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Modern Big Data

• Across modern applications {fMRI images, gene expression profiles, social 
networks}


‣ many^many variables in system, not enough observations


• Curse of dimensionality 


‣ To train the system or model, number of observations have to be much 
larger than variables in system (scaling exponentially in non-parametric 
models, polynomially in parametric models)
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Modern Big Data

• Research over the last decade and a half:

‣ Finesse curse of dimensionality when there is some intrinsic  
“low-dimensional structure” such as (group) sparsity, low rank, etc.

‣ See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht, 
Willsky, 2012 for a general linear-algebraic notion of structure

• Under such structure, we know how to obtain estimators whose statistical or 
sample complexity depends weakly on problem dimension “p”  
— typically scaling as log(p)

• Can we achieve similar weak dependence on “p” in computational complexity?
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Coordinate Descent

shown considerable empirical success in applying these
to large problems. Indeed, there have been a string
of papers that have analyzed di↵erent variants of co-
ordinate descent methods. Shalev-Shwartz & Tewari
(2009) propose a stochastic version of coordinate de-
scent algorithm, that updates a coordinate chosen uni-
formly at random at each step. Nesterov (2010) also
analyzes a uniform stochastic variant where each coor-
dinate is chosen with probability proportional to a co-
ordinatewise Lipshitz constant, which reduces to uni-
form when the Lipshitz constants are the same, for
the special case where the function is additive in the
coordinates (more precisely, Nesterov (2010) considers
block coordinate descent under an additive functional
assumption on the blocks). Saha & Tewari (2010)
show that under certain conditions, the convergence
rate of cyclic coordinate descent is at least as fast as
that of gradient descent.

In our first result, we derive crisper bounds for gen-
eral stochastic coordinate descent, allowing the up-
dated coordinate to be drawn from any distribution.
Using this bound, we show that while stochastic co-
ordinate descent with the uniform distribution need
not outperform gradient descent, there exist optimal
distributions where stochastic gradient descent could
have a better convergence rate by an order of mag-
nitude: with p variables, and an s-sparse solution, it
could be faster by O(p/s). However this optimal dis-
tribution requires knowledge of the true solution and
hence is not practical.

In our second result, we focus on greedy coordinate
descent: which involves updating the coordinate that
has the maximum gradient magnitude. We show that
if this greedy step can be performed in O(1), then
the performance of greedy coordinate descent would
match that of the optimal stochastic coordinate de-
scent. We then show that for optimization problems
arising out of maximizing the log-likelihood of general-
ized linear models, which encompasses a wide class of
models such as Gaussian (linear regression), Poisson,
etc. the greedy step could be cast as a nearest neigh-
bor problem. This would then allow us to leverage the
significant amount of recent research that show that
it is possible to have sublinear methods for nearest
neighbor search, provided it su�ces to have approxi-
mate nearest neighbors. As we show, a corresponding
approximate greedy coordinate descent also converges
at the same asymptotic rate as earlier. Indeed, we
investigate several notions of approximate greedy co-
ordinate descent for which we are able to derive sim-
ilar rates. For the composite objective case, where
the objective is the sum of a smooth component and
a separable non-smooth component, we also propose

and analyze a “look-ahead” variant of greedy coor-
dinate descent. The development in this paper thus
raises a new line of research: to develop approximate
nearest neighbor methods tuned to greedy coordinate
descent. For instance, we are able to show that if the
covariates underlying the optimization objective sat-
isfy a mutual incoherence condition, then a very sim-
ple nearest neighbor data structure su�ces to yield a
good approximation.

2. Problem Setup and Notation

We start our treatment with di↵erentiable objective
functions, and then extend this to encompass non-
di↵erentiable functions which arise as the sum of a
smooth component and a separable non-smooth com-
ponent Let L : Rp ! R be a convex di↵erentiable func-
tion. We do not assume that the function is strongly
convex: indeed most optimizations arising out of high-
dimensional machine learning problems are convex but
typically not strongly so. Our analysis requires that
the function satisfies the following coordinate-wise Lip-
schitz condition:

Assumption (A1). For any j 2 {1, . . . , p}, and any
⌘ > 0, the loss function L satisfies

krL(w)�rL(v)k1  
1

· kw � vk
1

, for some 
1

> 0.

