Information theory in combinatorics

January 14, 2015

1 Basic definitions

Logarithms are in base 2.
Entropy: $H(X)=\sum_{x} \operatorname{Pr}[X=x] \log (1 / \operatorname{Pr}[X=x])$.
For $0 \leq p \leq 1$ we shorthand $H(p)=p \log (1 / p)+(1-p) \log (1 /(1-p))$.
Conditional entropy: $H(X \mid Y)=\sum \operatorname{Pr}[Y=y] H(X \mid Y=y)=H(X, Y)-H(Y)$.
Chain rule: $H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)$.
Independence: If X_{1}, \ldots, X_{n} are independent then $H\left(X_{1}, \ldots, X_{n}\right)=\sum H\left(X_{i}\right)$.
Basic inequalities:

- $H(X) \geq 0$.
- $H(X \mid Y) \leq H(X)$ and $H(X \mid Y, Z) \leq H(X \mid Y)$.
- If X is supported on a universe of size n then $H(X) \leq \log n$, with equality if X is uniform.

2 Shearer's lemma

Shearer's lemma is a generalization of the basic inequality $H\left(X_{1}, \ldots, X_{n}\right) \leq \sum H\left(X_{i}\right)$. For $S \subseteq[n]$ we shorthand $X_{S}=\left(X_{i}: i \in S\right)$.

Lemma 2.1 (Shearer). Let X_{1}, \ldots, X_{n} be random variables. Let $S_{1}, \ldots, S_{m} \subseteq[n]$ be subsets such that each $i \in[n]$ belongs to at least k sets. Then

$$
k \cdot H\left(X_{1}, \ldots, X_{n}\right) \leq \sum_{j=1}^{m} H\left(X_{S}\right) .
$$

Proof. By the chain rule

$$
H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{1}, \ldots, x_{n-1}\right)
$$

If $S_{j}=\left\{i_{1}, \ldots, i_{s_{j}}\right\}$ with $i_{1}<\ldots<i_{s_{j}}$ then

$$
\begin{aligned}
H\left(X_{S_{j}}\right) & =H\left(X_{i_{1}}\right)+H\left(X_{i_{2}} \mid X_{i_{1}}\right)+\ldots+H\left(X_{i_{s_{j}}} \mid X_{i_{1}}, \ldots, X_{i_{s_{j}-1}}\right) \\
& \leq H\left(X_{i_{1}} \mid X_{1}, \ldots, X_{i_{1}-1}\right)+H\left(X_{i_{2}} \mid X_{1}, \ldots, X_{i_{2}-1}\right)+\ldots
\end{aligned}
$$

The lemma follows since each term $H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$ appears k times in the LHS and at least k times in the RHS.

The following is an equivalent version, which is sometimes more convenient.
Lemma 2.2 (Shearer; distribution). Let X_{1}, \ldots, X_{n} be random variables. Let $S \subseteq[n]$ be a random variable, such that $\operatorname{Pr}\left[X_{i} \in S\right] \geq \mu$ for all $i \in[n]$. Then

$$
\mu \cdot H\left(X_{1}, \ldots, X_{n}\right) \leq \mathbb{E}_{S}\left[H\left(X_{S}\right)\right] .
$$

3 Number of graph homomorphisms

Example 3.1. Let $P \subset \mathbb{R}^{3}$ be a set of points whose projection on each of the $X Y, Y Z, X Z$ planes have at most n points. How many points can P have? We can have $|P|=n^{3 / 2}$ if P is a grid of size $\sqrt{n} \times \sqrt{n} \times \sqrt{n}$. We will show that this is tight by applying Shearer's lemma. Let (X, Y, Z) be a uniform point in P. Then $H(X, Y, Z)=\log |P|$. On the other hand, by Shearer's lemma applied to the sets $\{\{1,2\},\{1,3\},\{2,3\}\}$,

$$
2 H(X, Y, Z) \leq H(X, Y)+H(X, Z)+H(Y, Z) \leq 3 \log n
$$

Hence $\log |P| \leq H(X, Y, Z) \leq \frac{3}{2} \log n$.
This is an instance of a more general phenomena. Let G, T be undirected graphs. A homomorphism of T to G is $\sigma: V(T) \rightarrow V(G)$ such that $(u, v) \in E(T) \Rightarrow(\sigma(u), \sigma(v)) \in$ $E(G)$. Let $\operatorname{Hom}(T, G)$ be the family of all homomorphisms from T to G. Our goal will be to bound $|\operatorname{Hom}(T, G)|$.

