Recovering communities in the general stochastic block model

Emmanuel Abbe and Colin Sandon Princeton University

http://arxiv.org/abs/1503.00609

Simons Institute, 03.16.15

community detection

community detection

community detection: applications

social networks

biological networks

communication networks

Also: image segmentation, classification, recommendation systems, advertisement, information retrieval, ...

community detection: applications

social networks

biological networks

communication networks

Also: image segmentation, classification, recommendation systems, advertisement, information retrieval, ...

Identify groups that are alike from similarity relationships in data sets

SBM(n, p, Q)

 $p = (p_1, \dots, p_k)$ <- probability vector = relative size of the communities

$$p = (p_1, \dots, p_k)$$
 <- probability vector = relative size of the communities

$$P = \operatorname{diag}(p)$$
 $p = (p_1, \dots, p_k)$ <- probability vector = relative size of the communities

$$P = \operatorname{diag}(p)$$

$$p = (p_1, \dots, p_k)$$

$$Q = \begin{pmatrix} Q_{11} & \dots & Q_{1k} \\ \vdots & \ddots & \vdots \\ Q_{k1} & \dots & Q_{kk} \end{pmatrix} \quad \text{$<$-$ symmetric matrix with entries in [0,1] } \\ = \text{connectivity among communities}$$

$$P = \operatorname{diag}(p)$$

$$p = (p_1, \dots, p_k)$$

 $P=\mathrm{diag}(p)$ $p=(p_1,\ldots,p_k)$ <- probability vector = relative size of the communities

$$Q = \begin{pmatrix} Q_{11} & \cdots & Q_{1k} \\ \vdots & \ddots & \vdots \\ Q_{k1} & \cdots & Q_{kk} \end{pmatrix}$$
 <- symmetric matrix with entries in [0,1] = connectivity among communication (a) and (b) are symmetric matrix with entries in [0,1] and (c) are

= connectivity among communities

SBM(n, p, Q)

$$P = \operatorname{diag}(p)$$

$$P = \operatorname{diag}(p)$$
$$p = (p_1, \dots, p_k)$$

<- probability vector = relative size of the communities

$$Q = \begin{pmatrix} Q_{11} & \cdots & Q_{1k} \\ \vdots & \ddots & \vdots \\ Q_{k1} & \cdots & Q_{kk} \end{pmatrix}$$
 <- symmetric matrix with entries in [0,1] = connectivity among communication and communication are connectivity among communication.

= connectivity among communities

The DMC of clustering..?

$$P = \operatorname{diag}(p)$$

$$P = \operatorname{diag}(p)$$
$$p = (p_1, \dots, p_k)$$

<- probability vector = relative size of the communities

$$Q = \begin{pmatrix} Q_{11} & \dots & Q_{1k} \\ \vdots & \ddots & \vdots \\ Q_{k1} & \dots & Q_{kk} \end{pmatrix}$$
 <- symmetric matrix with entries in [0,1] = connectivity among commun

= connectivity among communities

The DMC of clustering..? nice and reasonable model

Quiz:

If a node is in community i, how many neighbors does it have in expectation in community j?

Quiz:

If a node is in community i, how many neighbors does it have in expectation in community j?

$$np_jQ_{ij}$$

Quiz:

If a node is in community i, how many neighbors does it have in expectation in community j?

$$np_jQ_{ij}$$

for which p and Q (w.h.p. in n)

for which p and Q (w.h.p. in n)

efficient algorithms

for which p and Q (w.h.p. in n)

efficient algorithms

Next:

- warm up: two symmetric communities
- new results: partial and exact recovery in the general SBM
- analogy with the channel coding theorem
- some real data

SBM with two symmetric communities (planted bisection model)