We note that this condition is weaker than the stan-
dard Lipschitz conditions on the gradients. In particu-
lar, we say that L has 

2

-Lipschitz continuous gradient
w.r.t. k · k

2

when krL(w)�rL(v)k
2

 
2

· kw� vk
2

,
Note that 

1

 
2

; indeed 
1

could be up to p times
smaller than 

2

. E.g. when L(w) = 1/2w>Aw with
a positive semi-definite matrix A , we have 

1

=
maxj Aj,j , the maximum entry on the diagonal, while

2

= maxj �j(A), the maxium eigenvalue of A. It is
thus possible for 

2

to be much larger than 
1

: for
instance 

2

= p
1

when A is the all 1’s matrix.

Consider the optimization problem,

min
w2Rp

L(w). (1)

We will be interested in the case where the solution is
bounded and sparse. We thus assume:

Assumption (A2). The solution w⇤ of (1) satisfies:
kw⇤k1  B for some constant B < 1 independent of
p, and that kw⇤k

0

= s, i.e., solution is s-sparse.

2.1. Coordinate Descent

Coordinate descent solves (1) iteratively by optimiz-
ing over a single coordinate while holding others fixed.
Typically, the choice of the updating coordinate is
cyclic, so that the coordinate descent cycles through
the coordinates.

• Optimization Problem:
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Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Coordinate Descent

Algorithm 1 Cyclic coordinate Descent

Initialize: Set the initial value of w0.
for n = 1, . . . do

j = t mod p.
wt

j = argmint L(wt�1 + tej).

wt
l = wt�1

l , for l 6= j.
end for

One caveat with this scheme however is that it could
be expensive to compute the one-dimensional opti-
mum for general functions L. Moreover when L is
not smooth, such coordinatewise descent is not guar-
anteed to converge to the global optimum in general,
unless the non-di↵erentiable component is separable
(Tseng & Yun, a). A line of recent work (Tseng &
Yun, a;b; Shalev-Shwartz & Tewari, 2009) has thus fo-
cused on a “gradient descent” version of coordinate
descent, that iteratively uses a local quadratic upper
bound LU of the function L. For the case where the
optimization function is the sum of a smooth function
and the `

1

regularizer, this variant is also called Iter-
ative Soft Thresholding (Daubechies et al., 2004). A
template for such coordinate gradient descent is the
set of iterates: wt = wt�1 � 1


1

rjL(wt)ej . Friedman
et al. (2007); Genkin et al. (2007); Wu & Lange (2008)
and others have shown considerable empirical success
in applying these to large problems. However, the
convergence rate for such cyclic descent has at most
been shown to match that of gradient descent (Saha
& Tewari, 2010). In order to weaken this dimension
dependence, we investigate stochastic coordinate de-
scent in full generality in the next section.

3. Stochastic Coordinate Descent

In stochastic coordinate descent, at each step we
choose the index of the coordinate to be updated ac-
cording to some distribution. For instance, Shalev-
Shwartz & Tewari (2009) and Nesterov (2010) both
study uniform stochastic coordinate descent where the
coordinate indices are picked randomly from the uni-
form distribution. Their results show that the conver-
gence rate of this uniform stochastic variant of coordi-
nate descent is bounded as

L(wt)� L(w⇤) = O
⇣s p

t

⌘
.

Now for gradient descent Beck & Teboulle (2009) how-
ever show that the convergence rate is bounded as

L(wt)� L(w⇤) = O
⇣s
t

⌘
.