A fractional independent set of T is a mapping $\psi: V(T) \rightarrow[0,1]$ such that for each edge $(u, v) \in E(T), \psi(u)+\psi(v) \leq 1$. The fractional independent set number of T is the maximum size $\left(\operatorname{eg} \sum \psi(v)\right)$ of a fractional independent set, denoted $\alpha^{*}(T)$. It is given by a linear program, whose dual is the following. A fractional cover of T is a mapping $\phi: E(T) \rightarrow[0,1]$ such that for each vertex $v \in V(T), \sum_{(u, v) \in E(T)} \phi(u, v) \geq 1$. The fractional cover number of T is the minimum size (eg $\sum \phi(e)$) of a fractional cover of T. It is equal to $\alpha^{*}(T)$ by linear programming duality.
Theorem 3.2 (Alon [2], Freidgut-Kahn [6]). $|\operatorname{Hom}(T, G)| \leq(2|E(G)|)^{\alpha^{*}(T)}$.
This implies as a special case the previous example (up to constants). Let G be a tri-partite graph with parts X, Y, Z. For every point $(x, y, z) \in P$ add the edges $(x, y),(y, z),(x, z)$ to G. Then $|E(G)| \leq 3 n$. Let $T=\Delta$, where $\alpha^{*}(\Delta)=3 / 2$. Then

$$
6|P| \leq|\operatorname{Hom}(\Delta, G)| \leq(6 n)^{3 / 2}
$$

One can also show that the bound is essentially tight for fixed T, as there exist graphs G for which $|\operatorname{Hom}(T, G)| \geq(|E(G)| /|E(T)|)^{\alpha^{*}(T)}$. We will not show this here.

Proof. Let $\sigma: T \rightarrow G$ be a uniform homomorphism in $\operatorname{Hom}(T, G)$. If v_{1}, \ldots, v_{n} are the vertices of T, then set $X_{i}=\sigma\left(v_{i}\right)$. We have $H\left(X_{1}, \ldots, X_{n}\right)=\log |\operatorname{Hom}(T, G)|$. Let ϕ be a fractional cover of T with $\sum \phi(e)=\alpha^{*}(T)$. Let $S \in E(T)$ be chosen with probability $\operatorname{Pr}[S=\{u, v\}]=\phi(u, v) / \alpha^{*}(T)$. Note that $S \subset[n]$, with $\operatorname{Pr}[i \in S] \geq 1 / \alpha^{*}(T)$. Also, $H\left(X_{S}\right) \leq \log (2|E(G)|)$ since if $S=\{u, v\}$ then $\left(X_{u}, X_{v}\right)$ is distributed over directed edges of G. By Shearer's lemma,

$$
\log |\operatorname{Hom}(T, G)|=H\left(X_{1}, \ldots, X_{n}\right) \leq \alpha^{*}(T) \cdot \mathbb{E}_{S}\left[H\left(X_{S}\right)\right] \leq \alpha^{*}(T) \cdot \log (2|E(G)|)
$$

4 Number of independent sets

Let G be a d-regular graph on n vertices. How many independent sets can G have? Let $\mathcal{I}(G)$ denote the family of all independent sets $I \subset V(G)$.

Theorem 4.1 (Kahn [8]). If G is bi-partite then

$$
|\mathcal{I}(G)| \leq\left(2^{d+1}-1\right)^{\frac{n}{2 d}}
$$

This is tight: take G to be the union of $n / 2 d$ copies of $K_{d, d}$. The result was extended to general d-regular graphs by Zhao [11].

Proof. Assume $V(G)=[n]$, and let $A \cup B=[n]$ be a partition so that $E(G) \subset A \times B$, where we assume $|A| \geq|B|$. Let $I \subset[n]$ be a uniform independent set, and set $X_{i}=1_{i \in I}$. Then $\log |\mathcal{I}(G)|=H\left(X_{1}, \ldots, X_{n}\right)$. We shorthand $X_{A}=\left\{X_{i}: i \in A\right\}, X_{B}=\left\{X_{i}: i n B\right\}$. We have

$$
H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{A}\right)+H\left(X_{B} \mid X_{A}\right) .
$$