SBM with two symmetric communities (planted bisection model)

$$p_1 = p_2 = 1/2$$

 $Q_{11} = Q_{22} = p$ $Q_{12} = q$

$$\mathbb{P}(\hat{X}^n = X^n) \to 1$$

Recovery

$$\mathbb{P}(\hat{X}^n = X^n) \to 1$$

Recovery

Bui, Chaudhuri,		
Leighton, Sipser '84	min-cut method	$p = \Omega(1/n), q = o(n^{-1-4/((p+q)n)})$
Boppana '87	spectral meth.	$(p-q)/\sqrt{p+q} = \Omega(\sqrt{\log(n)/n})$
Dyer, Frieze '89	min-cut via degrees	$p - q = \Omega(1)$
Snijders, Nowicki '97	EM algo.	$p - q = \Omega(1)$
Jerrum, Sorkin '98	Metropolis aglo.	$p - q = \Omega(n^{-1/6 + \epsilon})$
Condon, Karp '99	augmentation algo.	$p - q = \Omega(n^{-1/2 + \epsilon})$
Carson, Impagliazzo '01	hill-climbing algo.	$p - q = \Omega(n^{-1/2}\log^4(n))$
Mcsherry '01	spectral meth.	$(p-q)/\sqrt{p} \ge \Omega(\sqrt{\log(n)/n})$
Bickel, Chen '09	N-G modularity	$(p-q)/\sqrt{p+q} = \Omega(\log(n)/\sqrt{n})$
Rohe, Chatterjee, Yu '11	spectral meth.	$p - q = \Omega(1)$

$$\mathbb{P}(\hat{X}^n = X^n) \to 1$$

Bui, Chaudhuri,		
Leighton, Sipser '84	min-cut method	$p = \Omega(1/n), q = o(n^{-1-4/((p+q)n)})$
Boppana '87	spectral meth.	$(p-q)/\sqrt{p+q} = \Omega(\sqrt{\log(n)/n})$
Dyer, Frieze '89	min-cut via degrees	$p - q = \Omega(1)$
Snijders, Nowicki '97	EM algo.	$p - q = \Omega(1)$
Jerrum, Sorkin '98	Metropolis aglo.	$p - q = \Omega(n^{-1/6 + \epsilon})$
Condon, Karp '99	augmentation algo.	$p - q = \Omega(n^{-1/2 + \epsilon})$
Carson, Impagliazzo '01	hill-climbing algo.	$p - q = \Omega(n^{-1/2}\log^4(n))$
Mcsherry '01	spectral meth.	$(p-q)/\sqrt{p} \ge \Omega(\sqrt{\log(n)/n})$
Bickel, Chen '09	N-G modularity	$(p-q)/\sqrt{p+q} = \Omega(\log(n)/\sqrt{n})$
Rohe, Chatterjee, Yu '11	spectral meth.	$p - q = \Omega(1)$

$$\mathbb{P}(\hat{X}^n = X^n) \to 1 \qquad \mathbb{P}(\frac{d(\hat{X}^n, X^n)}{n} < \frac{1}{2} - \epsilon) \to 1$$

Recovery

Detection

Bui, Chaudhuri,		
Leighton, Sipser '84	min-cut method	$p = \Omega(1/n), q = o(n^{-1-4/((p+q)n)})$
Boppana '87	spectral meth.	$(p-q)/\sqrt{p+q} = \Omega(\sqrt{\log(n)/n})$
Dyer, Frieze '89	min-cut via degrees	$p - q = \Omega(1)$
Snijders, Nowicki '97	EM algo.	$p - q = \Omega(1)$
Jerrum, Sorkin '98	Metropolis aglo.	$p - q = \Omega(n^{-1/6 + \epsilon})$
Condon, Karp '99	augmentation algo.	$p - q = \Omega(n^{-1/2 + \epsilon})$
Carson, Impagliazzo '01	hill-climbing algo.	$p - q = \Omega(n^{-1/2}\log^4(n))$
Mcsherry '01	spectral meth.	$(p-q)/\sqrt{p} \ge \Omega(\sqrt{\log(n)/n})$
Bickel, Chen '09	N-G modularity	$(p-q)/\sqrt{p+q} = \Omega(\log(n)/\sqrt{n})$
Rohe, Chatterjee, Yu '11	spectral meth.	$p - q = \Omega(1)$

$$\mathbb{P}(\hat{X}^n = X^n) \to 1 \qquad \mathbb{P}(\frac{d(\hat{X}^n, X^n)}{n} < \frac{1}{2} - \epsilon) \to 1$$

