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Problem Setting

Observe n samples from discrete distribution P with support size S

we want to estimate

S
H(P) = Z —p;Inp; (Shannon’48)
i=1

s
F,(P)= pr‘, a >0 (Diversity, Simpson index, Rényi entropy, etc)
i=1
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What was known?

Start with entropy: H(P) = Zle —p; In p;.

Optimal estimator for H(P) given n samples?
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What was known?

Start with entropy: H(P) = Zle —p; In p;.

Optimal estimator for H(P) given n samples?

@ No unbiased estimator, cannot calculate minimax estimator...
(Lehmann and Casella'98)
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What was known?

Start with entropy: H(P) = Zle —p; In p;.

Optimal estimator for H(P) given n samples?

@ No unbiased estimator, cannot calculate minimax estimator...
(Lehmann and Casella'98)

Classical asymptotics

Optimal estimator for H(P) when n — oo?
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Classical problem

Empirical Entropy
S

H(P,) =Y —piInp
i=1
where p; is the empirical frequency of symbol ¢
e H(P,) is the Maximum Likelihood Estimator (MLE)
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Classical problem

Empirical Entropy
S

H(P,) =Y —piInp
i=1
where p; is the empirical frequency of symbol ¢
e H(P,) is the Maximum Likelihood Estimator (MLE)

The MLE H(P,) is asymptotically efficient. (Hdjek—Le Cam theory)
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Is there something missing?

Optimal estimator for finite samples unknown :(

How about using MLE when n is finite? l
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Is there something missing?

Optimal estimator for finite samples unknown :(

How about using MLE when n is finite? l

We will show it is a very bad idea in general.
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Our evaluation criterion: minimax decision theory

Denote by Mg distributions with support size S.
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Our evaluation criterion: minimax decision theory

Denote by Mg distributions with support size S.

)2

(T, Ep[(F(P) — F)?
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Our evaluation criterion: minimax decision theory

Denote by Mg distributions with support size S.

R™(F,F)2 sup Ep[(F(P) - F)3

PeMg
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Our evaluation criterion: minimax decision theory

Denote by Mg distributions with support size S.

R™(F,F)2 sup Ep[(F(P) - F)3
PeMg

Minimax risk 2 sup Ep[(F(P) — F))?]
PeMg
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Our evaluation criterion: minimax decision theory

Denote by Mg distributions with support size S.

R™(F,F)2 sup Ep[(F(P) - F)3
PeMg

Minimax risk 2 inf sup Ep[(F(P)— F))2]
all B PeEMg
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Our evaluation criterion: minimax decision theory

Denote by Mg distributions with support size S.

R™(F,F)2 sup Ep[(F(P) - F)3
PeMg

Minimax risk 2 inf sup Ep[(F(P)— F))2]
all B PeMg

Notation:
oanxbn@0<c§‘g—2§0<oo
oaann¢>Z—ZZC>0
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Our evaluation criterion: minimax decision theory

Denote by Mg distributions with support size S.

R™(F,F)2 sup Ep[(F(P) - F)3
PeMg

Minimax risk 2 inf sup Ep[(F(P)— F))2]
all B PeEMg

Notation:
° anxbn(:)0<c§'g—:§0<oo
° aann@Z—ZZC>0
Ly Risk = Bias? 4+ Variance

Ep[(F(P)— F)? = (F(p) - EPF)Q + Var(F)
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Shall we analyze MLE non-asymptotically?

Theorem (J., Venkat, Han, Weissman'14)
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Shall we analyze MLE non-asymptotically?

Theorem (J., Venkat, Han, Weissman'14)

n > S < Consistency

Bias is dominating if n is not too large compared to S
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Can we reduce the bias?

e Taylor series? (Taylor expansion of H(P,) around P, = P)
o Requires n > S (Paninski'03)
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Can we reduce the bias?

e Taylor series? (Taylor expansion of H(P,) around P, = P)
o Requires n > S (Paninski'03)

e Jackknife?
o Requires n > S (Paninski'03)

@ Bootstrap?
o Requires at least n > S (Han, J., Weissman'15)
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Can we reduce the bias?

