Nearest Neighbor based Coordinate Descent

Pradeep Ravikumar, UT Austin
Joint with Inderjit Dhillon, Ambuj Tewari

Simons Workshop on Information Theory, Learning and Big Data, 2015
Modern Big Data

- Across modern applications {fMRI images, gene expression profiles, social networks}
 - many^many variables in system, not enough observations

- Curse of dimensionality
 - To train the system or model, number of observations have to be much larger than variables in system (scaling exponentially in non-parametric models, polynomially in parametric models)
Modern Big Data

• Research over the last decade and a half:

 ‣ Finesse curse of dimensionality when there is some intrinsic “low-dimensional structure” such as (group) sparsity, low rank, etc.
Modern Big Data

• Research over the last decade and a half:

 ‣ Finesse curse of dimensionality when there is some intrinsic “low-dimensional structure” such as (group) sparsity, low rank, etc.

 ‣ See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht, Willsky, 2012 for a general linear-algebraic notion of structure
Modern Big Data

• Research over the last decade and a half:

 ‣ Finesse curse of dimensionality when there is some intrinsic “low-dimensional structure” such as (group) sparsity, low rank, etc.

 › See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht, Willsky, 2012 for a general linear-algebraic notion of structure

• Under such structure, we know how to obtain estimators whose statistical or sample complexity depends weakly on problem dimension “p” — typically scaling as log(p)
Modern Big Data

• Research over the last decade and a half:

 ‣ Finesse curse of dimensionality when there is some intrinsic “low-dimensional structure” such as (group) sparsity, low rank, etc.

 ‣ See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht, Willsky, 2012 for a general linear-algebraic notion of structure

• Under such structure, we know how to obtain estimators whose statistical or sample complexity depends weakly on problem dimension “p” — typically scaling as log(p)

• Can we achieve similar weak dependence on “p” in computational complexity?
Convex Optimization

- Optimization Problem:

\[
\min_{w \in \mathbb{R}^p} \mathcal{L}(w).
\]

- **Loss** \(\mathcal{L} \) is *convex and smooth*:

\[
\| \nabla \mathcal{L}(w) - \nabla \mathcal{L}(v) \|_{\infty} \leq \kappa_1 \cdot \| w - v \|_1
\]

- **Sparse minimizer** \(w^* \): \(\|w^*\|_0 = s, \|w^*\|_\infty \leq B \)
Coordinate Descent

- Optimization Problem:
 \[
 \min_{w \in \mathbb{R}^p} \mathcal{L}(w).
 \]

Algorithm Cyclic coordinate Descent

Initialize: Set the initial value of \(w^0 \).

for \(n = 1, \ldots \) do
 \(j = t \mod p \).
 \(w_j^t \in \arg \min \mathcal{L}(w^{t-1} + \alpha e_j) \).
 \(w_l^t = w_l^{t-\frac{\alpha}{\|e_j\|}} \), for \(l \neq j \).

end for
Coordinate Descent (CD)

- Coordinate Descent
 - Optimize only a single coordinate per step
Coordinate Descent (CD)

- Coordinate Descent
 - Optimize only a single coordinate per step
 - Small computation per step; well suited for high-dimensional problems
Coordinate Descent (CD)

- Coordinate Descent
 - Optimize only a single coordinate per step
 - Small computation per step; well suited for high-dimensional problems
 - Recently shown to enjoy good empirical performance
Coordinate Descent (CD)

- Coordinate Descent
 - Optimize only a single coordinate per step
 - Small computation per step; well suited for high-dimensional problems
 - Recently shown to enjoy good empirical performance
 - But at least linear (or worse) dependence of comp. complexity on p!
Coordinate Descent (CD)

- Coordinate Descent
 - Optimize only a single coordinate per step
 - Small computation per step; well suited for high-dimensional problems
 - Recently shown to enjoy good empirical performance
 - But at least linear (or worse) dependence of comp. complexity on $p!$
- Suppose the optimal solution is sparse (very few coordinates are non-zero)
Coordinate Descent (CD)

- Coordinate Descent
 - Optimize only a single coordinate per step
 - Small computation per step; well suited for high-dimensional problems
 - Recently shown to enjoy good empirical performance
 - But at least linear (or worse) dependence of comp. complexity on p!

- Suppose the optimal solution is sparse (very few coordinates are non-zero)
 - If CD judiciously chooses coordinate to optimize at each step, can it be expected to leverage potential sparsity of optimum?
Greedy Coordinate Descent (GCD)

Optimization Problem: \(\min_{w \in \mathbb{R}^p} \mathcal{L}(w) \).

