mathsf{Our}} - H(P) \right)^2 \asymp \inf_{\hat{H}} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P \left(\hat{H} - H(P) \right)^2$$

47 ▶

3

Near-minimax estimator:

$$\sup_{P \in \mathcal{M}_S} \mathbb{E}_P \left(\hat{H}^{\mathsf{Our}} - H(P) \right)^2 \asymp \inf_{\hat{H}} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P \left(\hat{H} - H(P) \right)^2$$

What if we know a priori $H(P) \leq H$? We want

$$\sup_{P \in \mathcal{M}_S(H)} \mathbb{E}_P \left(\hat{H}^{\mathsf{Our}} - H(P) \right)^2 \asymp \inf_{\hat{H}} \sup_{P \in \mathcal{M}_S(H)} \mathbb{E}_P \left(\hat{H} - H(P) \right)^2,$$

where $\mathcal{M}_S(H) = \{P : H(P) \le H, P \in \mathcal{M}_S\}.$

Near-minimax estimator:

$$\sup_{P \in \mathcal{M}_S} \mathbb{E}_P \left(\hat{H}^{\mathsf{Our}} - H(P) \right)^2 \asymp \inf_{\hat{H}} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P \left(\hat{H} - H(P) \right)^2$$

What if we know a priori $H(P) \leq H$? We want

$$\sup_{P \in \mathcal{M}_S(H)} \mathbb{E}_P \left(\hat{H}^{\mathsf{Our}} - H(P) \right)^2 \asymp \inf_{\hat{H}} \sup_{P \in \mathcal{M}_S(H)} \mathbb{E}_P \left(\hat{H} - H(P) \right)^2,$$

where $\mathcal{M}_S(H) = \{P : H(P) \leq H, P \in \mathcal{M}_S\}.$ Can our estimator satisfy all these requirements without knowing S and H?

Theorem

$$\inf_{\hat{H}} \sup_{P \in \mathcal{M}_{S}(H)} \mathbb{E}_{P} |\hat{H} - H(P)|^{2} \asymp \begin{cases} \frac{S^{2}}{(n \ln n)^{2}} + \frac{H \ln S}{n} & \text{if } S \ln S \le enH \ln n, \\ \left[\frac{H}{\ln S} \ln \left(\frac{S \ln S}{nH \ln n}\right)\right]^{2} & \text{otherwise.} \end{cases}$$
(1)

Theorem

$$\inf_{\hat{H}} \sup_{P \in \mathcal{M}_{S}(H)} \mathbb{E}_{P} |\hat{H} - H(P)|^{2} \asymp \begin{cases} \frac{S^{2}}{(n \ln n)^{2}} + \frac{H \ln S}{n} & \text{if } S \ln S \le enH \ln n, \\ \left[\frac{H}{\ln S} \ln \left(\frac{S \ln S}{nH \ln n}\right)\right]^{2} & \text{otherwise.} \end{cases}$$
(1)

• For $\epsilon > \frac{H}{\ln S}$, it requires $n \gtrsim \frac{S^{1-\epsilon/H}}{H}$ (much smaller than $S/\ln S$ for small H!) to achieve root MSE ϵ .

Theorem

$$\inf_{\hat{H}} \sup_{P \in \mathcal{M}_{S}(H)} \mathbb{E}_{P} |\hat{H} - H(P)|^{2} \asymp \begin{cases} \frac{S^{2}}{(n \ln n)^{2}} + \frac{H \ln S}{n} & \text{if } S \ln S \le enH \ln n, \\ \left[\frac{H}{\ln S} \ln \left(\frac{S \ln S}{nH \ln n}\right)\right]^{2} & \text{otherwise.} \end{cases}$$

$$(1)$$

• For $\epsilon > \frac{H}{\ln S}$, it requires $n \gtrsim \frac{S^{1-\epsilon/H}}{H}$ (much smaller than $S/\ln S$ for small H!) to achieve root MSE ϵ .

• MLE precisely requires
$$n \gtrsim \frac{\ln S}{H} S^{1-\epsilon/H}$$
.