Recovery

Detection

Bui, Chaudhuri,		
Leighton, Sipser '84	min-cut method	$p = \Omega(1/n), q = o(n^{-1-4/((p+q)n)})$
Boppana '87	spectral meth.	$(p-q)/\sqrt{p+q} = \Omega(\sqrt{\log(n)/n})$
Dyer, Frieze '89	min-cut via degrees	$p - q = \Omega(1)$
Snijders, Nowicki '97	EM algo.	$p - q = \Omega(1)$
Jerrum, Sorkin '98	Metropolis aglo.	$p - q = \Omega(n^{-1/6 + \epsilon})$
Condon, Karp '99	augmentation algo.	$p - q = \Omega(n^{-1/2 + \epsilon})$
Carson, Impagliazzo '01	hill-climbing algo.	$p - q = \Omega(n^{-1/2}\log^4(n))$
Mcsherry '01	spectral meth.	$(p-q)/\sqrt{p} \ge \Omega(\sqrt{\log(n)/n})$
Bickel, Chen '09	N-G modularity	$(p-q)/\sqrt{p+q} = \Omega(\log(n)/\sqrt{n})$
Rohe, Chatterjee, Yu '11	spectral meth.	$p - q = \Omega(1)$

$$p = \frac{a}{n}, q = \frac{b}{n}$$
 Detection iff $(a - b)^2 > 2(a + b)$

$$\mathbb{P}(\hat{X}^n = X^n) \to 1$$

$$\mathbb{P}(\hat{X}^n = X^n) \to 1 \qquad \mathbb{P}(\frac{d(\hat{X}^n, X^n)}{n} < \frac{1}{2} - \epsilon) \to 1$$

Recovery

Detection

Bui, Chaudhuri,		
Leighton, Sipser '84	min-cut method	$p = \Omega(1/n), q = o(n^{-1-4/((p+q)n)})$
Boppana '87	spectral meth.	$(p-q)/\sqrt{p+q} = \Omega(\sqrt{\log(n)/n})$
Dyer, Frieze '89	min-cut via degrees	$p - q = \Omega(1)$
Snijders, Nowicki '97	EM algo.	$p - q = \Omega(1)$
Jerrum, Sorkin '98	Metropolis aglo.	$p - q = \Omega(n^{-1/6 + \epsilon})$
Condon, Karp '99	augmentation algo.	$p - q = \Omega(n^{-1/2 + \epsilon})$
Carson, Impagliazzo '01	hill-climbing algo.	$p - q = \Omega(n^{-1/2}\log^4(n))$
Mcsherry '01	spectral meth.	$(p-q)/\sqrt{p} \ge \Omega(\sqrt{\log(n)/n})$
Bickel, Chen '09	N-G modularity	$(p-q)/\sqrt{p+q} = \Omega(\log(n)/\sqrt{n})$
Rohe, Chatterjee, Yu '11	spectral meth.	$p - q = \Omega(1)$

$$p = \frac{a}{n}, q = \frac{b}{n}$$
 Detection iff $(a - b)^2 > 2(a + b)$

Laskey

Leinhardt

P(
$$\hat{X}^n = X^n$$
) $\to 1$ P($\frac{d(\hat{X}^n, X^n)}{n} < \frac{1}{2} - \epsilon$) $\to 1$