For each $b \in B$ let $N(b) \subset A$ be the neighbors of b. Let $Q_{b}=[I \cap N(b)=\emptyset]$ be the event that non of the neighbors of b are in I, and let $q_{v}=\operatorname{Pr}\left[Q_{v}\right]$. We first bound the second term,

$$
H\left(X_{B} \mid X_{A}\right) \leq \sum_{b \in B} H\left(X_{b} \mid X_{A}\right) \leq \sum_{b \in B} H\left(X_{b} \mid X_{N(b)}\right) \leq \sum_{b \in B} H\left(X_{b} \mid Q_{b}\right) .
$$

Note that $H\left(X_{b} \mid Q_{b}\right)=q_{b} \cdot H\left(X_{b} \mid Q_{b}=1\right) \leq q_{b}$, since $\overline{Q_{b}} \Rightarrow X_{b}=0$ and $X_{b} \in\{0,1\}$, hence

$$
H\left(X_{B} \mid X_{A}\right) \leq \sum_{b \in B} q_{b}
$$

Next we bound $H\left(X_{A}\right)$. Note that the sets $N(b)$ cover each element of A exactly d times, hence by Shearer's lemma,

$$
H\left(X_{A}\right) \leq \frac{1}{d} \sum_{b \in B} H\left(X_{N(b)}\right)
$$

We can bound

$$
H\left(X_{N(b)}\right)=H\left(X_{N(b)} \mid Q_{b}\right)+H\left(Q_{b}\right) \leq\left(1-q_{b}\right) \log \left(2^{d}-1\right)+H\left(q_{b}\right) .
$$

Combining these estimates, we obtain

$$
\begin{aligned}
H\left(X_{1}, \ldots, X_{n}\right) & \leq \sum_{b \in B} q_{b}+\frac{1}{d} \sum_{b \in B}\left(H\left(q_{b}\right)+\left(1-q_{b}\right) \log \left(2^{d}-1\right)\right) \\
& =\frac{n}{2 d} \log \left(2^{d}-1\right)+\frac{1}{d} \sum_{b \in B}\left(H\left(q_{b}\right)+q_{b} \log \frac{2^{d}}{2^{d}-1}\right)
\end{aligned}
$$

Differentiation gives that $H(x)+x \log \frac{2^{d}}{2^{d}-1}$ is maximized at $x_{0}=\frac{2^{d}}{2^{d+1}-1}$, hence

$$
H\left(X_{1}, \ldots, X_{n}\right) \leq \frac{n}{2 d}\left(\log \left(2^{d}-1\right)+H\left(x_{0}\right)+x_{0} \log \frac{2^{d}}{2^{d}-1}\right)=\frac{n}{2 d} \log \left(2^{d+1}-1\right)
$$

5 Weighted version, and applications

The following is a combinatorial version of Shearer's lemma. A hypergraph $H=(V, E)$ is simply a family of subsets $E \subset 2^{V}$.

Lemma 5.1 (Shearer; hypergraphs). Let H be a hypergraph. Let $S_{1}, \ldots, S_{m} \subset V$ be subsets of vertices, such that each $v \in V$ belongs to at least k subsets. Define the projected hypergraph H_{i} with $V\left(H_{i}\right)=S_{i}$ and $E\left(H_{i}\right)=\left\{e \cap S_{i}: e \in E\right\}$. Then

$$
|E(H)|^{k} \leq \prod\left|E\left(H_{i}\right)\right| .
$$

Proof. Let $|V(H)|=n, X_{1}, \ldots, X_{n} \in\{0,1\}$ be the indicator of a uniform edge $e \in E$. Then $H\left(X_{1}, \ldots, X_{n}\right)=\log |E(H)|$ and $H\left(X_{V\left(H_{i}\right)}\right) \leq \log \left|E\left(H_{i}\right)\right|$, since $X_{V\left(H_{i}\right)}$ is a random variable supported on $E\left(H_{i}\right)$.

Freidgut proved a weighted version of Shearer's lemma. Let $w_{i}: E\left(H_{i}\right) \rightarrow \mathbb{R}_{\geq 0}$ be some nonnegative weight function. For $e \in E$ let $e_{i}=e \cap S_{i} \in E\left(H_{i}\right)$.

