Chebyshev polynomials, moment matching and optimal estimation of the unseen

Yihong Wu

Department of ECE
University of Illinois at Urbana-Champaign
yihongwu@illinois.edu

Joint work with Pengkun Yang (Illinois)

Mar 17, 2014

Problem setup

Task

Given samples from a discrete distribution, how to make statistical inference on certain property of the distribution?

Estimating the unseen

Support size:

$$S(P) = \sum_{i} \mathbf{1}_{\{p_i > 0\}}$$

• Example:

 $\bullet \ \Leftrightarrow \text{estimating the number of unseens (SEEN + UNSEEN} = S(P))$

• maybe the Egyptians have studied it...

- maybe the Egyptians have studied it...
- Ecology:

THE RELATION BETWEEN THE NUMBER OF SPECIES AND THE NUMBER OF INDIVIDUALS IN A RANDOM SAMPLE OF AN ANIMAL POPULATION

By R. A. FISHER (Galton Laboratory), A. STEVEN CORBET (British Museum, Natural History)

AND C. B. WILLIAMS (Rothamsted Experimental Station)

- maybe the Egyptians have studied it...
- Ecology:

THE RELATION BETWEEN THE NUMBER OF SPECIES AND THE NUMBER OF INDIVIDUALS IN A RANDOM SAMPLE OF AN ANIMAL POPULATION

By R. A. FISHER (Galton Laboratory), A. STEVEN CORBET (British Museum, Natural History)

AND C. B. WILLIAMS (Rothamsted Experimental Station)

• Linguistics, numismatics, etc:

Estimating the number of unseen species: How many words did Shakespeare know?

By BRADLEY EFRON AND RONALD THISTED

Department of Statistics, Stanford University, California

- maybe the Egyptians have studied it...
- Ecology:

THE RELATION BETWEEN THE NUMBER OF SPECIES AND THE NUMBER OF INDIVIDUALS IN A RANDOM SAMPLE OF AN ANIMAL POPULATION

By R. A. FISHER (Galton Laboratory), A. STEVEN CORBET (British Museum, Natural History)

AND C. B. WILLIAMS (Rothamsted Experimental Station)

Linguistics, numismatics, etc:

Estimating the number of unseen species: How many words did Shakespeare know?

By BRADLEY EFRON AND RONALD THISTED
Department of Statistics, Stanford University, California

 Will not discuss probability estimation [Good-Turing, Orlitsky et al., ...]

ullet Data: $X_1,\ldots,X_n \overset{\text{i.i.d.}}{\sim} P$

- Data: $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} P$
- Estimate: $\hat{S} = \hat{S}(X_1, \dots, X_n)$ close to S(P) in prob or expectation

- Data: $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} P$
- Estimate: $\hat{S} = \hat{S}(X_1, \dots, X_n)$ close to S(P) in prob or expectation
- Goal: find minimal sample size & fast algorithms

- Data: $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} P$
- Estimate: $\hat{S} = \hat{S}(X_1, \dots, X_n)$ close to S(P) in prob or expectation
- Goal: find minimal sample size & fast algorithms
- Need to assume minimum non-zero mass

Space of distributions

 $\mathcal{D}_k riangleq \{ \mathsf{prob} \ \mathsf{distributions} \ \mathsf{whose} \ \mathsf{non-zero} \ \mathsf{mass} \ \mathsf{is} \ \mathsf{at} \ \mathsf{least} \ 1/k \}$

Space of distributions

 $\mathcal{D}_k \triangleq \{\mathsf{prob} \; \mathsf{distributions} \; \mathsf{whose} \; \mathsf{non-zero} \; \mathsf{mass} \; \mathsf{is} \; \mathsf{at} \; \mathsf{least} \; 1/k\}$

Sample complexity

$$\mathbf{n^*}(k, \epsilon) \triangleq \min\{n: \exists \hat{S}, \text{s.t. } \mathbb{P}[|\hat{S} - S(P)| \leq \epsilon k] \geq 0.5, \forall P \in \mathcal{D}_k\}$$

Space of distributions

 $\mathcal{D}_k \triangleq \{\mathsf{prob} \; \mathsf{distributions} \; \mathsf{whose} \; \mathsf{non-zero} \; \mathsf{mass} \; \mathsf{is} \; \mathsf{at} \; \mathsf{least} \; 1/k\}$

Sample complexity

$$\mathbf{n}^*(k,\epsilon) \triangleq \min\{n: \exists \hat{S}, \text{s.t. } \mathbb{P}[|\hat{S} - S(P)| \le \epsilon k] \ge 0.5, \forall P \in \mathcal{D}_k\}$$

Remarks

• Upgrade the confidence: $n \to n \log \frac{1}{\delta} \Rightarrow 0.5 \to 1 - \delta$ (subsample + median + Hoeffding)

Space of distributions

 $\mathcal{D}_k \triangleq \{ \text{prob distributions whose non-zero mass is at least } 1/k \}$

Sample complexity

$$n^*(k, \epsilon) \triangleq \min\{n : \exists \hat{S}, \text{s.t. } \mathbb{P}[|\hat{S} - S(P)| \le \epsilon k] \ge 0.5, \forall P \in \mathcal{D}_k\}$$

Remarks

- Upgrade the confidence: $n \to n \log \frac{1}{\delta} \Rightarrow 0.5 \to 1 \delta$ (subsample + median + Hoeffding)
- Zero error $(\epsilon = 0)$: $n^*(k, 0) \approx k \log k$ (coupon collector)

Naive approach: plug-in

WYSIWYE:

 $\hat{S}_{\mathsf{seen}} = \mathsf{number} \; \mathsf{of} \; \mathsf{seen} \; \mathsf{symbols}$

Naive approach: plug-in

WYSIWYE:

$$\hat{S}_{\mathsf{seen}} = \mathsf{number} \; \mathsf{of} \; \mathsf{seen} \; \mathsf{symbols}$$

underestimate:

$$\hat{S}_{\mathsf{seen}} \leq S(P), \quad P\text{-a.s.}$$

 \bullet severely underbiased in the sublinear-sampling regime: $n \ll k$

Do we have to estimate the distribution itself?