Recovery Detection

1983

Holland Boppana Condon Coja-Oghlan Massoulié

Bickel

Chen

Decelle

Moore

Krzakala

Zdeborova

Karp

Carson

Impagliazzo

McSherry

Snijders

Nowicki

Jerrum

Sorkin

Dyer

Frieze

Bui, Chaudhuri,

Leighton, Sipser

$$p = \frac{a}{n}, q = \frac{b}{n}$$
 Detection iff $(a - b)^2 > 2(a + b)$

Mossel

Sly

Neeman

$$\mathbb{P}(\hat{X}^n = X^n) \to 1$$

$$\mathbb{P}(\hat{X}^n = X^n) \to 1 \qquad \mathbb{P}(\frac{d(\hat{X}^n, X^n)}{n} < \frac{1}{2} - \epsilon) \to 1$$

Recovery

Detection

Abbe-Bandeira-Hall '14

$$p = \frac{a \log(n)}{n}, q = \frac{b \log(n)}{n}$$
Recovery iff $\frac{a+b}{2} \ge 1 + \sqrt{ab}$

$$p = \frac{a}{n}, q = \frac{b}{n}$$
 Detection iff $(a - b)^2 > 2(a + b)$

$$\mathbb{P}(\hat{X}^n = X^n) \to 1 \qquad \mathbb{P}(\frac{d(\hat{X}^n, X^n)}{n} < \frac{1}{2} - \epsilon) \to 1$$

Recovery

Detection

Abbe-Bandeira-Hall '14 Mossel-Neeman-Sly '14 $a_n,b_n=\Theta(1)$

$$p = \frac{a \log(n)}{n}, q = \frac{b \log(n)}{n}$$
Recovery iff $\frac{a+b}{2} \ge 1 + \sqrt{ab}$

$$p = \frac{a}{n}, q = \frac{b}{n}$$
 Detection iff $(a - b)^2 > 2(a + b)$

Abbe-Bandeira-Hall '14 Mossel-Neeman-Sly '14
$$a_n,b_n=\Theta(1)$$

$$p = \frac{a \log(n)}{n}, q = \frac{b \log(n)}{n}$$
Recovery iff $\frac{a+b}{2} \ge 1 + \sqrt{ab}$

$$p = \frac{a}{n}, q = \frac{b}{n}$$

Detection iff $(a - b)^2 > 2(a + b)$

In both cases we have efficient algorithms achieving the thresholds

Some history

$$\mathbb{P}(\hat{X}^n = X^n) \to 1 \qquad \mathbb{P}(\frac{d(\hat{X}^n, X^n)}{n} < \frac{1}{2} - \epsilon) \to 1$$
 Recovery Detection

Abbe-Bandeira-Hall '14 Mossel-Neeman-Sly '14 $a_n,b_n=\Theta(1)$

$$p = \frac{a \log(n)}{n}, q = \frac{b \log(n)}{n}$$
Recovery iff $\frac{a+b}{2} \ge 1 + \sqrt{ab}$

$$p = \frac{a}{n}, q = \frac{b}{n}$$
 Detection iff $(a - b)^2 > 2(a + b)$

In both cases we have efficient algorithms achieving the thresholds not clear for multiple communities

Recovery in the general SBM

$$W = \begin{pmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{pmatrix}$$

$$W = \begin{pmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{pmatrix}$$

$$W = \begin{pmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{pmatrix}$$

$$W = \begin{pmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{pmatrix}$$

$$W = \begin{pmatrix} 1 - a\log(n)/n & a\log(n)/n \\ 1 - b\log(n)/n & b\log(n)/n \end{pmatrix}$$

$$W = \begin{pmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{pmatrix}$$

$$W = \begin{pmatrix} 1 - a\log(n)/n & a\log(n)/n \\ 1 - b\log(n)/n & b\log(n)/n \end{pmatrix}$$

$$W = \begin{pmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{pmatrix}$$

reliable comm. iff $R < 1-H(\mathbf{E})$

$$W = \begin{pmatrix} 1 - a\log(n)/n & a\log(n)/n \\ 1 - b\log(n)/n & b\log(n)/n \end{pmatrix}$$

