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[ ldentify groups that are alike from similarity relationships in data sets J
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e (n,p, Q)

p = (p1,...,Pr) <- probability vector = relative size of the communities
Qu ... Qu <- symmetric matrix with entries in [0,1]

(@F— "o = connectivity among communities
e oca (Gh

The DMC of clustering..?
nice and reasonable model
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for which p and Q efficient
(W.h.p. In n) algorithms
Next:

- warm up: two symmetric communities

- new results: partial and exact recovery in the general SBM
- analogy with the channel coding theorem

- some real data
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Exact recovery in the general SBM is solvable efficiently
whenever it is solvable information theoretically




What about recovering a subgroup of the communities?



What about recovering a subgroup of the communities?

°
"o e

o °
92. . .

/I_’ y
0; = (PQ); € R (local community profile)



What about recovering a subgroup of the communities?

Al @42
. “finest partition”

i € R% (local community profile)

D (917 (92



What about recovering a subgroup of the communities?

Al @42
. “finest partition”

i € R% (local community profile)

D, (01,05) >

Theorem 3. Exact recovery for a partition k| = LU_; A; is solvable
in SBM(n, p, Qlog(n)/n) if and only if

min Dy (Az, 4,) > 1
<y

N

min = D4 ((PQ):, (PQ);) >

HE AL, JE Ay



Proof idea and partial recovery



Message: recover first most of the nodes and then finish differently



Message: recover first most of the nodes and then finish differently

|_> How to recover a fraction of the nodes (partial recovery)?



Message: recover first most of the nodes and then finish differently

\_> How to recover a fraction of the nodes (partial recovery)?

Theorem (informal). In the sparse SBM(n, p,Q/n), the Sphere-comparison
algorithm recovers a fraction of nodes which gets close to 1 when a prescribed
SNR tends to infinity, in particular, when () scales.



Message: recover first most of the nodes and then finish differently

\_> How to recover a fraction of the nodes (partial recovery)?

Theorem (informal). In the sparse SBM(n, p,Q/n), the Sphere-comparison
algorithm recovers a fraction of nodes which gets close to 1 when a prescribed
SNR tends to infinity, in particular, when () scales.

‘ defined in terms of the spectrum of PQ,

given by (@=0)° in the 2-symmetric case
2(a+Db)




Message: recover first most of the nodes and then finish differently

\_> How to recover a fraction of the nodes (partial recovery)?

Theorem (informal). In the sparse SBM(n, p,Q/n), the Sphere-comparison
algorithm recovers a fraction of nodes which gets close to 1 when a|prescribed
SNR tends to infinity, in particular, when () scales.

‘ defined in terms of the spectrum of PQ,

given by (@=0)° in the 2-symmetric case
2(a+Db)




Message: recover first most of the nodes and then finish differently

\_> How to recover a fraction of the nodes (partial recovery)?

Theorem (informal). In the sparse SBM(n,p, Q)/n), the Sphere-comparison

algorithm recovers a fraction of nodes which gets close to 1 when a
SNR tends to infinity, in particular, when () scales.

‘ defined in terms of the spectrum of PQ,

given by (@=0)° in the 2-symmetric case
2(a+Db)

N\
7

prescribed

count common neighbors
at various depths



What is a vertex neighborhood like? SBM(n,p, Q/n)



What is a vertex neighborhood like? SBM(n,p, Q/n)

npl i 3 o o o kY 3 npk



What is a vertex neighborhood like? SBM(n,p, Q/n)

O =)

° “, \ npk

p1Qi1



What is a vertex neighborhood like? SBM(n,p, Q/n)

O =)

p1Qi1 T



What is a vertex neighborhood like? SBM(n,p, Q/n)

O =)

p1Qi1 (PQ)Z PrQik



What is a vertex neighborhood like? SBM(n,p, Q/n)

O =)

p1Qi1 (PQ)z PrQik . depth r




What is a vertex neighborhood like? SBM(n,p, Q/n)

O =)

p1Qi1 (PQ)z PrQik . depth r

(el




What is a vertex neighborhood like? SBM(n,p, Q/n)

O =)

p1Qi1 (PQ)z PrQik . depth r

N, (v)

NO access to Iit...

(el




Instead: compare

G




Instead: compare

G




Compare v and v’ from:

N, (v) NN (V')




Compare v and v’ from:
Ny.(v) NN, (U/)‘

Not enough independence...
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Instead: compare

G

Subsample G with prob. ¢ to get £

Compare v and v’ from:

NT,T’[E] (U y U/)

= number of such pairs of vertices
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The degree-profiling algorithm

(G’ sparse but large degree
(1) Split G into two graphs <
G” log-degree
(2) Run Sphere-comparison on G’

-> gets a fraction 1-0(1) with quasi-linear complexity

(3) Take now G” with the clustering of G’

Hypothesis 1
dy <~ P(log(n)(PQ)1)

Hypothesis 2
dy ~ P(log(n)(PQ)2)

[pe i n—D+<<P@>1,<P@>2>+o<1>]

oy




Some data: the blog network

1490 blogs
(left- and right-leaning)

[Adamic and Glance ’05]

Q11 ~ Q22 =~ 5.5log(n)/n va—vVb=~16>1.41
Q12 =~ 0.51log(n)/n 95%



Open problems

- exact distortion curve for partial recovery
- other models

- universal results

- detection with multiple symmetric clusters

Advertisement

- Tutorial on Information Theory and Machine Learning, ISIT 2015, Hong Kong