From a statistical perspective

- high-dimensional problem
 - estimating P provably requires $n = \Theta(k)$ samples
 - empirical distribution is optimal up to constants
- functional estimation
 - ▶ scalar functional (support size) $\stackrel{?}{\Rightarrow} n = o(k)$ suffices
 - plug-in is frequently suboptimal

Sufficient statistics

• Histogram:

$$N_j = \sum_i \mathbf{1}_{\{X_i = j\}}$$
 : # of occurences of $j^{ ext{th}}$ symbol

Sufficient statistics

• Histogram:

$$N_j = \sum_i \mathbf{1}_{\{X_i = j\}}: \; \# \; ext{of occurences of} \; j^{ ext{th}} \; ext{symbol}$$

• Histogram²/fingerprints/profiles:

$$h_i = \sum_i \mathbf{1}_{\{N_j = i\}}$$
 : $\#$ of symbols that occured exactly i times

Sufficient statistics

Histogram:

$$N_j = \sum_i \mathbf{1}_{\{X_i = j\}}$$
 : # of occurences of $j^{ ext{th}}$ symbol

• Histogram²/fingerprints/profiles:

$$h_i = \sum_i \mathbf{1}_{\{N_j = i\}}$$
 : $\#$ of symbols that occured exactly i times

• h_0 : # of unseens

Estimators that are linear in the fingerprints:

$$\hat{S} = \sum_{i} f(N_i) = \sum_{j \ge 1} f(j)h_j$$

Estimators that are linear in the fingerprints:

$$\hat{S} = \sum_{i} f(N_i) = \sum_{j>1} f(j)h_j$$

Classical procedures:

• Plug-in:

$$\hat{S}_{\mathsf{seen}} = h_1 + h_2 + h_3 + \dots$$

Estimators that are linear in the fingerprints:

$$\hat{S} = \sum_{i} f(N_i) = \sum_{j \ge 1} f(j)h_j$$

Classical procedures:

• Plug-in:

$$\hat{S}_{\mathsf{seen}} = h_1 + h_2 + h_3 + \dots$$

• Good-Toulmin '56: empirical Bayes

$$\hat{S}_{\mathsf{GT}} = th_1 - t^2h_2 + t^3h_3 - t^4h_4 + \dots$$

Estimators that are linear in the fingerprints:

$$\hat{S} = \sum_{i} f(N_i) = \sum_{j \ge 1} f(j)h_j$$

Classical procedures:

• Plug-in:

$$\hat{S}_{\mathsf{seen}} = h_1 + h_2 + h_3 + \dots$$

• Good-Toulmin '56: empirical Bayes

$$\hat{S}_{\mathsf{GT}} = th_1 - t^2h_2 + t^3h_3 - t^4h_4 + \dots$$

• Efron-Thisted '76: Bayesian

$$\hat{S}_{\mathsf{ET}} = \sum_{j=1}^{J} (-1)^{j+1} t^j b_j h_j$$

where $b_j = \mathbb{P}[\operatorname{Binomial}(J, 1/(t+1)) \geq j]$

State of the art

• \hat{S}_{seen} : $n^*(k, \epsilon) \le k \log \frac{1}{\epsilon}$

State of the art

- \hat{S}_{seen} : $n^*(k, \epsilon) \le k \log \frac{1}{\epsilon}$
- Valiant '08, Raskhodnikova et al. '09, Valiant-Valiant '11-'13: sublinear is possible.
 - ▶ Upper bound: $n^*(k,\epsilon)\lesssim \frac{k}{\log k}\frac{1}{\epsilon^2}$ by LP [Efron-Thisted '76]
 - ▶ Lower bound: $n^*(k,\epsilon) \gtrsim \frac{k}{\log k}$

State of the art

- \hat{S}_{seen} : $n^*(k,\epsilon) \leq k \log \frac{1}{\epsilon}$
- Valiant '08, Raskhodnikova et al. '09, Valiant-Valiant '11-'13: sublinear is possible.
 - ▶ Upper bound: $n^*(k,\epsilon) \lesssim \frac{k}{\log k} \frac{1}{\epsilon^2}$ by LP [Efron-Thisted '76]
 - ▶ Lower bound: $n^*(k,\epsilon) \gtrsim \frac{k}{\log k}$

Theorem (W.-Yang '14)

$$n^*(k,\epsilon) \simeq \frac{k}{\log k} \log^2 \frac{1}{\epsilon}$$

Minimax risk

Theorem (W.-Yang '14)

$$\inf_{\hat{S}} \sup_{P \in \mathcal{D}_k} \mathbb{E}[(\hat{S} - S(P))^2] \approx k^2 \exp\left(-\sqrt{\frac{n \log k}{k}} \vee \frac{n}{k}\right)$$

Remainder of this talk

Objectives

- a principled way to obtain rate-optimal linear estimator
- a natural lower bound to establish optimality via duality