Algorithm Greedy Coordinate Gradient Descent

Initialize: Set the initial value of \(w^0 \).

\[\text{for } t = 1, \ldots \text{ do} \]

\[j = \arg \max_l |\nabla_l \mathcal{L}(w^t)|. \]

\[w^t = w^{t-1} - \frac{1}{\kappa_1} \nabla_j \mathcal{L}(w^t) e_j. \]

\[\text{end for} \]
Greedy Coordinate Descent: Analysis

- Loss \mathcal{L} is *convex and smooth*:

 $$\| \nabla \mathcal{L}(w) - \nabla \mathcal{L}(v) \|_\infty \leq \kappa_1 \cdot \| w - v \|_1$$

- *Sparse minimizer* w^*: $\| w^* \|_0 = s$, $\| w^* \|_\infty \leq B$

Greedy Coordinate Descent Guarantee:

$$\mathcal{L}(w^t) - \mathcal{L}(w^*) \leq \frac{\kappa_1}{2} \frac{\| w^0 - w^* \|_1^2}{t} = \frac{\kappa_1}{2} \frac{s^2 B^2}{t}$$
Greedy CD

- **PRO**: No. of iterations avoids costly dependence on dimension “p”

- **CON**: Each GCD iteration (naively implemented) takes $\Omega(p)$ time
Greedy CD

- PRO: No. of iterations avoids costly dependence on dimension “p”

- CON: Each GCD iteration (naively implemented) takes $\Omega(p)$ time

- Solution: Perform approximate greedy steps via reduction to Approximate Nearest Neighbor (ANN)
Greedy CD

- **PRO**: No. of iterations avoids costly dependence on dimension “p”

- **CON**: Each GCD iteration (naively implemented) takes $\Omega(p)$ time

- **Solution**: Perform approximate greedy steps via reduction to Approximate Nearest Neighbor (ANN)
 - allows us to use recent advances in **sublinear time** ANN search: e.g. locality sensitive hashing (LSH)
Fast Greedy and Nearest Neighbor

- Common objective in statistical learning:

\[\mathcal{L}(w) = \sum_{i=1}^{n} \ell(w^T x^i, y^i) \]
Fast Greedy and Nearest Neighbor Neighbor

- Common objective in statistical learning:

\[\mathcal{L}(w) = \sum_{i=1}^{n} \ell(w^T x^i, y^i) \]

- \(\nabla_j \mathcal{L}(w) = \langle x_j, r(w) \rangle \) is an inner product between feature \(j \) and “residual” \(r(w) = (\ell'(w^T x^i, y^i))_{i=1}^{n} \)
Fast Greedy and Nearest Neighbor

- Common objective in statistical learning:

\[
\mathcal{L}(w) = \sum_{i=1}^{n} \ell(w^T x^i, y^i)
\]

- \(\nabla_j \mathcal{L}(w) = \langle x_j, r(w) \rangle\) is an inner product between feature \(j\) and “residual” \(r(w) = (\ell'(w^T x^i, y^i))_{i=1}^{n}\)

- Greedy step needs to compute (assuming \(\|x_j\|_2 = 1\))

\[
\arg \max_{j \in [p]} |\langle x_j, r(w^t) \rangle| \equiv \arg \min_{j \in [2p]} \|\bar{x}_j - r(w^t)\|_2^2
\]
Fast Greedy and Nearest Neighbor

- Common objective in statistical learning:

\[\mathcal{L}(w) = \sum_{i=1}^{n} \ell(w^T x^i, y^i) \]

- \(\nabla_j \mathcal{L}(w) = \langle x_j, r(w) \rangle \) is an inner product between feature \(j \) and “residual” \(r(w) = (\ell'(w^T x^i, y^i))_{i=1}^{n} \)

- Greedy step needs to compute (assuming \(\|x_j\|_2 = 1 \))

\[\arg \max_{j \in [p]} |\langle x_j, r(w^t) \rangle| \equiv \arg \min_{j \in [2p]} \|\bar{x}_j - r(w^t)\|_2^2 \]

- Leverage state-of-the-art in NN search to do this in \(o(p) \) time
Approximate Greedy CD: Analysis

- If greedy step has *multiplicative approximation factor* \((1 + \epsilon_{nn})\) then:

\[
L(w^t) - L(w^*) \leq \frac{1 + \epsilon_{nn}}{\epsilon_{nn}(1/\epsilon) + 1} \cdot \frac{\kappa_1 \|w^0 - w^*\|_1^2}{t}
\]

- In summary, convergence rate is \(K \cdot \frac{\kappa_1 s^2}{t}\)
Fast Greedy: Computational Complexity

- If each greedy step costs $C_t(n, p, \epsilon_{nn})$, overall cost C_G to accuracy ϵ is:

 $$C_G = C_t(n, p, \epsilon_{nn}) \cdot \frac{K \kappa_1 s^2}{\epsilon}$$

- Preprocessing time $C_-(n, p, \epsilon_{nn})$ can be amortized.
Fast Greedy: Computational Complexity