e Taylor series? (Taylor expansion of H(P,) around P, = P)
o Requires n > S (Paninski'03)
o Jackknife?
o Requires n > S (Paninski'03)
@ Bootstrap?
o Requires at least n > S (Han, J., Weissman'15)
@ Bayes estimator under Dirichlet prior?
o Requires at least n > S (Han, J., Weissman'15)
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Can we reduce the bias?

e Taylor series? (Taylor expansion of H(P,) around P, = P)
o Requires n > S (Paninski'03)
o Jackknife?
o Requires n > S (Paninski'03)
@ Bootstrap?
o Requires at least n > S (Han, J., Weissman'15)
@ Bayes estimator under Dirichlet prior?
o Requires at least n > S (Han, J., Weissman'15)
@ Plug-in Dirichlet smoothed distribution?

o Requires at least n > S (Han, J., Weissman'15)
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There are many more...

e Coverage adjusted estimator (Chao, Shen'03, Vu, Yu, Kass'07)
e BUB estimator (Paninski’'03)

@ Shrinkage estimator (Hausser, Strimmer’'09)

@ Grassberger estimator (Grassberger'08)

o NSB estimator (Nemenman, Shafee, Bialek'02)

@ B-Splines estimator (Daub et al. 04)

o Wagner, Viswanath, Kulkarni'll

@ Ohannessian, Tan, Dahleh’ 11

°
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There are many more...

e Coverage adjusted estimator (Chao, Shen'03, Vu, Yu, Kass'07)
e BUB estimator (Paninski’'03)

@ Shrinkage estimator (Hausser, Strimmer’'09)

@ Grassberger estimator (Grassberger'08)

o NSB estimator (Nemenman, Shafee, Bialek'02)

@ B-Splines estimator (Daub et al. 04)

o Wagner, Viswanath, Kulkarni'll

@ Ohannessian, Tan, Dahleh’ 11

°

Recent breakthrough: Valiant and Valiant'11: the exact phase transition
of entropy estimation is n < S/In S
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There are many more...

Coverage adjusted estimator (Chao, Shen'03, Vu, Yu, Kass'07)
BUB estimator (Paninski'03)

Shrinkage estimator (Hausser, Strimmer’'09)

Grassberger estimator (Grassberger'08)

NSB estimator (Nemenman, Shafee, Bialek'02)

B-Splines estimator (Daub et al. 04)

Wagner, Viswanath, Kulkarni'll

Ohannessian, Tan, Dahleh’ 11

Recent breakthrough: Valiant and Valiant'11: the exact phase transition
of entropy estimation is n < S/In S

@ Linear Programming based estimator not shown to achieve minimax
rates (dependence on ¢)
51.03

@ Another one achieves it for n < 9.

@ Not clear about other functionals
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Systematic improvement

Can we find a systematic methodology to improve MLE, and achieve the
minimax rates for a wide class of functionals?

George Pdlya: “the more general problem may be easier to solve than the
special problem”.
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Start from first principle

X ~ B(n,p), if we use g(X) to estimate f(p):
Bias(g(X)) = f(p) — Epg(X)

— f(p) - ;gm (")
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Start from first principle

X ~ B(n,p), if we use g(X) to estimate f(p):
Bias(g(X)) = f(p) — Epg(X)

— f(p) - ;gm (")

@ Only polynomials of order < m can be estimated without bias

X(X—-1)...(X-r+1)]
p[n(n—l)...(n_r_i_l)]—p, 0<r<n

@ Bias corresponds to polynomial approximation error
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Minimize the maximum bias

What if we choose g(X) such that

g = argmin sup |Bias(g(X))]
9 pE[O,l]
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Minimize the maximum bias

What if we choose g(X) such that

g = argmin sup |Bias(g(X))]
9 pE[O,l]

Paninski'03

It does not work for entropy. (Variance is too large!)
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Minimize the maximum bias

What if we choose g(X) such that

g = argmin sup |Bias(g(X))]
9 pE[O,l]

Paninski'03

It does not work for entropy. (Variance is too large!)