Best polynomial approximation

- $\mathcal{P}_L = \{\text{polynomials of degree at most } L\}.$
- I = [a, b]: a finite interval.
- Optimal approximation error

$$E_L(f, I) \triangleq \inf_{p \in \mathcal{P}_L} \sup_{x \in I} |f(x) - p(x)|$$

Best polynomial approximation

- $\mathcal{P}_L = \{\text{polynomials of degree at most } L\}.$
- I = [a, b]: a finite interval.
- Optimal approximation error

$$E_L(f, I) \triangleq \inf_{p \in \mathcal{P}_L} \sup_{x \in I} |f(x) - p(x)|$$

- Stone-Weierstrass theorem: f continuous $\Rightarrow E_L(f,I) \xrightarrow{L \to \infty} 0$
- Speed of convergence related to modulus of continuity.
- Finite-dim convex optimization/Infinite-dim LP
- Many fast algorithms (e.g., Remez)

Example

Chebyshev alternation theorem

Example

deg-6 approximation

Chebyshev alternation theorem

Example

Chebyshev alternation theorem

$$\mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right]$$
s.t. $\mathbb{E}\left[U^{j}\right] = \mathbb{E}\left[U'^{j}\right], \quad j = 1, \dots, L$

$$U, U' \in I$$

$$\mathcal{E}_L(f,I) riangleq \sup \int f \mathrm{d}\mu - \int f \mathrm{d}\mu'$$
 s.t. $\int f \mathrm{d}\mu = \int f \mathrm{d}\mu', \quad j=1,\ldots,L,$ μ,μ' supported on I

$$\mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right]$$
s.t. $\mathbb{E}\left[U^{j}\right] = \mathbb{E}\left[U'^{j}\right], \quad j = 1, \dots, L,$

$$U, U' \in I$$

$$\mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right]$$
s.t. $\mathbb{E}\left[U^{j}\right] = \mathbb{E}\left[U'^{j}\right], \quad j = 1, \dots, L, \quad \lambda_{j} \in \mathbb{R}$

$$U, U' \in I$$

$$\inf_{\lambda_1^L} \sup_{U,U' \in I} \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right] + \sum_j \lambda_j (\mathbb{E}\left[U^j\right] - \mathbb{E}\left[U'^j\right])$$

$$\mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right]$$
s.t. $\mathbb{E}\left[U^{j}\right] = \mathbb{E}\left[U'^{j}\right], \quad j = 1, \dots, L, \quad \lambda_{j} \in \mathbb{R}$

$$U, U' \in I$$

$$\inf_{\lambda_1^L} \sup_{U,U' \in I} \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right] + \sum_j \lambda_j (\mathbb{E}\left[U^j\right] - \mathbb{E}\left[U'^j\right])$$

$$\mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right]$$
s.t. $\mathbb{E}\left[U^{j}\right] = \mathbb{E}\left[U'^{j}\right], \quad j = 1, \dots, L, \quad \frac{\lambda_{j} \in \mathbb{R}}{U, U' \in I}$

$$\begin{split} &\inf_{\lambda_1^L} \sup_{U,U' \in I} \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right] + \sum_{j} \lambda_j (\mathbb{E}\left[U^j\right] - \mathbb{E}\left[U'^j\right]) \\ &= \inf_{\lambda_1^L} \sup_{U \in I} \mathbb{E}\left[f(U) - \sum_{j} \lambda_j U^j\right] - \inf_{U' \in I} \mathbb{E}\left[f(U') - \sum_{j} \lambda_j U'^j\right] \end{split}$$

$$\mathcal{E}_L(f,I) \triangleq \sup \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right]$$
s.t. $\mathbb{E}\left[U^j\right] = \mathbb{E}\left[U'^j\right], \quad j = 1, \dots, L, \quad \lambda_j \in \mathbb{R}$

$$U, U' \in I$$

$$\begin{split} &\inf_{\lambda_1^L} \sup_{U,U' \in I} \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right] + \sum_j \lambda_j (\mathbb{E}\left[U^j\right] - \mathbb{E}\left[U'^j\right]) \\ &= \inf_{\lambda_1^L} \sup_{U \in I} \mathbb{E}\left[f(U) - \sum_j \lambda_j U^j\right] - \inf_{U' \in I} \mathbb{E}\left[f(U') - \sum_j \lambda_j U'^j\right] \\ &= \inf_{\lambda_0^L} \left(\sup_{u \in I} f(u) - \sum_j \lambda_j u^j\right) - \left(\inf_{u \in I} f(u') - \sum_j \lambda_j u^j\right) \end{split}$$

$$\mathcal{E}_{L}(f,I) \triangleq \sup \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right]$$
s.t. $\mathbb{E}\left[U^{j}\right] = \mathbb{E}\left[U'^{j}\right], \quad j = 1, \dots, L, \quad \lambda_{j} \in \mathbb{R}$

$$U, U' \in I$$

$$\begin{split} &\inf_{\lambda_1^L} \sup_{U,U' \in I} \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right] + \sum_j \lambda_j (\mathbb{E}\left[U^j\right] - \mathbb{E}\left[U'^j\right]) \\ &= \inf_{\lambda_1^L} \sup_{U \in I} \mathbb{E}\left[f(U) - \sum_j \lambda_j U^j\right] - \inf_{U' \in I} \mathbb{E}\left[f(U') - \sum_j \lambda_j U'^j\right] \\ &= \inf_{\lambda_0^L} \left(\sup_{u \in I} f(u) - \sum_j \lambda_j u^j\right) - \left(\inf_{u \in I} f(u') - \sum_j \lambda_j u^j\right) \\ &= 2\inf_{p \in \mathcal{P}_L} \sup_{u \in I} |f(u) - p(u)| \end{split}$$