While at first glance, this is lower by a factor of p, its
runtime in turn is larger by a factor of p: at each step,

gradient descent updates all coordinates at a cost of
O(p), while coordinate descent updates just one coor-
dinate, at a cost of O(1) provided the gradient rjL(w)
can be computed in O(1). Thus, at time T , the iter-
ates w◆ of both gradient and coordinate descent satisfy
L(w◆) � L(w⇤) = O

� s p
T

�
. As we discussed in the in-

troduction, we would like to obtain crisper bounds for
variants of coordinate descent that are strictly better
than that of gradient descent, and in particular depend
weakly on the number of variables p.

Consider the following general form of stochastic co-
ordinate descent: at any step t, we sample accord-
ing to the multinomial distribution {ctj}pj=1

, wherePp
j=1

ctj = 1.

Algorithm 2 Stochastic Coordinate Gradient De-
scent

Initialize: Set the initial value of w0.
for t = 1, . . . do

j ⇠ mult(ct1, . . . , ctp).
wt = wt�1 � 1


1

rjL(wt)ej .
end for

The first lemma is one of the main tools for any coordi-
nate descent algorithm (not just its stochastic variant);
and provides an estimate of how much the function
value decreases with each iteration.

Lemma 1. Suppose the convex di↵erentiable function
L satisfies assumptions A1and A2. Then denoting
gtj = rjL(wt), the iterates of Algorithm 1 satisfy:

L(wt+1)  L(wt)� 1

2
1

�
gtj
�
2

. (2)

The next Lemma bounds this quantity for stochastic
coordinate descent. We first define some norms. For
c = (c

1

, . . . , cp) 2 Rp
+

, we define: kakc =
pP

i cia
2

i .
It is easy to show via the Cauchy-Schwarz inequality
that ha, bi  kakckbk1/c.
Theorem 1. Suppose the convex di↵erentiable func-
tion L satisfies assumptions A1 and A2. Let ct de-
note a sampling distribution that is stationary so that
it is equal to some {c} at every iteration. Provided the
iterates of Algorithm 1 converge monotonically, they
converge at the rate:

E(L(wt)� L(w⇤))  
1

2

kw0 � w⇤k21/c
t

.

Proof. We first note that taking expectation of both
sides of (2) in Lemma 1,

EL(wt+1)  EL(wt)� 1

2
1

E(gtj)2

 EL(wt)� 1

2
1

Ekgtk2ct
. (3)

• Optimization Problem:
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Coordinate Descent

shown considerable empirical success in applying these
to large problems. Indeed, there have been a string
of papers that have analyzed di↵erent variants of co-
ordinate descent methods. Shalev-Shwartz & Tewari
(2009) propose a stochastic version of coordinate de-
scent algorithm, that updates a coordinate chosen uni-
formly at random at each step. Nesterov (2010) also
analyzes a uniform stochastic variant where each coor-
dinate is chosen with probability proportional to a co-
ordinatewise Lipshitz constant, which reduces to uni-
form when the Lipshitz constants are the same, for
the special case where the function is additive in the
coordinates (more precisely, Nesterov (2010) considers
block coordinate descent under an additive functional
assumption on the blocks). Saha & Tewari (2010)
show that under certain conditions, the convergence
rate of cyclic coordinate descent is at least as fast as
that of gradient descent.

In our first result, we derive crisper bounds for gen-
eral stochastic coordinate descent, allowing the up-
dated coordinate to be drawn from any distribution.
Using this bound, we show that while stochastic co-
ordinate descent with the uniform distribution need
not outperform gradient descent, there exist optimal
distributions where stochastic gradient descent could
have a better convergence rate by an order of mag-
nitude: with p variables, and an s-sparse solution, it
could be faster by O(p/s). However this optimal dis-
tribution requires knowledge of the true solution and
hence is not practical.

