Nearest Neighbor based Coordinate Descent

Pradeep Ravikumar, UT Austin
Joint with Inderjit Dhillon, Ambuj Tewari

Simons Workshop on Information Theory, Learning and Big Data, 2015

Modern Big Data

« Across modern applications {fMRI images, gene expression profiles, social
networks}

» many”many variables in system, not enough observations
 Curse of dimensionality

» To train the system or model, number of observations have to be much
larger than variables in system (scaling exponentially in non-parametric
models, polynomially in parametric models)

Modern Big Data

 Research over the last decade and a half:

» Finesse curse of dimensionality when there is some intrinsic
“low-dimensional structure” such as (group) sparsity, low rank, etc.

Modern Big Data

 Research over the last decade and a half:

» Finesse curse of dimensionality when there is some intrinsic
“low-dimensional structure” such as (group) sparsity, low rank, etc.

» See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht,
Willsky, 2012 for a general linear-algebraic notion of structure

Modern Big Data

 Research over the last decade and a half:

» Finesse curse of dimensionality when there is some intrinsic
“low-dimensional structure” such as (group) sparsity, low rank, etc.

» See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht,
Willsky, 2012 for a general linear-algebraic notion of structure

« Under such structure, we know how to obtain estimators whose statistical or

sample complexity depends weakly on problem dimension “p
— typically scaling as log(p)

Modern Big Data

 Research over the last decade and a half:

» Finesse curse of dimensionality when there is some intrinsic
“low-dimensional structure” such as (group) sparsity, low rank, etc.

» See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht,
Willsky, 2012 for a general linear-algebraic notion of structure

« Under such structure, we know how to obtain estimators whose statistical or

sample complexity depends weakly on problem dimension “p
— typically scaling as log(p)

- Can we achieve similar weak dependence on “p” in computational complexity?

Convex Optimization

« Optimization Problem:

min L(w).

wERP

» [.oss L is convexr and smooth:
[VL(w) = VL) ||oo < K1+ |lw =]

> Sparse minimizer w : ||lw”llo = s, |[wF|ee < B

Coordinate

escent

« Optimization Problem:

min L(w).

wERP

Algorithm Cyclic coordinate Descent

Initialize: Set the initial value of w".
forn=1,... do

7 =t mod p.

wh € argmin L(w'™ + ae;)

wi =w,; ™", for [# j.

end for

Coordinate Descent (CD)

« Coordinate Descent

» Optimize only a single coordinate per step

Coordinate Descent (CD)

-« Coordinate Descent
» Optimize only a single coordinate per step

+ Small computation per step; well suited for high-dimensional problems

Coordinate Descent (CD)

-« Coordinate Descent
» Optimize only a single coordinate per step
+ Small computation per step; well suited for high-dimensional problems

» Recently shown to enjoy good empirical performance

Coordinate Descent (CD)

» Coordinate Descent
» Optimize only a single coordinate per step
+ Small computation per step; well suited for high-dimensional problems
» Recently shown to enjoy good empirical performance

» But at least linear (or worse) dependence of comp. complexity on p!

Coordinate Descent (CD)

+ Coordinate Descent
» Optimize only a single coordinate per step
+ Small computation per step; well suited for high-dimensional problems
» Recently shown to enjoy good empirical performance
» But at least linear (or worse) dependence of comp. complexity on p!

- Suppose the optimal solution is sparse (very few coordinates are non-zero)

Coordinate Descent (CD)

+ Coordinate Descent
» Optimize only a single coordinate per step
+ Small computation per step; well suited for high-dimensional problems
» Recently shown to enjoy good empirical performance
» But at least linear (or worse) dependence of comp. complexity on p!
- Suppose the optimal solution is sparse (very few coordinates are non-zero)

» If CD judiciously chooses coordinate to optimize at each step, can it be
expected to leverage potential sparsity of optimum?

Greedy Coordinate

Descent (GC

Optimization Problem: min ﬁ(W)

wERP

Algorithm Greedy Coordinate Gradient Descent

Initialize: Set the initial value of wV.

fort=1,...do
7 = argmax; |V L(w")].
wt =w't — LV L(w')e;.

end for

Greedy Coordinate Descent: Analysis

» [.oss L is convex and smooth:
|IVL(w) = VL) ||oo < K1 - ||lw — vl

> Sparse minimizer wr: ||w¥|lo = s, [|[w||leo < B

Greedy Coordinate Descent
Guarantee:
0] * |12 2 D2
k1 [|lw” —w*||f k15" B

L(w') — £(w") < ST L

Greedy CD

- PRO: No. of iterations avoids costly dependence on dimension “p

« CON: Each GCD iteration (naively implemented) takes Q(p) time

Greedy CD

- PRO: No. of iterations avoids costly dependence on dimension “p
« CON: Each GCD iteration (naively implemented) takes Q(p) time

- Solution: Perform approximate greedy steps via reduction to Approximate
Nearest Neighbor (ANN)

Greedy CD

- PRO: No. of iterations avoids costly dependence on dimension “p
« CON: Each GCD iteration (naively implemented) takes Q(p) time

- Solution: Perform approximate greedy steps via reduction to Approximate
Nearest Neighbor (ANN)

» allows us to use recent advances in sublinear time ANN search: e.g. locality
sensitive hashing (LSH)

Fast Greedy and Nearest Neighbor

» Common objective in statistical learning:

L(w) =) Lw'a',y")