Moment matching ⇔ best polynomial approximation

$$\mathcal{E}_L(f,I) = 2E_L(f,I)$$

Moment matching ⇔ best polynomial approximation

Poissonization

- Poisson sampling model
 - draw sample size $n' \sim \operatorname{Poi}(n)$
 - ightharpoonup draw n' i.i.d. samples from P.
- Histograms are independent: $N_i \stackrel{\mathsf{ind}}{\sim} \mathrm{Poi}(np_i)$
- sample complexity/minimax risks remain unchanged within constant factors

MSE

Recall

$$MSE = bias^2 + variance$$

Main problem of \hat{S}_{seen} : huge bias.

Unbiased estimators?

Unbiased estimators?

Unbiased estimator for f(P) from n samples:

- Independent sampling: f(P) is polynomial of degree $\leq n$
- ullet Poissonized sampling: f(P) is real analytic.

Unbiased estimators?

Unbiased estimator for f(P) from n samples:

- Independent sampling: f(P) is polynomial of degree $\leq n$
- Poissonized sampling: f(P) is real analytic.

Example

- Flip a coin with bias p for n times and estimate f(p)
- Sufficient stat: $Y \sim \text{Binomial}(n, p)$.
- ullet Unbiased estimator exists $\Leftrightarrow f(p)$ is a polynomial of degree $\leq n$

$$\mathbb{E}[\hat{f}(Y)] = \sum_{k=0}^{n} \hat{f}(k) \binom{n}{k} p^{k} (1-p)^{k}.$$

No unbiased estimator

$$S(P) = \sum_i \mathbf{1}_{\{p_i > 0\}}$$

No unbiased estimator

$$S(P) = \sum_{i} \mathbf{1}_{\{p_i > 0\}}$$

- Approximate $\mathbf{1}_{\{x>0\}}$ by $q(x) = \sum_{m=0}^L a_m x^m$
- Find an unbiased estimator for the proxy

$$\tilde{S}(P) = \sum_{i} q(p_i)$$

• $|\mathsf{bias}| \le \mathsf{uniform\ approx\ error}$

No unbiased estimator

$$S(P) = \sum_{i} \mathbf{1}_{\{p_i > 0\}}$$

- Approximate $\mathbf{1}_{\{x>0\}}$ by $q(x) = \sum_{m=0}^{L} a_m x^m$
- Find an unbiased estimator for the proxy

$$\tilde{S}(P) = \sum_{i} q(p_i)$$

- $|\mathsf{bias}| \leq \mathsf{uniform\ approx\ error}$
- But the function is discontinuous...

Linear estimators

Consider estimators that are linear in the fingerprints:

$$\hat{S} = \sum_{i} f(N_i) = \sum_{j \ge 1} f(j)h_j$$

Guidelines:

•
$$f(0) = 0$$

Linear estimators

Consider estimators that are linear in the fingerprints:

$$\hat{S} = \sum_{i} f(N_i) = \sum_{j>1} f(j)h_j$$

Guidelines:

- f(0) = 0
- f(j) = 1 for sufficiently large j > L

Linear estimators

Consider estimators that are linear in the fingerprints:

$$\hat{S} = \sum_{i} f(N_i) = \sum_{j>1} f(j)h_j$$

Guidelines:

- f(0) = 0
- f(j) = 1 for sufficiently large j > L
- How to choose $f(1), \ldots, f(L)$?

Choose

- $L = c_0 \log k$.
- $\hat{S} = \sum_{i>1} f(N_i), \quad N_i \sim \text{Poi}(np_i)$

Bias:

$$\mathbb{E}[\hat{S} - S] = \sum \mathbb{E}[(f(N_i) - 1)\mathbf{1}_{\{N_i \le L\}}]\mathbf{1}_{\{p_i > 1/k\}}$$

Choose

- $L = c_0 \log k$.
- $\hat{S} = \sum_{i>1} f(N_i), \quad N_i \sim \text{Poi}(np_i)$

Bias:

$$\mathbb{E}[\hat{S} - S] = \sum \mathbb{E}[(f(N_i) - 1)\mathbf{1}_{\{N_i \le L\}}]\mathbf{1}_{\{p_i > 1/k\}}$$

$$\approx \sum \mathbb{E}[(f(N_i) - 1)\mathbf{1}_{\{N_i \le L\}}]\mathbf{1}_{\{2L/n > p_i > 1/k\}}$$

Choose

- $L = c_0 \log k$.
- $\hat{S} = \sum_{j \geq 1} f(N_i), \quad N_i \sim \text{Poi}(np_i)$

Bias:

$$\begin{split} \mathbb{E}[\hat{S} - S] &= \sum \mathbb{E}[(f(N_i) - 1)\mathbf{1}_{\{N_i \leq L\}}]\mathbf{1}_{\{p_i > 1/k\}} \\ &\approx \sum \underbrace{\mathbb{E}[(f(N_i) - 1)\mathbf{1}_{\{N_i \leq L\}}]}_{e^{-np_i} \times \text{ poly of deg } L!} \mathbf{1}_{\{2L/n > p_i > 1/k\}} \end{split}$$

Observe

$$\mathbb{E}[(f(N) - 1)\mathbf{1}_{\{N \le L\}}] = e^{-\lambda} \underbrace{\sum_{j \ge 0} \frac{f(j) - 1}{j!} \lambda^j}_{q(\lambda)}$$