In our second result, we focus on greedy coordinate
descent: which involves updating the coordinate that
has the maximum gradient magnitude. We show that
if this greedy step can be performed in O(1), then
the performance of greedy coordinate descent would
match that of the optimal stochastic coordinate de-
scent. We then show that for optimization problems
arising out of maximizing the log-likelihood of general-
ized linear models, which encompasses a wide class of
models such as Gaussian (linear regression), Poisson,
etc. the greedy step could be cast as a nearest neigh-
bor problem. This would then allow us to leverage the
significant amount of recent research that show that
it is possible to have sublinear methods for nearest
neighbor search, provided it su�ces to have approxi-
mate nearest neighbors. As we show, a corresponding
approximate greedy coordinate descent also converges
at the same asymptotic rate as earlier. Indeed, we
investigate several notions of approximate greedy co-
ordinate descent for which we are able to derive sim-
ilar rates. For the composite objective case, where
the objective is the sum of a smooth component and
a separable non-smooth component, we also propose

and analyze a “look-ahead” variant of greedy coor-
dinate descent. The development in this paper thus
raises a new line of research: to develop approximate
nearest neighbor methods tuned to greedy coordinate
descent. For instance, we are able to show that if the
covariates underlying the optimization objective sat-
isfy a mutual incoherence condition, then a very sim-
ple nearest neighbor data structure su�ces to yield a
good approximation.

2. Problem Setup and Notation

We start our treatment with di↵erentiable objective
functions, and then extend this to encompass non-
di↵erentiable functions which arise as the sum of a
smooth component and a separable non-smooth com-
ponent Let L : Rp ! R be a convex di↵erentiable func-
tion. We do not assume that the function is strongly
convex: indeed most optimizations arising out of high-
dimensional machine learning problems are convex but
typically not strongly so. Our analysis requires that
the function satisfies the following coordinate-wise Lip-
schitz condition:

Assumption (A1). For any j 2 {1, . . . , p}, and any
⌘ > 0, the loss function L satisfies

krL(w)�rL(v)k1  
1

· kw � vk
1

, for some 
1

> 0.

We note that this condition is weaker than the stan-
dard Lipschitz conditions on the gradients. In particu-
lar, we say that L has 

2

-Lipschitz continuous gradient
w.r.t. k · k

2

when krL(w)�rL(v)k
2

 
2

· kw� vk
2

,
Note that 

1

 
2

; indeed 
1

could be up to p times
smaller than 

2

. E.g. when L(w) = 1/2w>Aw with
a positive semi-definite matrix A , we have 

1

=
maxj Aj,j , the maximum entry on the diagonal, while

2

= maxj �j(A), the maxium eigenvalue of A. It is
thus possible for 

2

to be much larger than 
1

: for
instance 

2

= p
1

when A is the all 1’s matrix.

Consider the optimization problem,

min
w2Rp

L(w). (1)

We will be interested in the case where the solution is
bounded and sparse. We thus assume:

Assumption (A2). The solution w⇤ of (1) satisfies:
kw⇤k1  B for some constant B < 1 independent of
p, and that kw⇤k

0

= s, i.e., solution is s-sparse.

2.1. Coordinate Descent

Coordinate descent solves (1) iteratively by optimiz-
ing over a single coordinate while holding others fixed.
Typically, the choice of the updating coordinate is
cyclic, so that the coordinate descent cycles through
the coordinates.

w
t
j ∈ argmin

α
L(wt−1 + αej)
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Coordinate Descent (CD)

• Coordinate Descent

‣ Optimize only a single coordinate per step

✦ Small computation per step; well suited for high-dimensional problems

‣ Recently shown to enjoy good empirical performance

‣ But at least linear (or worse) dependence of comp. complexity on p!

• Suppose the optimal solution is sparse (very few coordinates are non-zero)

‣ If CD judiciously chooses coordinate to optimize at each step, can it be 
expected to leverage potential sparsity of optimum?
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Coordinate Descent

Thus the proof consists of bounding Ekgtk2ct
. Note

that for a convex L,

L(w⇤) � L(wt) +
⌦
rL(wt), w⇤ � wt

↵
.