Theorem 5.2 (Weighted Shearer lemma, Freidgut [5]). Under the same conditions,

$$
\left(\sum_{e \in E(H)} \prod_{i=1}^{m} w_{i}\left(e_{i}\right)\right)^{k} \leq \prod_{i=1}^{m} \sum_{e_{i} \in E\left(H_{i}\right)} w_{i}\left(e_{i}\right)^{k} .
$$

Corollary 5.3. For any $n \times n$ matrices A, B, C,

$$
\operatorname{Tr}(A B C)^{2} \leq \operatorname{Tr}\left(A A^{t}\right) \cdot \operatorname{Tr}\left(B B^{t}\right) \cdot \operatorname{Tr}\left(C C^{t}\right)
$$

Proof. We need to prove:

$$
\left(\sum A_{i, j} B_{j, k} C_{k, i}\right)^{2} \leq \sum A_{i, j}^{2} \cdot \sum B_{j, k}^{2} \cdot \sum C_{k, i}^{2}
$$

Clearly, we may assume all entries of A, B, C are nonnegative.
Let H be a complete tri-partite hypergraph with 3 parts I, J, K of size n each. Let H_{1}, H_{2}, H_{3} be the projected graphs to $I \cup J, J \cup K, I \cup K$, respectively. Each vertex of H belongs to two of the projected graphs. Define weights (on 2-edges) by

$$
w(i, j)=A_{i, j}, w(j, k)=B_{j, k}, w_{k, i}=C_{k, i} .
$$

Then

$$
\sum_{e \in E(H)} w_{1}\left(e_{1}\right) w_{2}\left(e_{2}\right) w_{3}\left(e_{3}\right)=\sum_{i, j, k} A_{i, j} B_{j, k} C_{k, i}
$$

and (for example)

$$
\sum_{e \in E\left(H_{1}\right)} w_{1}\left(e_{1}\right)^{2}=\sum A_{i, j}^{2} .
$$

6 Read- k functions

Let $x \in\{0,1\}^{n}$ be uniform bits. Let $f_{1}, \ldots, f_{m}:\{0,1\}^{n} \rightarrow\{0,1\}$ be boolean functions, where each f_{i} depends only on variables in some set $S_{i} \subset[n]$. Assume furthermore that $\operatorname{Pr}\left[f_{i}=1\right]=p$. If the sets S_{1}, \ldots, S_{m} are pairwise disjoint then $f_{i}(x)$ are independent, and in particular

$$
\operatorname{Pr}\left[f_{1}(x)=\ldots=f_{m}(x)=1\right]=p^{m} .
$$

Shearer's lemma allows us to extend this to the case where there is limited intersections.
Definition 6.1 (read- k functions). The functions f_{1}, \ldots, f_{m} are said to be read-k if each x_{i} participates in at most k functions. That is, $\left|\left\{j: i \in S_{j}\right\}\right| \leq k$ for all $i \in[n]$.

Lemma 6.2. If f_{1}, \ldots, f_{m} are read- k with $\operatorname{Pr}\left[f_{i}=1\right]=p$ then

$$
\operatorname{Pr}\left[f_{1}(x)=\ldots=f_{m}(x)=1\right] \leq p^{m / k}
$$

Proof. Let $q=\operatorname{Pr}\left[f_{1}(x)=\ldots=f_{m}(x)=1\right]$. We may assume wlog that each x_{i} is contained in exactly k sets. Let $A=\left\{x \in\{0,1\}^{n}: f_{1}(x)=\ldots=f_{m}(x)=1\right\}$ and $A_{i}=\left\{x \in\{0,1\}^{S_{i}}\right.$: $\left.f_{i}(x)=1\right\}$. We have $|A|=q 2^{n}$ and $\left|A_{i}\right|=p 2^{\left|S_{i}\right|}$. Let $\left(X_{1}, \ldots, X_{n}\right) \in A$ be uniformly distributed. By Shearer's lemma,

$$
k \cdot H\left(X_{1}, \ldots, X_{n}\right) \leq \sum H\left(X_{A_{i}}\right) .
$$

The lemma follows since $H\left(X_{1}, \ldots, X_{n}\right)=\log |A|=\log q+n$ and $H\left(X_{A_{i}}\right) \leq \log \left|A_{i}\right|=$ $\log p+\left|S_{i}\right|$. Hence

$$
k(\log q+n) \leq m \cdot \log p+\sum\left|S_{i}\right|=m \cdot \log p+k n .
$$

For example, if $G=G(n, 1 / 2)$ is a random graph on n vertices, and E_{v} is some event which depends only on the edges touching a vertex v, then

$$
\operatorname{Pr}\left[\forall v E_{v}\right] \leq \prod \operatorname{Pr}\left[E_{v}\right]^{1 / 2} .
$$

The power $1 / 2$ is tight. For example, choose a maximal matching M on $\{1, \ldots, n\}$ (n even) and let E_{v} be the event "the unique edge in M which touches v appears in G ".