• Then

$$|\mathsf{bias}| \le k \sup_{n/k \le \lambda \le c \log k} |q(\lambda)|$$

• Choose the best deg-L polynomial q s.t. q(0)=-1

Observe

$$\mathbb{E}[(f(N) - 1)\mathbf{1}_{\{N \le L\}}] = e^{-\lambda} \underbrace{\sum_{j \ge 0} \frac{f(j) - 1}{j!} \lambda^j}_{q(\lambda)}$$

• Then

$$|\mathsf{bias}| \leq k \sup_{n/k \leq \lambda \leq c \log k} |q(\lambda)|$$

- Choose the best deg-L polynomial q s.t. q(0)=-1
- Solution: Chebyshev polynomial

Chebyshev polynomial

best approximation to one by polynomial passing through origin is Chebyshev polynomial

$$p_L(x) = 1 - \frac{\cos L \arccos x}{\cos L \arccos a}$$

• Chebyshev polynomial: $r \triangleq c_1 \log k$ and $l \triangleq \frac{n}{k}$,

$$-\frac{\cos L \arccos(\frac{2}{r-l}x - \frac{r+l}{r-l})}{\cos L \arccos(-\frac{r+l}{r-l})} \triangleq \sum_{j=0}^{L} a_m x^m.$$

• Chebyshev polynomial: $r \triangleq c_1 \log k$ and $l \triangleq \frac{n}{k}$,

$$-\frac{\cos L \arccos(\frac{2}{r-l}x - \frac{r+l}{r-l})}{\cos L \arccos(-\frac{r+l}{r-l})} \triangleq \sum_{j=0}^{L} a_m x^m.$$

Choose

$$f(j) = \begin{cases} 0 & j = 0 \\ 1 + a_j j! & j = 1, \dots, L \\ 1 & j > L. \end{cases}$$

• Chebyshev polynomial: $r \triangleq c_1 \log k$ and $l \triangleq \frac{n}{k}$,

$$-\frac{\cos L \arccos(\frac{2}{r-l}x - \frac{r+l}{r-l})}{\cos L \arccos(-\frac{r+l}{r-l})} \triangleq \sum_{j=0}^{L} a_m x^m.$$

Choose

$$f(j) = \begin{cases} 0 & j = 0 \\ 1 + a_j j! & j = 1, \dots, L \\ 1 & j > L. \end{cases}$$

• Linear estimator (precomputable coefficients): no sample splitting!!

$$\hat{S} = \sum_{j=1}^{L} f(j)h_j + \sum_{j>L} h_j$$

• Chebyshev polynomial: $r \triangleq c_1 \log k$ and $l \triangleq \frac{n}{k}$,

$$-\frac{\cos L \arccos(\frac{2}{r-l}x - \frac{r+l}{r-l})}{\cos L \arccos(-\frac{r+l}{r-l})} \triangleq \sum_{j=0}^{L} a_m x^m.$$

Choose

$$f(j) = \begin{cases} 0 & j = 0 \\ 1 + a_j j! & j = 1, \dots, L \\ 1 & j > L. \end{cases}$$

• Linear estimator (precomputable coefficients): no sample splitting!!

$$\hat{S} = \sum_{j=1}^{L} f(j)h_j + \sum_{j>L} h_j$$

• Significantly faster than LP [Efron-Thisted '76, Valiant-Valiant '11]

Analysis

 \bigcirc bias \leq approximation error of Chebyshev polynomial:

$$\frac{1}{|\cos M \arccos(-\frac{r+l}{r-l})|} \asymp \exp\left(-c\sqrt{\frac{n\log k}{k}}\right),\,$$

2 variance $\approx \operatorname{poly}(k)$.

Optimal estimator

Plot of coefficients ($k=10^6$ and $n=2\times 10^5$):

$$\hat{S} = \sum_{j \ge 1} f(j) h_j$$

Why oscillatory and alternating?

$$\hat{S} = \sum_{j \ge 1} f(j) h_j$$

The same oscillation also happens in:

• Good-Toulmin '56: empirical Bayes

$$\hat{S}_{\mathsf{GT}} = th_1 - t^2h_2 + t^3h_3 - t^4h_4 + \dots$$

• Efron-Thistle '76: Bayesian

$$\hat{S}_{\mathsf{ET}} = \sum_{j=1}^{J} (-1)^{j+1} t^{j} b_{j} h_{j}$$

I HAVE NO EXPLANATION!

Minimax lower bound

$$n^*(k,\epsilon) \gtrsim \frac{k}{\log k} \log^2 \frac{1}{\epsilon}$$

Total variation

- $\mathsf{TV}(P_0, P_1) = \frac{1}{2} \int |dP_0 dP_1|$
- ullet optimal error probability for testing P_0 vs P_1

$$1 - \mathsf{TV}(P_0, P_1) = \min_{\psi} P_0[\psi = 1] + P_1[\psi = 0]$$

Poisson mixtures

Given
$$U \sim \mu$$
,

$$\mathbb{E}[\mathrm{Poi}(U)] = \int_{\mathbb{R}_+} \mathrm{Poi}(\lambda) \mu(\mathrm{d}\lambda)$$

Randomization

Two-prior argument (composite HT):

