
1

STAIR Codes:

A General Family of Erasure Codes

for Tolerating Device and Sector Failures

in Practical Storage Systems

Patrick P. C. Lee

The Chinese University of Hong Kong

Coding: From Practice to Theory, February 2015

This is a joint work with Dr. Mingqiang Li.

Device and Sector Failures

 Hierarchy of failures in disk arrays:

• Device failure: data loss in an entire device

• Sector failure (latent sector error): data loss in a sector

2

Annual sector failure rate

[Bairavasundaram et al.,

SIGMETRICS ’07]

Annual disk failure rate

[Pinheiro et al., FAST’07]

Burstiness of sector failures

[Schroeder et al., FAST ’10]

×
 %

(c) Sector failure bursts can

be long (> 5)
(b) Sector failures can be more

frequent than disk failures

(a) Annual disk failure rate:

1~10%

Erasure Coding

 (N,K) systematic MDS codes

• Encode K data symbols to create N-K parity symbols

• Distribute a stripe of the N symbols across disks

• Any K out of N symbols can recover original K data

symbols

Symbols are mapped to sectors

RAID is one specific implementation of erasure

coding

3

Mixed Failure Scenario

 Consider a worst-case failure scenario with

• m=1 entirely failed device, and

• m′=2 partially failed devices with 1 and 3 sector failures

4

Question: How can we efficiently tolerate such a

mixed failure scenario via erasure coding?

RAID

Overkill to use 2 parity devices to tolerate

m′=2 partially failed devices

• Device-level tolerance only
5

5 data devices

3 parity devices to tolerate

• m=1 entirely failed device

• m′=2 partially failed devices

Intra-Device Redundancy (IDR)

Still overkill to add parity sectors per data device

6

3 parity sectors per data device

to tolerate a sector failure burst

of length 3

m=1 parity

device

[Dholakia et al., TOS 2008]

Sector-Disk (SD) Codes

Simultaneously tolerate

• m entirely failed devices

• s failed sectors (per stripe) in partially failed devices

Construction currently limited to s ≤ 3

 How to tolerate our mixed failure scenario?

• m=1 entirely failed device, and

• m′=2 partially failed devices with 1 and 3 sector failures

7

[Plank et al., FAST ’13, TOS’14]

s parity sectors

m parity devices

Sector-Disk (SD) Codes

Such an SD code is unavailable

8

s=4 global parity sectors to

tolerate any 4 sector failures

m=1 parity

device

[Plank et al., FAST ’13, TOS’14]

Our Work

Construct a general, space-efficient family of

erasure codes to tolerate both device and

sector failures

a) General: without any restriction on

• size of a storage array,

• number of tolerable device failures, or

• number of tolerable sector failures

b) Space-efficient:

• Use parity sectors to tolerate sector failures (like SD codes)

9

STAIR

Codes

[FAST’14]

[ACM Trans. Storage]

Failure Scenarios

RAID reconstruction performance preserved for

m disk failures

Fault tolerance for the worst-case m disk failures

and a “coverage” of sector failures

10

Key Properties of STAIR Codes

 Sector failure coverage vector e

• Defines a pattern of how sector failures occur, rather than how

many sector failures would occur

 Code structure based on two encoding phases

• Each phase builds on an MDS code

 Two encoding methods: upstairs and downstairs encoding

• Maintain regularity of data placement

• Reuse computed parity results in encoding

• Provide complementary performance gains

11

Sector Failure Coverage Vector

 e = (e0, e1, e2, …, em′-1)

• Bounds # of partially failed devices m′

• Bounds # of sector failures per device el (0 ≤ l ≤ m′ -1)

• ∑ el = s

• Rationale: sector failures come in small bursts

 Can define small m′ and reasonable size el for

bursts

12

Sector Failure Coverage Vector

 Set e=(1, 3):

• At most 2 devices (aside entirely failed devices) have sector failures

• One device has at most 3 sector failures, and

• Another one has at most 1 sector failure

13

Examples of e

 e = (1)

• PMDS and SD codes with s = 1

 e = (r)

• (n, n – m – 1) codes (r = number of rows of a stripe)

 e = (ɛ, ɛ, …, ɛ)

• Note: m’ = n - m

• Intra-Disk Redundancy code with ɛ parity symbols per

column

14

Parity Layout

15

e=(1, 3) global parity sectors

 Q: How to generate e=(1, 3) global parity sectors and

m=1 parity device?

m=1 parity

device

 A: Use two MDS codes Crow and Ccol

Two Encoding Phases

16

Phase 1

Phase 2

m=1 parity

device

e=(1, 3) global parity sectors

Crow: data  parity devices +

intermediate parities

Ccol: intermediate parities 

global parity sectors

Q: How to keep the global parity sectors inside a stripe?

Two Encoding Phases

17

m=1 parity

device

e=(1, 3) outside

global parity sectors

e=(1, 3) inside

global parity sectors

 A: set outside global parity sectors as zeroes;

reconstruct inside global parity sectors

Phase 1

Phase 2

Augmented Rows

18

 How do we compute inside parity sectors?

• Form a canonical stripe

 Encode each column with Ccol to form augmented rows

• Generate virtual parities in augmented rows

 Each augmented row is a codeword of Crow

Upstairs Encoding

 Idea: Generate parities in upstairs direction

19

Can be generalized as upstairs decoding

for recovering failures

Upstairs Encoding

 Detailed steps:

20 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

21 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

22 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

23 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

24 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

25 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

26 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

27 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

28 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

29 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

30 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

31 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

32 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

33 Crow: (10,7) code Ccol: (7,4) code

Notes: parity computations reuse

previously computed parities

Downstairs Encoding

34

 Cannot be generalized for decoding

 Another idea: Generate parities in downstairs direction

Downstairs Encoding

35

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

36

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

37

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

38

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

39

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

40

 Detailed steps:

Like upstairs encoding, parity computations reuse

previously computed parities

Choosing Encoding Methods

The two methods are

complementary

 Intuition:

• Choose upstairs

encoding for large m′

• Choose downstairs

encoding for small m′

Analysis details in the

paper

41

e=(1, 3) with m′=2
m′=2

Upstairs

Downstairs

Storage Space Saving

STAIR codes save devices over RAID

• s = # of tolerable sector failures

• m′ = # of partially failed devices

• r = chunk size

42
As r increases, # of devices saved ~ m′

Encoding Speed

43

 Encoding speed of STAIR codes is on order of 1000MB/s

 STAIR codes improve encoding speed of SD codes by

~100%, due to parity reuse

 Similar results for decoding

n = number of devices

r=16 (sectors per chunk)

Update Cost

44

n=16 (devices) and r=16 (sectors per chunk)

 Higher update penalty, due to global parity sectors

 Good for systems with rare updates (e.g., backup) or

many full-stripe writes (e.g., SSDs)

(Update penalty: average # of updated parity sectors for updating a data sector)

[Plank et al., FAST ’13, TOS’14]

Conclusions

STAIR codes: a general family of erasure codes

for tolerating a hierarchy of failures in a space-

efficient manner

Complementary upstairs encoding and

downstairs encoding

Open source STAIR Coding Library (in C):

• http://ansrlab.cse.cuhk.edu.hk/software/stair

45

Thank you!

Contact:

• Patrick P. C. Lee

http://www.cse.cuhk.edu.hk/~pclee

46

http://www.cse.cuhk.edu.hk/~pclee