We prove here an analog of the Chernoff bound for read- k functions. Recall that if $Y_{1}, \ldots, Y_{m} \in\{0,1\}$ are independent, with $\operatorname{Pr}\left[Y_{i}=1\right]=p$, then Chernoff bound tell us that

$$
\operatorname{Pr}\left[Y_{1}+\ldots+Y_{m} \geq(p+\varepsilon) m\right] \leq \exp \left(-2 \varepsilon^{2} m\right) .
$$

Theorem 6.3 (Gavinsky-Lovett-Saks-Srinivasan [7]). If f_{1}, \ldots, f_{m} are read-k with $\operatorname{Pr}\left[f_{i}=\right.$ 1] $=p$ then

$$
\operatorname{Pr}\left[f_{1}(x)+\ldots+f_{m}(x) \geq(p+\varepsilon) m\right] \leq \exp \left(-2 \varepsilon^{2} m / k\right) .
$$

The proof uses the Kullback-Leibler divergence between distributions.
Definition 6.4. Let μ, μ^{\prime} be two distributions on the same domain. The KL-divergence between them is defined as

$$
D_{\mathrm{KL}}\left(\mu \| \mu^{\prime}\right)=\sum \mu(x) \log \frac{\mu(x)}{\mu^{\prime}(x)} .
$$

If X, X^{\prime} are random variables distributed like μ, μ^{\prime} then $D_{\mathrm{KL}}\left(X \| X^{\prime}\right)=D_{\mathrm{KL}}\left(\mu \| \mu^{\prime}\right)$.

Fact 6.5.

(i) $D_{\mathrm{KL}}\left(X \| X^{\prime}\right) \geq 0$.
(ii) For any function $\phi, D_{\mathrm{KL}}\left(\phi(X) \| \phi\left(X^{\prime}\right)\right) \leq D_{\mathrm{KL}}\left(X \| X^{\prime}\right)$.
(iii) If X is supported on a set A, and U is uniform on A, then $D_{\mathrm{KL}}(X \| U)=H[U]-H[X]$.
(iv) Let U be uniform over a set A. Let $A^{\prime} \subset A$ with $\left|A^{\prime}\right|=p|A|$. Let X be any random variable of A with $\operatorname{Pr}\left[X \in A^{\prime}\right]=q$. Then

$$
D_{\mathrm{KL}}(X \| U) \geq D_{\mathrm{KL}}(q \| p),
$$

where $D_{\mathrm{KL}}(q \| p)=q \log \frac{q}{p}+(1-q) \log \frac{1-q}{1-p}$.

Lemma 6.6 (Shearer lemma for KL divergence). Let X_{1}, \ldots, X_{n} be random variables. Let U_{1}, \ldots, U_{n} be independent random variables, where U_{i} is uniform over a set containing the support of X_{i}. Let $S_{1}, \ldots, S_{m} \subset[n]$ be such that each $i \in[n]$ belongs to at most k sets. Then

$$
k \cdot D_{\mathrm{KL}}\left(X_{1}, \ldots, X_{n} \| U_{1}, \ldots, U_{n}\right) \geq \sum D_{\mathrm{KL}}\left(X_{S_{i}} \| U_{S_{i}}\right) .
$$

Proof. We may assume wlog that each $i \in[n]$ belongs to exactly k sets. Hence by Shearer's lemma, $k \cdot H\left(X_{1}, \ldots, X_{n}\right) \leq \sum H\left(X_{S_{i}}\right)$. Now apply fact (iii).

$$
\begin{aligned}
k \cdot D_{\mathrm{KL}}\left(X_{1}, \ldots, X_{n} \| U_{1}, \ldots, U_{n}\right) & =k H\left(U_{1}, \ldots, U_{n}\right)-k H\left(X_{1}, \ldots, X_{n}\right) \\
& =k \sum H\left(U_{i}\right)-k H\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

and

$$
\sum D_{\mathrm{KL}}\left(X_{S_{i}} \| U_{S_{i}}\right)=\sum H\left(U_{S_{i}}\right)-H\left(X_{S_{i}}\right)=k \sum H\left(U_{i}\right)-\sum H\left(X_{S_{i}}\right) .
$$