reliable comm. iff $1 < (a+b)/2 - \sqrt{ab}$

$$W = \begin{pmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{pmatrix}$$

reliable comm. iff $R < 1-H(\mathbf{E})$

reliable comm. iff R < max I(p,W)

$$W = \begin{pmatrix} 1 - a\log(n)/n & a\log(n)/n \\ 1 - b\log(n)/n & b\log(n)/n \end{pmatrix}$$

reliable comm. iff $1 < (a+b)/2 - \sqrt{ab}$

$$W = \begin{pmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{pmatrix}$$

reliable comm. iff $R < 1-H(\mathbf{E})$

reliable comm. iff R < max I(p,W)

$$W = \begin{pmatrix} 1 - a\log(n)/n & a\log(n)/n \\ 1 - b\log(n)/n & b\log(n)/n \end{pmatrix}$$

reliable comm. iff $1 < (a+b)/2 - \sqrt{ab}$

$$W = \begin{pmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{pmatrix}$$

reliable comm. iff $R < 1-H(\mathbf{E})$

reliable comm. iff R < max I(p,W)

$$W = \begin{pmatrix} 1 - a\log(n)/n & a\log(n)/n \\ 1 - b\log(n)/n & b\log(n)/n \end{pmatrix}$$

reliable comm. iff $1 < (a+b)/2 - \sqrt{ab}$

reliable comm. iff 1 < J(p,W)???

 Q_{ij} non-zero

Theorem 1. Recovery is solvable in $SBM(n, p, Q \log(n)/n)$ if and only if

$$J(p,Q) := \min_{i < j} D_{+}((PQ)_{i}, (PQ)_{j}) \ge 1$$

$$J(p,Q) := \min_{i < j} D_{+}((PQ)_{i}, (PQ)_{j}) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

$$J(p,Q) := \min_{i < j} D_{+}((PQ)_{i}, (PQ)_{j}) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

$$D_{t}(\mu,\nu)$$

$$J(p,Q) := \min_{i < j} D_{+}((PQ)_{i}, (PQ)_{j}) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

$$D_{t}(\mu,\nu)$$

• D_t is an f-divergence

$$J(p,Q) := \min_{i < j} D_{+}((PQ)_{i}, (PQ)_{j}) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

$$D_{t}(\mu,\nu)$$

- D_t is an f-divergence
- $D_{1/2}(\mu,\nu) = \frac{1}{2} ||\sqrt{\mu} \sqrt{\nu}||_2^2$ is the Hellinger divergence (distance)

$$J(p,Q) := \min_{i < j} D_{+}((PQ)_{i}, (PQ)_{j}) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

$$D_{t}(\mu,\nu)$$

• D_t is an f-divergence

$$\frac{1}{2}(\sqrt{a}-\sqrt{b})^2 \ge 1 \quad \longleftarrow \quad D_{1/2}(\mu,\nu) = \frac{1}{2}\|\sqrt{\mu}-\sqrt{\nu}\|_2^2 \text{ is the Hellinger divergence (distance)}$$

Abbe-Bandeira-Hall '14

Mossel-Neeman-Sly '14

$$J(p,Q) := \min_{i < j} D_{+}((PQ)_{i}, (PQ)_{j}) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

$$D_{t}(\mu,\nu)$$

• D_t is an f-divergence

$$\frac{1}{2}(\sqrt{a}-\sqrt{b})^2 \ge 1 \quad \longleftarrow \quad D_{1/2}(\mu,\nu) = \frac{1}{2}\|\sqrt{\mu}-\sqrt{\nu}\|_2^2 \text{ is the Hellinger divergence (distance)}$$