Fast Greedy and Nearest Neighbor

» Common objective in statistical learning:
=Y l(w'a',y")
i=1

» V,L(w) = (x;,r(w)) is an inner product between

feature j and “residual” r(w) = (¢ (w' 2z, y"))i,

Fast Greedy and Nearest Neighbor

» Common objective in statistical learning:
= l(w'a',y")
i=1

» V,L(w) = (x;,r(w)) is an inner product between

feature j and “residual” r(w) = (¢ (w' 2", y"))’,

» Greedy step needs to compute (assuming ||z||2 = 1)

arg max | (z;, 7 (")) | = arg min ||z; —r(w")|3
jelp je [2p]

Fast Greedy and Nearest Neighbor

» Common objective in statistical learning:
= l(w'a',y")
i=1

» V,L(w) = (x;,r(w)) is an inner product between

feature j and “residual” r(w) = (¢ (w' 2", y"))’,

» Greedy step needs to compute (assuming ||z||2 = 1)

arg max | (z;, 7 (")) | = arg min ||z; —r(w")|3
jelp je [2p]

» Leverage state-of-the-art in NN search to do this
in o(p) time

Approximate Greedy C

D: Analysis

» If greedy step has multiplicative approxi-
mation factor (1 + €nn) then:

1 11n
Clw') — Llw*) < —€

r1]|w? — w*||2

~ €nn(l/€) +

» In summary, convergence rate is K -

1 ¢

m182
t

Fast Greedy: Computational Complexity

» If each greedy step costs Ci(n,p,€nn),
overall cost C'g to accuracy e is:

K k182

€

CG = C’t(n,p, enn) .

» Preprocessing time C_(n,p, €nn) can be
amortized.

Fast Greedy: Computational Complexity

» Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (p=1/(1 4+ €nn) < 1)

Cy = O (np”) C_ =0 (np"™" em)

Fast Greedy: Computational Complexity

» Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (p=1/(1 4+ €nn) < 1)

C:=0(np’) C-=0(np " eum)

» Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Cy =0 (n logn + e, log? p) C_ =0 (pGEnQ)

Fast Greedy: Computational Complexity

» Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (p=1/(1 4+ €nn) < 1)

Cy = O (np”) C_ =0 (np"™" em)

» Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Cy =0 (n logn + e, log? p) C_ =0 (peEnQ)

» Quad Trees+Random Projections: Under mutual
incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

—2
Ci =0 (p) C-=0(nplogper)
Mutual incoherence (@ = max;+; (z;,z;) < 1) plays impor-
tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

» Smooth plus separable composite objective:
(think of R = A|| - ||1)

min L(w) 4+ R(w)

w ERP

» Separable reqularizer: R(w) = Zj Rj(w;)

Non-smooth Objectives

» Smooth plus separable composite objective:
(think of R = A|| - ||1)

min L(w) 4+ R(w)

w ERP

> Separable reqularizer: R(w) =) . Rj(w;)
» If we updated coordinate j:

w;ﬂ — argmlgng;(w—wj-)—l— %(w—w§)2+Rj(w)

‘ 2

» Guaranteed descent in objective is %\nj where

t t+1 t
Ny = W; — W

Modified Greedy for non-smooth objectives

Modified greedy algorithm

(chooses j with maximum guaranteed descent)

Initialize: w® < 0.
fort=1,... do
jt < arg manE[p] ‘77;‘
wi — wt —+ nﬁtejt

end for

Guarantee:

0 * || 2
L") +Rw') - £(w") - R(w") < 2 v — i

=Xperiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH)

Two loss functions (logistic, squared), £ regularization

X: standard Gaussian with normalized columns

Y = Xwyr with wey 100-sparse, n = [400 log(p) |

n=3684, p=10000, k=100 (logistic loss)

3000r

- - -Cyclic

— Greedy.LSH
2500(*, Greedy

2000

Objective
o
o
o

1000

500

0 5 10 15 20 25
CPU Time (in seconds)

jective

Ob

=Xperiments: Logistic Loss

n=4605, p=100000, k=100 (logistic loss)

3500
- - -Cyclic

T greeayisn
2500

2000

1500

1000

500 -
00 50 1 60 1 50 260 250 360

CPU Time (in seconds)

40001

3500}

3000

2500

Objective
N
o
o
o

1500

1000

5001

n=5526, p=1000000, k=100 (logistic loss)

- -

- - -Cyclic

Greedy

—Greedy.LSH

1000 1500 2000 2500
CPU Time (in seconds)

3000

Objective

—xperiments: Squared Loss

n=3684, p=10000, k=100 (squared loss) n=4605, p=100000, k=100 (squared loss) n=5526, p=1000000, k=100 (squared loss)
60r . 50r 60"
- - -Cyclic - - -Cyclic - - -Cyclic
—Greedy.LSH — Greedy.LSH — Greedy.LSH
50 Greedy Greedy 50 Greedy
40+
40 ! 40
299 2
30 8 S 30
Q | o
o 201I (@)
20 ' 20
|
10 107, 10
0 L L 1 1 1 | 0 L L L 1 1 | 0 L L L L L |
0 1 2 3 4 5 6 0 10 20 30 40 50 60 0 100 200 300 400 500 600

CPU Time (in seconds) CPU Time (in seconds) CPU Time (in seconds)

Summary

Optimization Method with sub-linear dependence on p!

New connections between computational geometry and first order
optimization

Interplay between statistical and computational efficiency: mutual
incoherence = very simple data structure works for ANN

New greedy algorithm for composite objectives