Proof of Theorem 6.3. Let

$$
A=\left\{x \in\{0,1\}^{n}: f_{1}(x)+\ldots+f_{m}(x) \geq(p+\varepsilon) m\right\}
$$

Let $X \in A$ be uniformly distributed, and let $U \in\{0,1\}^{n}$ be uniform. We have

$$
\log \operatorname{Pr}\left[f_{1}(x)+\ldots+f_{m}(x) \geq(p+\varepsilon) m\right]=\log \frac{|A|}{2^{n}}=H[X]-H[U]=-D_{\mathrm{KL}}(X \| U)
$$

Let $X_{S_{i}}, U_{S_{i}}$ be the restrictions of X, U to S_{i}, respectively. Then by Shearer's lemma for KL divergence,

$$
k \cdot D_{\mathrm{KL}}(X \| U) \geq \sum D_{\mathrm{KL}}\left(X_{S_{i}} \| U_{S_{i}}\right)
$$

Let $A_{i}=\{0,1\}^{S_{i}}$ and let $A_{i}^{\prime}=\left\{x \in A_{i}: f_{i}(x)=1\right\}$. Then $\left|A_{i}^{\prime}\right|=p\left|A_{i}\right|$, and $U_{S_{i}}$ is uniform on A_{i}. Let $q_{i}=\operatorname{Pr}\left[X_{i} \in A_{i}\right]$. Hence by fact (iv),

$$
D_{\mathrm{KL}}\left(X_{S_{i}} \| U_{S_{i}}\right) \geq D_{\mathrm{KL}}\left(q_{i} \| p\right)
$$

By convexity of the KL divergence function, we have

$$
D_{\mathrm{KL}}(X \| U) \geq \frac{1}{k} \sum_{i=1}^{m} D_{\mathrm{KL}}\left(q_{i} \| p\right) \geq \frac{m}{k} D_{\mathrm{KL}}(q \| p),
$$

where $q=\left(q_{1}+\ldots+q_{m}\right) / m$. By assumption, any X satisfies $f_{i}(X)=1$ for at least $(p+\varepsilon) m$ indices $i \in[m]$, hence
$q_{1}+\ldots+q_{m}=\sum \operatorname{Pr}\left[X_{i} \in A_{i}\right]=\sum \mathbb{E}\left[1_{X_{i} \in A_{i}}\right]=\sum \mathbb{E}\left[f_{i}(X)\right]=\mathbb{E}\left[\sum f_{i}(X)\right] \geq(p+\varepsilon) m$.
Hence $q \geq p+\varepsilon$, and we conclude that

$$
\log \operatorname{Pr}\left[f_{1}(x)+\ldots+f_{m}(x) \geq(p+\varepsilon) m\right] \leq-D_{\mathrm{KL}}(X \| U) \leq-(m / k) \cdot D_{\mathrm{KL}}(p+\varepsilon \| p)
$$

The bound

$$
\operatorname{Pr}\left[f_{1}(x)+\ldots+f_{m}(x) \geq(p+\varepsilon) m\right] \leq \exp \left(-2 \varepsilon^{2} m / k\right)
$$

follows from $2^{-D_{\text {KL }}(p+\varepsilon \| p)} \leq \exp \left(-2 \varepsilon^{2}\right)$.

7 Moore bound in irregular graphs

Let G be a d-regular graph on n vertices with girth g. We assume here throughout that $g=2 r+1$ is odd, although the results can be extended to even girth. Moore's bound gives a lower bound on n :

$$
n \geq 1+d \sum_{i=0}^{r-1}(d-1)^{i}
$$

The proof is simple: fix a vertex $v \in V(G)$. Let $n_{i}(v)$ be the number of vertices of distance i from v, for $i=0, \ldots, r$. The number of non backtracking paths of length $i \geq 1$ from v is $n_{i}(v)=d(d-1)^{i-1}$, and they all must lead to distinct vertices by the girth assumption. Hence, $n \geq n_{0}(v)+\ldots+n_{r}(v)$.

Alon, Hoory and Linial extended this bound to the case where the average degree is d.
Theorem 7.1 (Alon-Hoory-Linial [3]). Let G be a graph on n vertices with average degree d and girth $g=2 r+1$. Then

$$
n \geq 1+d \sum_{i=0}^{r-1}(d-1)^{i} .
$$

We present an information theoretic proof due to Ajesh Babu and Radhakrishnan [1]. In the proof, we may assume that the minimum degree is 2 , as removing vertices of degree 1 can only increase the average degree, and does not change the girth.