Best polynomial approximation:

Py(z) £ arg pouin sup |f(x) = Pi(x)
kx

Jiantao Jiao (Stanford University) Boosting the Effective Sample Size March 17th, 2015 12 / 35



We only approximate when the problem is hard!

f (p)

“nonsmooth” “smooth”
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We only approximate when the problem is hard!

f(p)
unbiased estimate
of best polynomiali
approximation of !

order Inn

“nonsmooth” “smooth”
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We only approximate when the problem is hard!

f(p)
unbiased estimate
of best polynomiali
approximation of !

order Inn

F(pi) — HPOp =R

“nonsmooth” “smooth”
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Why an threshold, Inn order?

KPpC
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Approximation theory in functional estimation

@ Lepski, Nemirovski, Spokoiny’99, Cai and Low'11l, Wu and Yang'14
(entropy estimation lower bound)

@ Duality with shrinkage (J., Venkat, Han, Weissman'14): a new field
to be explored!
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A class of functionals

Note F,,(P) = Zle P&, o > 0. [J., Venkat, Han, Weissman'14] showed

Minimax Lo rates L2 rates of MLE
H(P) n2 n ln m2s
Fo(P),0<a<! 2l
Fu(P), s <a<1 =
F (P),1<a<3 n~2(e=1)
Fu.(P),a > % n1 n1
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A class of functionals

Note F,,(P) = Zle P&, o > 0. [J., Venkat, Han, Weissman'14] showed

Minimax Lo rates L2 rates of MLE
52 ln S ln In* S
H(P) (nlnn)2 + n2 —+
1 S2 52
Fa(P),O <a< 5 W —

L 52 52— 2o [ g2 5274
Fa(P), i <a< 1 (nlnn)20‘ - W + -
Fu(P),1<ac< % (nln n)*Q(afl) n—2(a-1)
Fo(P),a >3 n! T
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A class of functionals

Note F,,(P) = Zle P&, o > 0. [J., Venkat, Han, Weissman'14] showed

Minimax Ls rates | Lo rates of MLE
2
H(P) (nin)QJrlns n2+1ns
1 SZ
Fa(P),O <a< 5 W —

1 52 522 52 5274
Fa(P), § <a< 1 (nlnn)20‘ - W + -
Fu(P),1<ac< % (nln n)*Q(afl) n—2(a-1)
Fa(P)7a2 % n_l n—l

Effective sample size enlargement
Minimax rate-optimal with n samples < MLE with nlnn samples
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Sample complexity perspectives

MLE Optimal
H(P) 0(S) | O(S/lS)
Fo(P),0<a<1|6(SY* | es/*/ns)
Fo(P),a> 1 0(1) o(1)

Existing literature on F,(P) for 0 < o < 2: minimax rates unknown,
sample complexity unknown, optimal schemes unknown..
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Unique features of our entropy estimator

@ One realization of a general methodology
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Unique features of our entropy estimator

@ One realization of a general methodology

@ Achieve the minimax rate (lower bound due to Wu and Yang'14)

52 In2 S
_l’_

(nlnn)? n
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Unique features of our entropy estimator

@ One realization of a general methodology

@ Achieve the minimax rate (lower bound due to Wu and Yang'14)

52 In2 S
_l’_

(nlnn)? n

@ Agnostic to the knowledge of S
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Unique features of our entropy estimator

o Easily implementable: approximation order Inn, 500 order
approximation using 0.46s on PC. (Chebfun)
Empirical performance outperforms every available entropy estimator
(Code to be released this week, available upon request)

/(\l‘/e\b/f\lﬁl\ About News Download

Chebfun — numerical computing with functions
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Unique features of our entropy estimator

o Easily implementable: approximation order Inn, 500 order
approximation using 0.46s on PC. (Chebfun)
Empirical performance outperforms every available entropy estimator
(Code to be released this week, available upon request)

Chebfun — numerical computing with functions

@ Some statisticians raised interesting questions: “We may not use this
estimator unless you prove it is adaptive.”
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Adaptive estimation

Near-minimax estimator:

~ 2 ~ 2
sup Ep (HOL" - H(P)) = inf sup Ep (H - H(P))
PeMs H PeMg
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Adaptive estimation

Near-minimax estimator:

~ 2 ~ 2
sup Ep (HOL" - H(P)) = inf sup Ep (H - H(P))
PeMs H PeMg

What if we know a priori H(P) < H? We want

~ 2 ~ 2
sup Ep (HOUr - H(P)) ~inf sup Ep (H - H(P)) :
PEMg(H) H PeMs(H)

where Mg(H) ={P: H(P) < H,P € Mg}.
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Adaptive estimation