Noting that hgt, wt � w⇤i  kgtkctkwt � w⇤k1/ct
, we

obtain,

kgtkct � L(wt)� L(w⇤)

kwt � w⇤k1/ct

� L(wt)� L(w⇤)

kw0 � w⇤k1/ct

.

By an application of Jensen’s inequality, E(kgtk2ct
) �

(E(kgtkct))
2, and substituting in (3), we obtain

E(L(wt+1)� L(w⇤))  E(L(wt)� L(w⇤))

� 1

2
1


E(L(wt)� L(w⇤))

kw0 � w⇤k1/ct

�
2

.

Letting �t = E(L(wt)� L(w⇤)), we have the sequence

�t+1

 �t �
(�t)2

2D
,

where D := 
1

kw0�w⇤k21/c, since ct = c is stationary.
Solving the recurrence yields the result.

We now study the optimal bound in Lemma 1, under
the sampling distribution that minimizes the bound.

Corollary 1. There exists a stationary sampling dis-
tribution c, so that

E(L(wt)� L(w⇤))  
1

2

kw0 � w⇤k2
1

t
.

That this bound is the lowest possible bound in the
statement of Lemma 1 follows from:

Lemma 2. For any c = (c
1

, . . . , cp) 2 Rp
+

such thatPp
j=1

cj = 1,

kw0 � w⇤k1/c � kw0 � w⇤k
1

,

and this lower bound is attained by the distribution
cj = |w0

j � w⇤
j |/kw0 � w⇤k

1

.

We can now see the improvement possible in stochas-
tic coordinate when compared with vanilla gradient
descent. In particular, if the optimum w⇤ is sparse
with kw⇤k

0

 s, and if the initial point w0 is as well,
then we can bound the above as

E(L(wt)� L(w⇤)) = O

✓
s2

t

◆
.

Contrast this with the gradient descent runtime bound
of L(wT ) � L(w⇤) = O

� s p
T

�
, and we can see that

stochastic gradient descent could provide huge savings

of O(p/s), which could be quite useful when p � s, as
is the case with many modern machine learning opti-
mization problems. The caveat with this result is that
the optimal distribution requires oracle knowledge of
w⇤. Nonetheless, the treatment above suggests fur-
ther research into stochastic variants other than uni-
form coordinate descent. Indeed, in simulations (not
shown), we observed that using the distribution spec-
ified by the gradient rL(wt), as a surrogate for the
unknown (wt �w0), outperformed cyclic and stochas-
tic uniform coordinate descent. In the next section, we
focus instead on using the gradient to perform greedy
variants of coordinate descent.

4. Greedy Coordinate Descent

In this section, we show that there is a simple deter-
ministic variant of coordinate descent that achieves the
same bound as stochastic gradient descent with the op-
timal stationary distribution. Specifically, we pick the
coordinate that attains the coordinatewise maximum
of the gradient vector:

Algorithm 3 Greedy Coordinate Gradient Descent

Initialize: Set the initial value of w0.
for t = 1, . . . do

j = argmaxl |rlL(wt)|.
wt = wt�1 � 1


1

rjL(wt)ej .
end for

Lemma 3. Suppose the convex di↵erentiable function
L satisfies Assumptions A1 and A2. Provided the iter-
ates of Algorithm 2 converge monotonically, they sat-
isfy:

L(wt)� L(w⇤)  
1

2

kw0 � w⇤k2
1

t
.

Thus letting c(n, p) denote the time required to solve
each greedy step maxl |rlL(wt)|, the greedy version of
coordinate descent achieves the rate L(wt)�L(w⇤) =

O
⇣

s2 c(n,p)
t

⌘
. Note that the dependence on the prob-

lem size p is restricted to the greedy step: if we could
solve this maximization more e�ciently, then we have
a powerful “active-set” method. While brute force
maximization for the greedy step would take O(p)
time, if it can be done in O(1) time, then at time T ,

the iterate w satisfies L(w) � L(w⇤) = O
⇣

s2

T

⌘
which

is independent of the problem size.