- **Locality Sensitive Hashing:** Uses random projections to hash data points such that distant points are unlikely to collide. It gives: \(\rho = 1/(1 + \epsilon_{nn}) < 1 \)
 \[
 C_t = O(np^\rho) \quad C_- = O(np^{1+\rho} \epsilon_{nn}^{-2})
 \]
Fast Greedy: Computational Complexity

- **Locality Sensitive Hashing:** Uses random projections to hash data points such that distant points are unlikely to collide. It gives: \(\rho = 1/(1 + \epsilon_{nn}) < 1 \)
 \[C_t = O(np^\rho) \quad C_\epsilon = O(np^{1+\rho} \epsilon_{nn}^{-2}) \]

- **Ailon & Chazelle (2006)’s method:** Uses multiple lookup tables after random projections. It gives:
 \[C_t = O(n \log n + \epsilon_{nn}^{-3} \log^2 p) \quad C_\epsilon = O(p^{\epsilon_{nn}^{-2}}) \]
Fast Greedy: Computational Complexity

- **Locality Sensitive Hashing:** Uses random projections to hash data points such that distant points are unlikely to collide. It gives: \(\rho = 1/(1 + \epsilon_{nn}) < 1 \)
 \[C_t = O(n p^\rho) \quad C_\perp = O(np^{1+\rho} \epsilon_{nn}^{-2}) \]

- **Ailon & Chazelle (2006)’s method:** Uses multiple lookup tables after random projections. It gives:
 \[C_t = O(n \log n + \epsilon_{nn}^{-3} \log^2 p) \quad C_\perp = O(p^\epsilon_{nn}^{-2}) \]

- **Quad Trees+Random Projections:** Under *mutual incoherence*, using simple quad tree with random Gaussian projections, we obtain:
 \[C_t = O(p^\epsilon_{nn}^{-2}) \quad C_\perp = O(np \log p \epsilon_{nn}^{-2}) \]

 Mutual incoherence \(\mu = \max_{i\neq j} \langle x_i, x_j \rangle < 1 \) plays important role in *statistical complexity* for sparse parameter recovery. Here it is also related to *computational complexity*.

Non-smooth Objectives

► Smooth plus separable composite objective: (think of $\mathcal{R} = \lambda \| \cdot \|_1$)
\[
\min_{w \in \mathbb{R}^p} \mathcal{L}(w) + \mathcal{R}(w)
\]

► Separable regularizer: $\mathcal{R}(w) = \sum_j \mathcal{R}_j(w_j)$
Non-smooth Objectives

- Smooth plus separable composite objective: (think of $R = \lambda || \cdot ||_1$)

$$\min_{w \in \mathbb{R}^p} L(w) + R(w)$$

- Separable regularizer: $R(w) = \sum_j R_j(w_j)$

- If we updated coordinate j:

$$w_j^{t+1} = \arg \min_w g_j^t (w - w_j^t) + \frac{\kappa_1}{2} (w - w_j^t)^2 + R_j(w)$$

- Guaranteed descent in objective is $\frac{\kappa_1}{2} |\eta_j|^2$ where $\eta_j = w_j^{t+1} - w_j^t$
Modified Greedy for non-smooth objectives

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: $w^0 \leftarrow 0$.

for $t = 1, \ldots$ do
 \[j_t \leftarrow \text{arg max}_{j \in [p]} |\eta_j^t| \]
 \[w^{t+1} \leftarrow w^t + \eta_{jt}^t e_{jt} \]
end for

Guarantee:

\[\mathcal{L}(w^t) + \mathcal{R}(w^t) - \mathcal{L}(w^*) - \mathcal{R}(w^*) \leq \frac{\kappa_1}{2} \frac{||w^0 - w^*||_1^2}{t} \]
Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH)
Two loss functions (logistic, squared), ℓ_1 regularization

\[X: \text{standard Gaussian with normalized columns} \]
\[Y = X w_{tr} \text{ with } w_{tr} \text{ 100-sparse, } n = \lfloor 400 \log(p) \rfloor \]
Experiments: Logistic Loss

Objective vs. CPU Time (in seconds) for different datasets:

1. n=3684, p=10000, k=100 (logistic loss)
2. n=4605, p=100000, k=100 (squared loss)
3. n=5526, p=1000000, k=100 (logistic loss)

Different algorithms compared:
- Cyclic
- Greedy
- Greedy.LSH

Note: The graphs show the performance of these algorithms on logistic loss for different datasets, highlighting the computational efficiency and convergence rate.
Experiments: Squared Loss
Summary

• Optimization Method with \textbf{sub-linear} dependence on p!

• New connections between computational geometry and first order optimization

• Interplay between statistical and computational efficiency: mutual incoherence \Rightarrow very simple data structure works for ANN

• New greedy algorithm for composite objectives