Near-minimax estimator:

~ 2 ~ 2
sup Ep (HOL" - H(P)) = inf sup Ep (H - H(P))
PeMs H PeMg

What if we know a priori H(P) < H? We want
0 2 . 2
sup Ep (H ur _ H(P)) ~inf sup Ep (H - H(P)) :
PeMg(H) H PeMs(H)

where Mg(H) ={P: H(P) < H,P € Mg}.
Can our estimator satisfy all these requirements without knowing S and
H?
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Our estimator is adaptive!

Han, J., Weissman'15 showed

(nlnn)

[ n (SIS)]  otherwise.

inf sup Ep|H - H(P)?=
H PeMs(H)

{%24—%‘15 ifSInS <enHlnn

nHlnn

(1)
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Our estimator is adaptive!

Han, J., Weissman'15 showed

(nlnn)

[ n (SIS)]  otherwise.

inf sup Ep|H - H(P)?=
H PeMg(H)

{%24—%‘15 ifSInS <enHlnn

nHlnn

(1)

. . 1—e/H
e For e > XL it requires n > S H/ (much smaller than S/1In S for

small H!) to achieve root MSE e.
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Our estimator is adaptive!

Han, J., Weissman'15 showed

(nlnn)

[ n (SIS)]  otherwise.

inf sup Ep|H - H(P)?=
H PeMg(H)

{%24—%‘15 ifSInS <enHlnn

nHlnn

(1)

. . 1—e/H
e For e > XL it requires n > S H/ (much smaller than S/1In S for

small H!) to achieve root MSE e.

. : InS gl—e/H
@ MLE precisely requires n 2 “7 S e/H
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Our estimator is adaptive!

Han, J., Weissman'15 showed

(nlnn)

[ n (SIS)]  otherwise.

inf sup Ep|H - H(P)?=
H PeMg(H)

{%24—%‘15 ifSInS <enHlnn

nHlnn

(1)

i}
small H!) to achieve root MSE e.

e For e > XL it requires n > o (much smaller than S/1In S for

. : InS gl—e/H
@ MLE precisely requires n 2 “7 S e/H

@ The n = nlnn phenomenon is still true!
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Understanding the generality

“Can you deal with cases where the non-differentiable regime is not just a
point?”
We consider L1 (P, Q) = 327 |pi — ail.

@ Breakthrough by Valiant and Valiant'11: MLE requires n > S
samples, optimal is * S'

@ However, VV'11's construction only proves to be optimal when

S
1nSSn<S
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Applying our general methodology

@ The minimax Ly rate is —2—, while MLE is 2
@ The n = nlnn is still true!
@ We show that VV'11 cannot achieve it when n = S.
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Applying our general methodology

@ The minimax Ly rate is —2—, while MLE is 2

@ The n = nlnn is still true!

@ We show that VV'11 cannot achieve it when n = S.
However, is that easy to do? The nonsmooth regime is a whole line! How
to cover it?

Inni?
e Use a small square [0, 12]77
@ Use a band?

@ Use some other shape?
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Best polynomial approximation in 2D is not unique.

There exists no efficient algorithm to compute it.

Some polynomial that achieves best approximation rate cannot be
used in our methodology.

@ All nonsmooth regime design methods mentioned before fail.
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@ Best polynomial approximation in 2D is not unique.

@ There exists no efficient algorithm to compute it.

@ Some polynomial that achieves best approximation rate cannot be
used in our methodology.

@ All nonsmooth regime design methods mentioned before fail.

@ Solution: hints from our paper “Minimax estimation of functionals of
discrete distributions”, or wait for soon-be-finished paper “Minimax
estimation of divergence functions”.
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Significant difference in phase transitions

One may think: “Who cares about a Inn improvement?”
Take sequence n = 25/1In S, S equally (on log) sampled from 102 to 107.
For each n, .S, sample 20 times from a uniform distribution.