4.1. Approximate Greedy Coordinate Descent

The greedy step has to perform the maximization:
argmaxl |rlL(wt)|. Here, we are motivated by the
intuition that if performing this exact greedy step is
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Coordinate Descent

shown considerable empirical success in applying these
to large problems. Indeed, there have been a string
of papers that have analyzed di↵erent variants of co-
ordinate descent methods. Shalev-Shwartz & Tewari
(2009) propose a stochastic version of coordinate de-
scent algorithm, that updates a coordinate chosen uni-
formly at random at each step. Nesterov (2010) also
analyzes a uniform stochastic variant where each coor-
dinate is chosen with probability proportional to a co-
ordinatewise Lipshitz constant, which reduces to uni-
form when the Lipshitz constants are the same, for
the special case where the function is additive in the
coordinates (more precisely, Nesterov (2010) considers
block coordinate descent under an additive functional
assumption on the blocks). Saha & Tewari (2010)
show that under certain conditions, the convergence
rate of cyclic coordinate descent is at least as fast as
that of gradient descent.

In our first result, we derive crisper bounds for gen-
eral stochastic coordinate descent, allowing the up-
dated coordinate to be drawn from any distribution.
Using this bound, we show that while stochastic co-
ordinate descent with the uniform distribution need
not outperform gradient descent, there exist optimal
distributions where stochastic gradient descent could
have a better convergence rate by an order of mag-
nitude: with p variables, and an s-sparse solution, it
could be faster by O(p/s). However this optimal dis-
tribution requires knowledge of the true solution and
hence is not practical.

In our second result, we focus on greedy coordinate
descent: which involves updating the coordinate that
has the maximum gradient magnitude. We show that
if this greedy step can be performed in O(1), then
the performance of greedy coordinate descent would
match that of the optimal stochastic coordinate de-
scent. We then show that for optimization problems
arising out of maximizing the log-likelihood of general-
ized linear models, which encompasses a wide class of
models such as Gaussian (linear regression), Poisson,
etc. the greedy step could be cast as a nearest neigh-
bor problem. This would then allow us to leverage the
significant amount of recent research that show that
it is possible to have sublinear methods for nearest
neighbor search, provided it su�ces to have approxi-
mate nearest neighbors. As we show, a corresponding
approximate greedy coordinate descent also converges
at the same asymptotic rate as earlier. Indeed, we
investigate several notions of approximate greedy co-
ordinate descent for which we are able to derive sim-
ilar rates. For the composite objective case, where
the objective is the sum of a smooth component and
a separable non-smooth component, we also propose

and analyze a “look-ahead” variant of greedy coor-
dinate descent. The development in this paper thus
raises a new line of research: to develop approximate
nearest neighbor methods tuned to greedy coordinate
descent. For instance, we are able to show that if the
covariates underlying the optimization objective sat-
isfy a mutual incoherence condition, then a very sim-
ple nearest neighbor data structure su�ces to yield a
good approximation.

2. Problem Setup and Notation

We start our treatment with di↵erentiable objective
functions, and then extend this to encompass non-
di↵erentiable functions which arise as the sum of a
smooth component and a separable non-smooth com-
ponent Let L : Rp ! R be a convex di↵erentiable func-
tion. We do not assume that the function is strongly
convex: indeed most optimizations arising out of high-
dimensional machine learning problems are convex but
typically not strongly so. Our analysis requires that
the function satisfies the following coordinate-wise Lip-
schitz condition:

Assumption (A1). For any j 2 {1, . . . , p}, and any
⌘ > 0, the loss function L satisfies

krL(w)�rL(v)k1  
1

· kw � vk
1

, for some 
1

> 0.