Theorem

$$\inf_{\hat{H}} \sup_{P \in \mathcal{M}_{S}(H)} \mathbb{E}_{P} |\hat{H} - H(P)|^{2} \asymp \begin{cases} \frac{S^{2}}{(n \ln n)^{2}} + \frac{H \ln S}{n} & \text{if } S \ln S \le enH \ln n, \\ \left[\frac{H}{\ln S} \ln \left(\frac{S \ln S}{nH \ln n}\right)\right]^{2} & \text{otherwise.} \end{cases}$$
(1)

- For $\epsilon > \frac{H}{\ln S}$, it requires $n \gtrsim \frac{S^{1-\epsilon/H}}{H}$ (much smaller than $S/\ln S$ for small H!) to achieve root MSE ϵ .
- MLE precisely requires $n \gtrsim \frac{\ln S}{H} S^{1-\epsilon/H}$.
- The $n \Rightarrow n \ln n$ phenomenon is still true!

"Can you deal with cases where the non-differentiable regime is not just a point?"

We consider $L_1(P,Q) = \sum_{i=1}^{S} |p_i - q_i|$.

- Breakthrough by Valiant and Valiant'11: MLE requires $n \gg S$ samples, optimal is $\frac{S}{\ln S}!$
- However, VV'11's construction only proves to be optimal when $\frac{S}{\ln S} \lesssim n \lesssim S.$

- The minimax L_2 rate is $\frac{S}{n \ln n}$, while MLE is $\frac{S}{n}$.
- The $n \Rightarrow n \ln n$ is still true!
- We show that VV'11 cannot achieve it when $n \gtrsim S$.

- The minimax L_2 rate is $\frac{S}{n \ln n}$, while MLE is $\frac{S}{n}$.
- The $n \Rightarrow n \ln n$ is still true!
- We show that VV'11 cannot achieve it when $n \gtrsim S$.

However, is that easy to do? The nonsmooth regime is a whole line! How to cover it?

- Use a small square $\left[0, \frac{\ln n}{n}\right]^2$?
- Use a band?
- Use some other shape?

- Best polynomial approximation in 2D is not unique.
- There exists no efficient algorithm to compute it.
- Some polynomial that achieves best approximation rate cannot be used in our methodology.
- All nonsmooth regime design methods mentioned before fail.

- Best polynomial approximation in 2D is not unique.
- There exists no efficient algorithm to compute it.
- Some polynomial that achieves best approximation rate cannot be used in our methodology.
- All nonsmooth regime design methods mentioned before fail.
- Solution: hints from our paper "Minimax estimation of functionals of discrete distributions", or wait for soon-be-finished paper "Minimax estimation of divergence functions".

One may think: "Who cares about a $\ln n$ improvement?" Take sequence $n = 2S/\ln S$, S equally (on log) sampled from 10^2 to 10^7 . For each n, S, sample 20 times from a uniform distribution.

The scale of S/n

 $S/n \in [2.2727, 8.0590]$

Significant improvement!

Jiantao Jiao (Stanford University)

Boosting the Effective Sample Size

March 17th, 2015

Mutual information:

$$I(P_{XY}) = H(P_X) + H(P_Y) - H(P_{XY})$$

Theorem (J., Venkat, Han, Weissman'14)

 $n \Rightarrow n \ln n$ also holds.

Jiantao Jiao (Stanford University)

Boosting the Effective Sample Size

March 17th, 2015 27 / 35

3

Learning Tree Graphical Models

 $d\mbox{-dimensional}$ random vector with alphabet size S

$$X = (X_1, X_2, \dots, X_d)$$

Suppose p.m.f. has tree structure

$$P_X = \prod_{i=1}^d P_{X_i | X_{\pi(i)}},$$

Learning Tree Graphical Models

 $d\mbox{-dimensional}$ random vector with alphabet size S

$$X = (X_1, X_2, \dots, X_d)$$

Suppose p.m.f. has tree structure

$$P_X = \prod_{i=1}^d P_{X_i | X_{\pi(i)}},$$

Learning Tree Graphical Models

d-dimensional random vector with alphabet size S

$$X = (X_1, X_2, \dots, X_d)$$

Suppose p.m.f. has tree structure

$$P_X = \prod_{i=1}^d P_{X_i \mid X_{\pi(i)}},$$

Given n i.i.d. samples from P_X , estimate underlying tree structure

Chow–Liu algorithm (1968)