Abbe-Bandeira-Hall '14 Mossel-Neeman-Sly '14

• $-\log \max_t \sum_i \mu_i^t \nu_i^t$ is the Chernoff divergence

$$J(p,Q) := \min_{i < j} D_{+}((PQ)_{i}, (PQ)_{j}) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

$$D_{t}(\mu,\nu)$$

• D_t is an f-divergence

$$\frac{1}{2}(\sqrt{a}-\sqrt{b})^2 \ge 1 \quad \longleftarrow \quad D_{1/2}(\mu,\nu) = \frac{1}{2}\|\sqrt{\mu}-\sqrt{\nu}\|_2^2 \text{ is the Hellinger divergence (distance)}$$

Abbe-Bandeira-Hall '14 Mossel-Neeman-Sly '14

• $-\log \max_t \sum_i \mu_i^t \nu_i^t$ is the Chernoff divergence

We call D_+ the CH-divergence.

$$\min_{i < j} D_+((PQ)_i, (PQ)_j) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

$$\min_{i < j} D_+((PQ)_i, (PQ)_j) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

Theorem 2. The degree-profiling algorithm achieves the threshold and runs in quasi-linear time.

$$\min_{i < j} D_+((PQ)_i, (PQ)_j) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

Theorem 2. The degree-profiling algorithm achieves the threshold and runs in quasi-linear time.

$$\min_{i < j} D_+((PQ)_i, (PQ)_j) \ge 1$$

where

$$D_{+}(\mu,\nu) := \max_{t \in [0,1]} \sum_{i \in [k]} \left(t\mu_{i} + (1-t)\nu_{i} - \mu_{i}^{t}\nu_{i}^{1-t} \right)$$

Theorem 2. The degree-profiling algorithm achieves the threshold and runs in quasi-linear time.

Exact recovery in the general SBM is solvable efficiently whenever it is solvable information theoretically

Theorem 3. Exact recovery for a partition $[k] = \bigsqcup_{i=1}^{s} A_i$ is solvable in SBM $(n, p, Q \log(n)/n)$ if and only if

$$\min_{x < y} D_{+}(A_{x}, A_{y}) \ge 1$$

$$\min_{i \in A_{x}, j \in A_{y}} D_{+}((PQ)_{i}, (PQ)_{j}) \ge 1$$

Proof idea and partial recovery

Message: recover first most of the nodes and then finish differently

Message: recover first most of the nodes and then finish differently

How to recover a fraction of the nodes (partial recovery)?

Message: recover first most of the nodes and then finish differently

How to recover a fraction of the nodes (partial recovery)?

Theorem (informal). In the sparse SBM(n, p, Q/n), the Sphere-comparison algorithm recovers a fraction of nodes which gets close to 1 when a prescribed SNR tends to infinity, in particular, when Q scales.

Message: recover first most of the nodes and then finish differently

How to recover a fraction of the nodes (partial recovery)?

Theorem (informal). In the sparse SBM(n, p, Q/n), the Sphere-comparison algorithm recovers a fraction of nodes which gets close to 1 when a prescribed SNR tends to infinity, in particular, when Q scales.

defined in terms of the spectrum of PQ, given by $\frac{(a-b)^2}{2(a+b)}$ in the 2-symmetric case

Message: recover first most of the nodes and then finish differently

How to recover a fraction of the nodes (partial recovery)?

Theorem (informal). In the sparse SBM(n, p, Q/n), the Sphere-comparison algorithm recovers a fraction of nodes which gets close to 1 when a prescribed SNR tends to infinity, in particular, when Q scales.

defined in terms of the spectrum of PQ, given by $\frac{(a-b)^2}{2(a+b)}$ in the 2-symmetric case

Message: recover first most of the nodes and then finish differently

How to recover a fraction of the nodes (partial recovery)?

Theorem (informal). In the sparse SBM(n, p, Q/n), the Sphere-comparison algorithm recovers a fraction of nodes which gets close to 1 when a prescribed SNR tends to infinity, in particular, when Q scales.

defined in terms of the spectrum of PQ, given by $\frac{(a-b)^2}{2(a+b)}$ in the 2-symmetric case

Compare v and v' from:

$$|N_r(v) \cap N_{r'}(v')|$$

Compare v and v' from:

$$|N_r(v) \cap N_{r'}(v')|$$

Not enough independence...