- draw random distribution P $\xrightarrow{\mathsf{Poisson}} N_i \overset{\mathsf{ind}}{\sim} \mathrm{Poi}(n\mathsf{p}_i)$
- draw random distribution P' $\stackrel{\mathsf{Poisson}}{\longrightarrow} N_i' \stackrel{\mathsf{ind}}{\sim} \mathrm{Poi}(n\mathsf{p}_i')$

Randomization

Two-prior argument (composite HT):

- draw random distribution P $\xrightarrow{\mathsf{Poisson}} N_i \overset{\mathsf{ind}}{\sim} \mathrm{Poi}(n \mathsf{p}_i)$
- draw random distribution P' $\stackrel{\mathsf{Poisson}}{\longrightarrow} N_i' \stackrel{\mathsf{ind}}{\sim} \mathrm{Poi}(n\mathsf{p}_i')$

Le Cam's lemma applies if

- S(P) and S(P') differ with high probability
- Distributions of N and N' are indistinguishable (\emph{k} -dim Poisson mixtures)

Randomization

Two-prior argument (composite HT):

- draw random distribution P $\xrightarrow{\mathsf{Poisson}} N_i \overset{\mathsf{ind}}{\sim} \mathrm{Poi}(n \mathsf{p}_i)$
- draw random distribution P' $\stackrel{\mathsf{Poisson}}{\longrightarrow} N_i' \stackrel{\mathsf{ind}}{\sim} \mathrm{Poi}(n\mathsf{p}_i')$

Le Cam's lemma applies if

- S(P) and S(P') differ with high probability
- Distributions of N and N' are indistinguishable (\emph{k} -dim Poisson mixtures)

<u>Main hurdle</u>: difficult to work with distributions on high-dimensional probability simplex.

Key construction: reduction to one dimension

• Given U, U' with unit mean:

$$\mathsf{P} = \frac{1}{k} (\underbrace{U_1, \dots, U_k}_{\text{i.i.d.}}), \quad \mathsf{P}' = \frac{1}{k} (\underbrace{U_1', \dots, U_k'}_{\text{i.i.d.}})$$

- By LLN,
 - ▶ P and P' are not, but close to, probability distributions.

Key construction: reduction to one dimension

• Given U, U' with unit mean:

$$\mathsf{P} = \frac{1}{k} (\underbrace{U_1, \dots, U_k}_{\text{i.i.d.}}), \quad \mathsf{P}' = \frac{1}{k} (\underbrace{U_1', \dots, U_k'}_{\text{i.i.d.}})$$

- By LLN,
 - ▶ P and P' are not, but close to, probability distributions.
 - support size concentrates on the mean:

$$\mathbb{E}\left[S(\mathsf{P})\right] - \mathbb{E}\left[S(\mathsf{P}')\right] = k(\mathbb{P}\left\{U > 0\right\} - \mathbb{P}\left\{U' > 0\right\})$$

Key construction: reduction to one dimension

• Given U, U' with unit mean:

$$\mathsf{P} = \frac{1}{k} (\underbrace{U_1, \dots, U_k}_{\text{i.i.d.}}), \quad \mathsf{P}' = \frac{1}{k} (\underbrace{U_1', \dots, U_k'}_{\text{i.i.d.}})$$

- By LLN,
 - ▶ P and P' are not, but close to, probability distributions.
 - support size concentrates on the mean:

$$\mathbb{E}\left[S(\mathsf{P})\right] - \mathbb{E}\left[S(\mathsf{P}')\right] = k(\mathbb{P}\left\{U > 0\right\} - \mathbb{P}\left\{U' > 0\right\})$$

Sufficient statistic are iid:

$$N_i \stackrel{\text{i.i.d.}}{\sim} \mathbb{E}[\text{Poi}(nU/k)], \quad N_i' \stackrel{\text{i.i.d.}}{\sim} \mathbb{E}[\text{Poi}(nU'/k)].$$

 $\bullet \ \, \mathsf{Suffice to show} \ \, \mathsf{TV}(\underbrace{\mathbb{E}[\mathrm{Poi}(nU/k)]},\underbrace{\mathbb{E}[\mathrm{Poi}(nU'/k)]}) = o(1/k).$

one-dimensional Poisson mixtures

Moment matching ⇒ statistically close Poisson mixtures

Lemma

- $U, U' \in [0, \frac{k \log k}{n}]$
- $\mathbb{E}\left[U^{j}\right] = \mathbb{E}\left[U^{\prime j}\right], \ j = 1, \dots, L = C \log k$
- Then

$$\mathsf{TV}(\mathbb{E}\left[\mathrm{Poi}\left(nU/k\right)\right], \mathbb{E}\left[\mathrm{Poi}\left(nU'/k\right)\right]) = o(1/k)$$

Let
$$\lambda = k \log k / n$$
.

$$\sup \mathbb{P} \{U = 0\} - \mathbb{P} \{U' = 0\}$$
s.t. $\mathbb{E}[U] = \mathbb{E}[U'] = 1$

$$\mathbb{E}[U^j] = \mathbb{E}[U'^j], \quad j \in [L]$$

$$U, U' \in \{0\} \cup [1, \lambda]$$

Let
$$\lambda = k \log k / n$$
.

$$\sup \mathbb{P} \left\{ U = 0 \right\} - \mathbb{P} \left\{ U' = 0 \right\}$$
s.t. $\mathbb{E} \left[U \right] = \mathbb{E} \left[U' \right] = 1$

$$\mathbb{E} \left[U^j \right] = \mathbb{E} \left[U'^j \right], \quad j \in [L]$$

$$U, U' \in \left\{ 0 \right\} \cup \left[1, \lambda \right]$$

Let
$$\lambda = k \log k / n$$
.