- Natural approach: Maximum Likelihood!
- Chow-Liu'68 solved it (2000 citations)
 - Maximum Weight Spanning Tree (MWST)
 - Empirical mutual information

Theorem (Chow, Liu'68)

$$E_{\textit{MLE}} = \arg \max_{E_Q \textit{is a tree}} \sum_{e \in E_Q} I(\hat{P}_e)$$

Chow-Liu algorithm (1968)

- Natural approach: Maximum Likelihood!
- Chow-Liu'68 solved it (2000 citations)
 - Maximum Weight Spanning Tree (MWST)
 - Empirical mutual information

Theorem (Chow, Liu'68)

$$E_{\textit{MLE}} = \arg \max_{E_Q \textit{is a tree}} \sum_{e \in E_Q} I(\hat{P}_e)$$

Our approach

Replace empirical mutual information by better estimates!

Jiantao Jiao (Stanford University)

Boosting the Effective Sample Size

March 17th, 2015 29 / 35

Original CL vs. Modified CL

We set d = 7, S = 300, a star graph, sweep n from 1k to 55k.

Jiantao Jiao (Stanford University)

Boosting the Effective Sample Size

March 17th, 2015 30 / 35

8 fold improvement! [and even more]

We set d = 7, S = 300, a star graph, sweep n from 1k to 55k.

Jiantao Jiao (Stanford University)

Boosting the Effective Sample Size

March 17th, 2015 31 / 35

- How to analyze the bias of MLE
- Why bootstrap and jackknife fail
- Extensions in multivariate settings (ℓ_p distance)
- Extensions in nonparametric estimation
- Extensions in non-i.i.d. models
- Applications in machine learning, medical imaging, computer vision, genomics, etc

- Unbiased estimation:
 - approximation basis must satisfy unbiased equation (Kolmogorov'50)
 - basis have good approximation properties
 - additional variance incurred by approximation should not be large

- Unbiased estimation:
 - approximation basis must satisfy unbiased equation (Kolmogorov'50)
 - basis have good approximation properties
 - additional variance incurred by approximation should not be large
- Theory of functional estimation \Leftrightarrow Analytical properties of functions
 - The whole field of approximation theory, or even more

- O. Lepski, A. Nemirovski, and V. Spokoiny'99, "On estimation of the L_r norm of a regression function"
- T. Cai and M. Low'11, "Testing composite hypotheses, Hermite polynomials and optimal estimation of a nonsmooth functional",
- Y. Wu and P. Yang'14, "Minimax rates of entropy estimation on large alphabets via best polynomial approximation",
- J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi'14, "The complexity of estimating Renyi entropy"

Our work

- J. Jiao, K. Venkat, Y. Han, T. Weissman, "Minimax estimation of functionals of discrete distributions", to appear in IEEE Transactions on Information Theory
- J. Jiao, K. Venkat, Y. Han, T. Weissman, "Maximum likelihood estimation of functionals of discrete distributrions", available on arXiv
- J. Jiao, K. Venkat, Y. Han, T. Weissman, "Beyond maximum likelihood: from theory to practice", available on arXiv
- J. Jiao, Y. Han, T. Weissman, "Minimax estimation of divergence functions", in preparation.
- Y. Han, J. Jiao, T. Weissman, "Adaptive estimation of Shannon entropy", available on arXiv
- Y. Han, J. Jiao, T. Weissman, "Does Dirichlet prior smoothing solve the Shannon entropy estimation problem?", available on arXiv
- Y. Han, J. Jiao, T. Weissman, "Bias correction using Taylor series, Bootstrap, and Jackknife", in preparation
- Y. Han, J. Jiao, T. Weissman, "How to bound of gap of Jensen's inequality?", in preparation

Thank you!

3

(日) (周) (三) (三)