Subsample G with prob. c to get E

Subsample G with prob. c to get E

Compare v and v' from:

$$N_{r,r'[E]}(v \cdot v')$$

= number of such pairs of vertices

Subsample G with prob. c to get E

Compare v and v' from:

$$N_{r,r'[E]}(v \cdot v')$$

= number of such pairs of vertices

$$\approx N_{r[G\setminus E]}(v) \cdot \frac{cQ}{n} N_{r'[G\setminus E]}(v')$$

Subsample G with prob. c to get E

Compare v and v' from:

$$N_{r,r'[E]}(v \cdot v')$$

= number of such pairs of vertices

$$\approx N_{r[G\backslash E]}(v) \cdot \frac{cQ}{n} N_{r'[G\backslash E]}(v')$$

$$\approx ((1-c)PQ)^{r} e_{\sigma_{v}} \cdot \frac{cQ}{n} ((1-c)PQ)^{r'} e_{\sigma_{v'}}$$

$$= c(1-c)^{r+r'} e_{\sigma_{v}} \cdot Q(PQ)^{r+r'} e_{\sigma_{v'}}/n$$

(1) Split G into two graphs G' sparse but large degree G' log-degree

(2) Run Sphere-comparison on G'

-> gets a fraction 1-o(1) with quasi-linear complexity

- (1) Split G into two graphs G" sparse but large degree G" log-degree
- (2) Run Sphere-comparison on G'
 -> gets a fraction 1-o(1) with quasi-linear complexity
- (3) Take now G" with the clustering of G'

- (1) Split G into two graphs G" sparse but large degree G" log-degree
- (2) Run Sphere-comparison on G'
 -> gets a fraction 1-o(1) with quasi-linear complexity
- (3) Take now G" with the clustering of G'

- (1) Split G into two graphs G" sparse but large degree G" log-degree
- (2) Run Sphere-comparison on G'
 -> gets a fraction 1-o(1) with quasi-linear complexity
- (3) Take now G" with the clustering of G'

- (1) Split G into two graphs G' sparse but large degree G' log-degree
- (2) Run Sphere-comparison on G'
 -> gets a fraction 1-o(1) with quasi-linear complexity
- (3) Take now G" with the clustering of G'

- (1) Split G into two graphs G" sparse but large degree log-degree
- (2) Run Sphere-comparison on G'
 -> gets a fraction 1-o(1) with quasi-linear complexity
- (3) Take now G" with the clustering of G'

- (1) Split G into two graphs G' sparse but large degree G' log-degree
- (2) Run Sphere-comparison on G'
 -> gets a fraction 1-o(1) with quasi-linear complexity
- (3) Take now G" with the clustering of G'

(1) Split G into two graphs

- G' sparse but large degree
 - G" log-degree
- (2) Run Sphere-comparison on G'
 - -> gets a fraction 1-o(1) with quasi-linear complexity
- (3) Take now G" with the clustering of G'

(1) Split G into two graphs

- G' sparse but large degree
- G" log-degree
- (2) Run Sphere-comparison on G'
 - -> gets a fraction 1-o(1) with quasi-linear complexity
- (3) Take now G" with the clustering of G'

Some data: the blog network

1490 blogs (left- and right-leaning) [Adamic and Glance '05]

$$Q_{11} \approx Q_{22} \approx 5.5 \log(n)/n$$

 $Q_{12} \approx 0.5 \log(n)/n$

$$\sqrt{a} - \sqrt{b} \approx 1.6 > 1.41$$

$$95\%$$

Open problems

- exact distortion curve for partial recovery
- other models
- universal results
- detection with multiple symmetric clusters

Advertisement

- Tutorial on Information Theory and Machine Learning, ISIT 2015, Hong Kong