$$\sup \mathbb{P} \left\{ U = 0 \right\} - \mathbb{P} \left\{ U' = 0 \right\}$$

$$\text{s.t. } \mathbb{E} \left[U \right] = \mathbb{E} \left[U' \right] = 1$$

$$\mathbb{E} \left[U^j \right] = \mathbb{E} \left[U'^j \right], \quad j \in [L]$$

$$U, U' \in \left\{ 0 \right\} \cup \left[1, \lambda \right]$$

$$= \sup \mathbb{E} \left[1/X \right] - \mathbb{E} \left[1/X' \right]$$

$$\text{s.t. } \mathbb{E} \left[X^j \right] = \mathbb{E} \left[X'^j \right], \quad j \in [L]$$

$$X, X' \in [1, \lambda],$$

$$P_U(du) = \left(1 - \mathbb{E}\left[\frac{1}{X}\right]\right) \delta_0(du) + \frac{1}{u} P_X(du)$$

Let
$$\lambda = k \log k / n$$
.

$$\sup \mathbb{P} \{U = 0\} - \mathbb{P} \{U' = 0\}$$
s.t. $\mathbb{E} [U] = \mathbb{E} [U'] = 1$

$$\mathbb{E} [U^j] = \mathbb{E} [U'^j], \quad j \in [L]$$

$$U, U' \in \{0\} \cup [1, \lambda]$$

$$= \sup \mathbb{E} [1/X] - \mathbb{E} [1/X']$$
s.t. $\mathbb{E} [X^j] = \mathbb{E} [X'^j], \quad j \in [L]$

$$X, X' \in [1, \lambda],$$

$$= 2E_L(1/x, [1, \lambda]) \gtrsim e^{-c\sqrt{\frac{n \log k}{k}}}$$

Related work in statistics

Our inspiration: earlier work on Gaussian models

- Ibragimov-Nemirovskii-Khas'minskii '87: smooth functions
- Lepski-Nemirovski-Spokoiny '99: L_q norm of Gaussian regression function
- ullet Cai-Low '11: L_1 norm of normal mean

Comparison

Lower bound in [Valiant-Valiant '11]

- Deal with fingerprints high-dim distribution with dependent components
- Approximate distribution by quantized Gaussian
- Bound distance between mean and covariance matrices

Lower bound here: reduce to one dimension

Uniform over 1 million elements

Uniform mixed with point mass

How many words did Shakespeare know?

- Hamlet: total words 32000, total distinct words ~ 7700 ,
- deg-10 Chebyshev polynomial
- sampling with replacement
- compare with LP [Efron-Thisted '76, Valiant-Valiant '13]

How many words did Shakespeare know?

Feed the entire Shakespearean canon into the estimator:

- $\hat{S} = 68944 \sim 73257$
- Efron-Thisted '76: 66534

Species problem

Formulation

Given an urn containing k balls, estimate the number of distinct colors S by sampling (e.g. with replacement).

- Special case of support size estimation: $p_i \in \{0, \frac{1}{k}, \frac{2}{k}, \ldots\}$.
- Same sample complexity as DISTINCT-ELEMENT problem in TCS.

Species problem

Formulation

Given an urn containing k balls, estimate the number of distinct colors S by sampling (e.g. with replacement).

- Special case of support size estimation: $p_i \in \{0, \frac{1}{k}, \frac{2}{k}, \ldots\}$
- Same sample complexity as DISTINCT-ELEMENT problem in TCS.
- Use Chebyshev: $\frac{k}{\log k}$ samples can achieve achieve 0.1k
- Converse: $\frac{k}{\log k}$ samples are necessary to achieve 0.1k [Valiant '12]

Can we do better?

Use Lagrange interpolation polynomial to achieve zero bias

- Uniform approximation: $\epsilon \leq \exp(-c\sqrt{\log k})$
- Interpolation: $\epsilon \lesssim \exp(-c \log k)$.

$$q_L(x) = 1 - \frac{\prod_{j=1}^{L} (j-x)}{L!}$$

Can we do better?

Use Lagrange interpolation polynomial to achieve zero bias

- Uniform approximation: $\epsilon \leq \exp(-c\sqrt{\log k})$
- Interpolation: $\epsilon \lesssim \exp(-c \log k)$.

$$q_L(x) = 1 - \frac{\prod_{j=1}^{L} (j-x)}{L!}$$

More generally...

$$\operatorname{minimax\ risk\ } \gtrsim k^2 \exp\left(-c\frac{n\log k}{k}\right)$$

- Tight when n = 0.1k
- Compare to general support size:

$$\operatorname{minimax\ risk\ } \asymp k^2 \exp\left(-c\sqrt{\frac{n\log k}{k}}\right)$$

Estimating entropy

$$H(P) = \sum p_i \log \frac{1}{p_i}$$

Theorem (W.-Yang '14)

Sample complexity to estimate within ϵ bits: $n \asymp \max\left\{\frac{k}{\epsilon \log k}, \frac{\log^2 k}{\epsilon^2}\right\}$ (upper bound also in Jiao et al. '14)

Strategy

- degree: $L \sim \log k$
- small masses: polynomial approximation
- large masses: plug-in with bias correction
- coeff's bounded by Chebyshev

Estimating Rényi entropy

• Estimating $H_{\alpha}(P)=\frac{1}{1-\alpha}\log\sum p_{i}^{\alpha}$ [Jiao et al. '14, Acharya et al. '14]