We note that this condition is weaker than the stan-
dard Lipschitz conditions on the gradients. In particu-
lar, we say that L has 

2

-Lipschitz continuous gradient
w.r.t. k · k

2

when krL(w)�rL(v)k
2

 
2

· kw� vk
2

,
Note that 

1

 
2

; indeed 
1

could be up to p times
smaller than 

2

. E.g. when L(w) = 1/2w>Aw with
a positive semi-definite matrix A , we have 

1

=
maxj Aj,j , the maximum entry on the diagonal, while

2

= maxj �j(A), the maxium eigenvalue of A. It is
thus possible for 

2

to be much larger than 
1

: for
instance 

2

= p
1

when A is the all 1’s matrix.

Consider the optimization problem,

min
w2Rp

L(w). (1)

We will be interested in the case where the solution is
bounded and sparse. We thus assume:

Assumption (A2). The solution w⇤ of (1) satisfies:
kw⇤k1  B for some constant B < 1 independent of
p, and that kw⇤k

0

= s, i.e., solution is s-sparse.

2.1. Coordinate Descent

Coordinate descent solves (1) iteratively by optimiz-
ing over a single coordinate while holding others fixed.
Typically, the choice of the updating coordinate is
cyclic, so that the coordinate descent cycles through
the coordinates.

Optimization Problem:
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NearestNeighborbasedGreedyCoordinateDescent
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Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Greedy CD

• PRO: No. of iterations avoids costly dependence on dimension “p”

• CON: Each GCD iteration (naively implemented) takes Ω(p) time

• Solution: Perform approximate greedy steps via reduction to Approximate 
Nearest Neighbor (ANN) 

‣ allows us to use recent advances in sublinear time ANN search: e.g. locality 
sensitive hashing (LSH)
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NearestNeighborbasedGreedyCoordinateDescent
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Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Fast Greedy and Nearest Neighbor

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Fast Greedy and Nearest Neighbor

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Fast Greedy and Nearest Neighbor

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Approximate Greedy CD: Analysis

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Fast Greedy: Computational Complexity

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Fast Greedy: Computational Complexity

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Fast Greedy: Computational Complexity

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Non-smooth Objectives

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Non-smooth Objectives

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Modified Greedy for non-smooth objectives

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Experiments: Logistic Loss 

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Experiments: Squared Loss

NearestNeighborbasedGreedyCoordinateDescent
Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari

{inderjit,pradeepr,ambuj}@cs.utexas.edu

Motivation

! Modern data sets often have more variables
than samples (the “p > n” regime)

! Can withstand high dimensionality by exploit-
ing low-dimensional structure in the problem

! Structure: sparsity, low rank, row/column
sparsity

! Recent research has found estimators whose
statistical or sample complexity depends
weakly on p

Can we achieve similar advances (weak de-
pendence on p) in computational complex-
ity?

Coordinate Descent (CD)

! CD methods well suited for high-dimensional
problems:

(a) Small computation per step

(b) Recently shown to enjoy good empirical
performance

! Can be expected to leverage sparsity by judi-
ciously choosing coordinates to focus on

Greedy CD

! “Greedy” means that coordinate is picked by
maximizing some myopic criterion

! PRO: No. of iterations avoids costly depen-
dence on dimension p

! CON: Each GCD iteration (näıvely implemen-
tated) takes Ω(p) time

! Solution: Perform approximate greedy steps

! Reduction to approximate nearest neighbor
(ANN) allows us to use recent advances

! Sublinear time ANN search: e.g. locality sen-
sitive hashing (LSH)

Main Contributions

! Sublinear dependence on p theoretically

! Empirical demonstration for large p (up to 1
million dimensions)

! Forge new connections between computational
geometry and first order optimization

! Interplay between statistical and computation
efficiency: mutual incoherence ⇒ very simple
data structure works for ANN

! Propose and analyze new greedy algorithm for
composite objectives

Nearest Neighbor and Fast Greedy

! Loss L is convex and smooth:

∥∇L(w)−∇L(v)∥∞ ≤ κ1 · ∥w − v∥1

! Sparse minimizer w∗: ∥w∗∥0 = s, ∥w∗∥∞ ≤ B

Initialize: w0 ← 0.
for t = 1, . . . do

j = argmaxl |∇lL(w
t)|.