The scale of S/n

S/n € [2.2727,8.0590]
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Significant improvement!
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Mutual Information I(Pxy)

Mutual information:

I(Pxy)=H(Px)+ H(Py) — H(Pxy)

Theorem (J., Venkat, Han, Weissman'14)

n = nlnn also holds.
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Learning Tree Graphical Models

d-dimensional random vector with alphabet size S
X =(X1,Xy,...,Xy)
Suppose p.m.f. has tree structure

d
Px = H PXi|X iy
=1
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Learning Tree Graphical Models

d-dimensional random vector with alphabet size S
X =(X1,Xy,...,Xy)
Suppose p.m.f. has tree structure

d
Px = H PXi|X iy
=1

Given n i.i.d. samples from Py, estimate underlying tree structure J
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Chow-Liu algorithm (1968)

@ Natural approach: Maximum Likelihood!
@ Chow-Liu'68 solved it (2000 citations)

- Maximum Weight Spanning Tree (MWST)
- Empirical mutual information

Theorem (Chow, Liu'68)

Epie = arg  max g I(FP.)
Eqis a tree
eEEQ
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Chow-Liu algorithm (1968)

@ Natural approach: Maximum Likelihood!
@ Chow-Liu'68 solved it (2000 citations)

- Maximum Weight Spanning Tree (MWST)
- Empirical mutual information

Theorem (Chow, Liu'68)

EMLE = arg max E I(Pe)
Eqis a tree
eGEQ

Our approach

Replace empirical mutual information by better estimates!
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Original CL vs. Modified CL

We set d = 7,5 = 300, a star graph, sweep n from 1k to 55k.
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8 fold improvement! [and even more]

We set d =7,5 = 300, a
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star graph, sweep n from 1k to 55k.

=@ Original CL
—i— Modified CL

®

1

1

1

1

1

1

1

1 i
1

1
®
1
1
1
1
1

Jiantao Jiao (Stanford University)

- 0 S EEEESEEE
2 3 4 5 6
number of samples n

Boosting the Effective Sample Size March 17th, 2015 31/35



What we did not talk about

How to analyze the bias of MLE

Why bootstrap and jackknife fail

Extensions in multivariate settings (¢, distance)
Extensions in nonparametric estimation

Extensions in non-i.i.d. models

Applications in machine learning, medical imaging, computer vision,
genomics, etc
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Hindsight

@ Unbiased estimation:
e approximation basis must satisfy unbiased equation (Kolmogorov'50)
e basis have good approximation properties
e additional variance incurred by approximation should not be large
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@ Unbiased estimation:
e approximation basis must satisfy unbiased equation (Kolmogorov'50)
e basis have good approximation properties
e additional variance incurred by approximation should not be large

@ Theory of functional estimation < Analytical properties of functions
e The whole field of approximation theory, or even more
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Related work

@ O. Lepski, A. Nemirovski, and V. Spokoiny’99, “On estimation of the
L, norm of a regression function”

o T. Cai and M. Low'1l, “Testing composite hypotheses, Hermite
polynomials and optimal estimation of a nonsmooth functional”,

@ Y. Wu and P. Yang'14, "Minimax rates of entropy estimation on large
alphabets via best polynomial approximation”,

@ J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi'14,"The
complexity of estimating Renyi entropy”
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Our work

@ J. Jiao, K. Venkat, Y. Han, T. Weissman, “Minimax estimation of functionals of
discrete distributions”, to appear in IEEE Transactions on Information Theory

@ J. Jiao, K. Venkat, Y. Han, T. Weissman, “Maximum likelihood estimation of
functionals of discrete distributrions”, available on arXiv

@ J. Jiao, K. Venkat, Y. Han, T. Weissman, “Beyond maximum likelihood: from
theory to practice”, available on arXiv

@ J. Jiao, Y. Han, T. Weissman, “Minimax estimation of divergence functions”, in
preparation.

@ Y. Han, J. Jiao, T. Weissman, “Adaptive estimation of Shannon entropy”,
available on arXiv

@ Y. Han, J. Jiao, T. Weissman, “Does Dirichlet prior smoothing solve the Shannon
entropy estimation problem?”, available on arXiv

@ Y. Han, J. Jiao, T. Weissman, “Bias correction using Taylor series, Bootstrap, and
Jackknife”, in preparation

@ Y. Han, J. Jiao, T. Weissman, “How to bound of gap of Jensen’s inequality?”, in
preparation

Thank you!
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