Concluding remarks

To estimate

$$F(P) = \sum f(p_i)$$

Sample complexity is roughly governed by the following convex optimization problem (over logarithmic variables):

$$\mathcal{F}(\lambda) \triangleq \sup \quad \mathbb{E}\left[f(U)\right] - \mathbb{E}\left[f(U')\right]$$

$$s.t. \quad \mathbb{E}\left[U^{j}\right] = \mathbb{E}\left[U'^{j}\right] \quad j = 1, \dots, \log k,$$

$$\mathbb{E}\left[U\right] \leq 1/k,$$

$$U, U' \in [0, \log k/n],$$

- Lower bound: primal program (inapproximability result)
- Upper bound: dual program (approximability result)

Concluding remarks

- Many open problems and directions
 - Confidence intervals
 - Adaptive estimation
 - How to go beyond iid sampling
 - How to incorporate structures

References

- W. & P. Yang (2014). Minimax rates of entropy estimation on large alphabets via best polynomial approximation. arXiv:1407.0381
- W. & P. Yang (2015). Chebyshev polynomials, moment matching, and optimal estimation of the unseen. arXiv:1503.xxxx

Choose

- $M = c \log k$.
- $\hat{S} = \sum_{j>1} f(N_i), \quad N_i \sim \text{Poi}(np_i)$

$$\mathbb{E}[\hat{S} - S] = \sum \mathbb{E}[f(N_i)] - \mathbf{1}_{\{p_i > 0\}}$$

Choose

- $M = c \log k$.
- $\hat{S} = \sum_{j>1} f(N_i), \quad N_i \sim \text{Poi}(np_i)$

$$\mathbb{E}[\hat{S} - S] = \sum_{\substack{f(0) = 0 \\ =}} \mathbb{E}[f(N_i)] - \mathbf{1}_{\{p_i > 0\}}$$

Choose

- $M = c \log k$
- $\hat{S} = \sum_{j>1} f(N_i), \quad N_i \sim \text{Poi}(np_i)$

$$\begin{split} \mathbb{E}[\hat{S} - S] &= \sum \mathbb{E}[f(N_i)] - \mathbf{1}_{\{p_i > 0\}} \\ &\stackrel{f(0) = 0}{=} \sum \mathbb{E}[(f(N_i) - 1)] \mathbf{1}_{\{p_i > 0\}} \\ &= \sum \mathbb{E}[(f(N_i) - 1)] \mathbf{1}_{\{p_i > 1/k\}} \end{split}$$

Choose

- $M = c \log k$
- $\hat{S} = \sum_{j \geq 1} f(N_i), \quad N_i \sim \text{Poi}(np_i)$

$$\begin{split} \mathbb{E}[\hat{S} - S] &= \sum \mathbb{E}[f(N_i)] - \mathbf{1}_{\{p_i > 0\}} \\ &\stackrel{f(0) = 0}{=} \sum \mathbb{E}[(f(N_i) - 1)] \mathbf{1}_{\{p_i > 0\}} \\ &= \sum \mathbb{E}[(f(N_i) - 1)] \mathbf{1}_{\{p_i > 1/k\}} \\ &= \sum \mathbb{E}[(f(N_i) - 1) \mathbf{1}_{\{N_i \le L\}}] \mathbf{1}_{\{p_i > 1/k\}} \end{split}$$

Choose

- $M = c \log k$.
- $\hat{S} = \sum_{j \geq 1} f(N_i), \quad N_i \sim \text{Poi}(np_i)$

$$\mathbb{E}[\hat{S} - S] = \sum \mathbb{E}[f(N_i)] - \mathbf{1}_{\{p_i > 0\}}$$

$$f(0) = 0 \sum \mathbb{E}[(f(N_i) - 1)] \mathbf{1}_{\{p_i > 0\}}$$

$$= \sum \mathbb{E}[(f(N_i) - 1)] \mathbf{1}_{\{p_i > 1/k\}}$$

$$= \sum \mathbb{E}[(f(N_i) - 1) \mathbf{1}_{\{N_i \le L\}}] \mathbf{1}_{\{p_i > 1/k\}}$$

$$\stackrel{whp}{=} \sum \mathbb{E}[(f(N_i) - 1) \mathbf{1}_{\{N_i \le L\}}] \mathbf{1}_{\{L/2n > p_i > 1/k\}}$$

Choose

- $M = c \log k$.
- $\hat{S} = \sum_{j>1} f(N_i), \quad N_i \sim \text{Poi}(np_i)$

Bias:

$$\begin{split} \mathbb{E}[\hat{S} - S] &= \sum \mathbb{E}[f(N_i)] - \mathbf{1}_{\{p_i > 0\}} \\ \stackrel{f(0) = 0}{=} \sum \mathbb{E}[(f(N_i) - 1)] \mathbf{1}_{\{p_i > 0\}} \\ &= \sum \mathbb{E}[(f(N_i) - 1)] \mathbf{1}_{\{p_i > 1/k\}} \\ &= \sum \mathbb{E}[(f(N_i) - 1) \mathbf{1}_{\{N_i \le L\}}] \mathbf{1}_{\{p_i > 1/k\}} \\ \stackrel{whp}{=} \sum \mathbb{E}[(f(N_i) - 1) \mathbf{1}_{\{N_i \le L\}}] \mathbf{1}_{\{L/2n > p_i > 1/k\}} \end{split}$$

Observe: $g(\lambda) \triangleq \mathbb{E}[(f(N) - 1)\mathbf{1}_{\{N < L\}}] = e^{-\lambda} \times \text{ poly of deg } L$