wt = wt−1 − 1
κ1

∇jL(w
t)ej .

end for

Guarantee:

L(wt)− L(w∗) ≤
κ1

2
∥w0 − w∗∥21

t
=

κ1

2
s2 B2

t

! Common objective in statistical learning:

L(w) =
n
∑

i=1

ℓ(wTxi, yi)

! ∇jL(w) = ⟨xj , r(w)⟩ is an inner product between
feature j and “residual” r(w) = (ℓ′(wTxi, yi))ni=1

! Greedy step needs to compute (assuming ∥xj∥2 = 1)

argmax
j∈[p]

|
〈

xj , r(w
t)
〉

| ≡ arg min
j∈[2p]

∥x̄j − r(wt)∥22

! Leverage state-of-the-art in NN search to do this
in o(p) time

Tailored Data Structures

! If greedy step has multiplicative approxi-
mation factor (1 + ϵnn) then: either

∥∇L(wt)∥∞ ≤
ϵ+ ϵnn
(1 + ϵnn)

∥r(wt)∥2, or

L(wt)− L(w⋆) ≤
1 + ϵnn

ϵnn(1/ϵ) + 1
·
κ1∥w0 − w⋆∥21

t

! In summary, convergence rate is K · κ1s
2

t

! If each greedy step costs Ct(n, p, ϵnn),
overall cost CG to accuracy ϵ is:

CG = Ct(n, p, ϵnn) ·
Kκ1s2

ϵ

! Preprocessing time C−(n, p, ϵnn) can be
amortized.

! Locality Sensitive Hashing: Uses random projections
to hash data points such that distant points are unlikely
to collide. It gives: (ρ = 1/(1 + ϵnn) < 1)

Ct = O (npρ) C− = O
(

n p1+ρ ϵ−2
nn

)

! Ailon & Chazelle (2006)’s method: Uses multiple
lookup tables after random projections. It gives:

Ct = O
(

n log n+ ϵ−3
nn log2 p

)

C− = O
(

pϵ
−2
nn

)

! Quad Trees+Random Projections: Under mutual

incoherence, using simple quad tree with random Gaus-
sian projections, we obtain:

Ct = O
(

pϵ
−2
nn

)

C− = O
(

n p log p ϵ−2
nn

)

Mutual incoherence (µ = maxi ̸=j ⟨xi, xj⟩ < 1) plays impor-

tant role in statistical complexity for sparse parameter recovery.

Here it is also related to computational complexity.

Non-smooth Objectives

! Smooth plus separable composite objective:
(think of R = λ∥ · ∥1)

min
w∈Rp

L(w) +R(w)

! Separable regularizer : R(w) =
∑

j Rj(wj)

! If we updated coordinate j:

wt+1
j = argmin

w
gtj(w−wt

j)+
κ1

2
(w−wt

j)
2+Rj(w)

! Guaranteed descent in objective is κ1

2 |ηt
j |

2 where
ηt
j = wt+1

j − wt
j

Modified greedy algorithm
(chooses j with maximum guaranteed descent)

Initialize: w0 ← 0.
for t = 1, . . . do

jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣

wt+1 ← wt + ηt
jtejt

end for

Guarantee:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤
κ1

2
∥w0 − w∗∥21

t

Experiments

Three algos. (cyclic CD, greedy CD, greedy CD+LSH), Two loss functions (logistic, squared), ℓ1 regularization

X: standard Gaussian with normalized columns, Y = Xwtr with wtr 100-sparse, n = ⌊400 log(p)⌋
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Summary

• Optimization Method with sub-linear dependence on p!


• New connections between computational geometry and first order 
optimization


• Interplay between statistical and computational efficiency: mutual 
incoherence ⇒ very simple data structure works for ANN


• New greedy algorithm for composite objectives


