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Modern Big Data

« Across modern applications {fMRI images, gene expression profiles, social
networks}

» many”many variables in system, not enough observations
 Curse of dimensionality

» To train the system or model, number of observations have to be much
larger than variables in system (scaling exponentially in non-parametric
models, polynomially in parametric models)
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- Can we achieve similar weak dependence on “p” in computational complexity?



Convex Optimization

« Optimization Problem:

min L(w).

wERP

» [.oss L is convexr and smooth:
[VL(w) = VL) ||oo < K1+ |lw =]

> Sparse minimizer w : ||lw”llo = s, |[wF|ee < B



Coordinate

escent

« Optimization Problem:

min L(w).

wERP

Algorithm Cyclic coordinate Descent

Initialize: Set the initial value of w".
forn=1,... do

7 =t mod p.

wh € argmin L(w'™ + ae;)

wi =w,; ™", for [ # j.

end for
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Coordinate Descent (CD)

+ Coordinate Descent
» Optimize only a single coordinate per step
+ Small computation per step; well suited for high-dimensional problems
» Recently shown to enjoy good empirical performance
» But at least linear (or worse) dependence of comp. complexity on p!
- Suppose the optimal solution is sparse (very few coordinates are non-zero)

» If CD judiciously chooses coordinate to optimize at each step, can it be
expected to leverage potential sparsity of optimum?



Greedy Coordinate

Descent (GC

Optimization Problem: min ﬁ(W)

wERP

Algorithm  Greedy Coordinate Gradient Descent

Initialize: Set the initial value of wV.

fort=1,...do
7 = argmax; |V L(w")].
wt =w't — LV L(w')e;.

end for




Greedy Coordinate Descent: Analysis

» [.oss L is convex and smooth:
|IVL(w) = VL) ||oo < K1 - ||lw — vl

> Sparse minimizer wr: ||w¥|lo = s, [|[w||leo < B

Greedy Coordinate Descent
Guarantee:
0] * |12 2 D2
k1 [|lw” —w*||f k15" B

L(w') — £(w") < ST L
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Greedy CD

- PRO: No. of iterations avoids costly dependence on dimension “p
« CON: Each GCD iteration (naively implemented) takes Q(p) time

- Solution: Perform approximate greedy steps via reduction to Approximate
Nearest Neighbor (ANN)

» allows us to use recent advances in sublinear time ANN search: e.g. locality
sensitive hashing (LSH)
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Fast Greedy and Nearest Neighbor

» Common objective in statistical learning:
= l(w'a',y")
i=1

» V,L(w) = (x;,r(w)) is an inner product between

feature j and “residual” r(w) = (¢ (w' 2", y"))’,

» Greedy step needs to compute (assuming ||z||2 = 1)

arg max | (z;, 7 (")) | = arg min ||z; —r(w")|3
jelp je [2p]

» Leverage state-of-the-art in NN search to do this
in o(p) time



Approximate Greedy C

D: Analysis

» If greedy step has multiplicative approxi-
mation factor (1 + €nn) then:

1 11n
Clw') — Llw*) < —€

r1]|w? — w*||2

~ €nn(l/€) +

» In summary, convergence rate is K -

1 ¢

m182
t




Fast Greedy: Computational Complexity

» If each greedy step costs Ci(n,p,€nn),
overall cost C'g to accuracy e is:

K k182

€

CG = C’t(n,p, enn) .

» Preprocessing time C_(n,p, €nn) can be
amortized.
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» Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (p=1/(1 4+ €nn) < 1)

Cy = O (np”) C_ =0 (np"™" em)

» Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Cy =0 (n logn + e, log? p) C_ =0 (peEnQ)

» Quad Trees+Random Projections: Under mutual
incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

—2
Ci =0 (p)  C-=0(nplogper)
Mutual incoherence (@ = max;+; (z;,z;) < 1) plays impor-
tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.
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Non-smooth Objectives

» Smooth plus separable composite objective:
(think of R = A|| - ||1)

min L(w) 4+ R(w)

w ERP

> Separable reqularizer: R(w) = ) . Rj(w;)
» If we updated coordinate j:

w;ﬂ — argmlgng;(w—wj-)—l— %(w—w§)2+Rj(w)

‘ 2

» Guaranteed descent in objective is %\nj where

t t+1 t
Ny = W;  — W



Modified Greedy for non-smooth objectives

Modified greedy algorithm

(chooses j with maximum guaranteed descent)

Initialize: w® < 0.
fort=1,... do
jt < arg manE[p] ‘77;‘
wi — wt —+ nﬁtejt

end for

Guarantee:

0 * || 2
L") +Rw') - £(w") - R(w") < 2 v — i




=Xperiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH)

Two loss functions (logistic, squared), £ regularization

X: standard Gaussian with normalized columns

Y = Xwyr with wey 100-sparse, n = [400 log(p) |
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Objective

—xperiments: Squared Loss
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Summary

Optimization Method with sub-linear dependence on p!

New connections between computational geometry and first order
optimization

Interplay between statistical and computational efficiency: mutual
incoherence = very simple data structure works for ANN

New greedy algorithm for composite objectives