Proof. Let $d_{v}=\operatorname{deg}(v)$. Let π be a distribution on vertices given by $\pi(v)=\frac{d_{v}}{2|E|}$. We will prove: $\mathbb{E}_{v \sim \pi}\left[n_{i}(v)\right] \geq d(d-1)^{i-1}$, and the theorem follows. To prove that, let $v \sim \pi$ and sample a uniform non backtracking path of length i from v, which we denote $v=v_{0}, v_{1}, \ldots, v_{i}$. That is, v_{1} is a uniform neighbor of v, and for $j \geq 1, v_{j+1}$ is a uniform neighbor of v_{j} other than v_{j-1}. We make two observations: each vertex v_{j} is distributed according to π; and each edge $\left(v_{j}, v_{j+1}\right)$ is a uniform directed edge in G. Now,

$$
\begin{aligned}
\log \mathbb{E}\left[n_{i}(v)\right] & \geq \mathbb{E}\left[\log n_{i}(v)\right] \\
& \geq H\left[v_{1}, \ldots, v_{i} \mid v\right] \\
& =H\left[v_{1} \mid v\right]+H\left[v_{2} \mid v, v_{1}\right]+\ldots+H\left[v_{i} \mid v, v_{1}, \ldots, v_{i-1}\right] \\
& =\mathbb{E}\left[\log d_{v}+\sum_{j=1}^{i-1} \log \left(d_{v_{j}}-1\right)\right] \\
& =\mathbb{E}\left[\log \left\{d_{v}\left(d_{v}-1\right)^{i-1}\right\}\right] \\
& =\frac{1}{d n} \sum_{v} d_{v} \log \left\{d_{v}\left(d_{v}-1\right)^{i-1}\right\} \\
& \geq \frac{1}{d} \cdot d \log \left\{d(d-1)^{i-1}\right\}=\log \left\{d(d-1)^{i-1}\right\},
\end{aligned}
$$

where the last inequality follows from the convexity of the function $x \log \left(x(x-1)^{i-1}\right)$ for $x \geq 2$.

8 Brégman theorem: bounding the permanent

Let A be an $n \times n$ matrix with 0,1 entries. The permanent of A is $\sum_{\pi \in S_{n}} A_{i, \pi(i)}$. Minc conjectured, and Brégman proved, the following theorem.

Theorem 8.1 (Brégman's theorem [4]). Let d_{1}, \ldots, d_{n} be the row sums of A. Then

$$
\operatorname{per}(A) \leq \prod\left(d_{i}!\right)^{1 / d_{i}}
$$

It is tight, eg if $d_{1}=\ldots=d_{n}=d$ and A consists of n / d blocks of size $d \times d$ of all ones. We present an entropy based proof due to Radhakrishnan [9].

Proof. Let $P=\left\{\pi \in S_{n}: A_{i, \pi(i)}=1 \forall i \in[n]\right\}$. Then $|P|=\operatorname{per}(A)$. Let $\pi \in P$ be uniformly chosen, and consider the random variable $(\pi(1), \ldots, \pi(n))$. We have

$$
\begin{aligned}
\log |P| & =H(\pi(1), \ldots, \pi(n)) \\
& =H(\pi(1))+H(\pi(2) \mid \pi(1))+\ldots+H(\pi(n) \mid \pi(1), \ldots, \pi(n-1))
\end{aligned}
$$

Consider the i-th term in the sum. Let $D_{i}=\left\{j: A_{i, j}=1\right\}$ with $\left|D_{i}\right|=d_{i}$, and consider some fixing of $\pi(1)=x_{1}, \ldots, \pi(i-1)=x_{i-1}$. Then $\pi(i)$ can take any value in $D_{i} \backslash\left\{x_{1}, \ldots, x_{i-1}\right\}$, and hence $H\left(\pi(i) \mid \pi(1)=x_{1}, \ldots, \pi(i-1)=x_{i-1}\right) \leq \log \left|D_{i} \backslash\left\{x_{1}, \ldots, x_{i-1}\right\}\right|$. It is not clear how to evaluate this directly. The trick is to enumerate the rows in a random order.

For $\sigma \in S_{n}$ and consider the random variable $\pi(\sigma(1)), \ldots, \pi(\sigma(n))$. We have

$$
H(\pi)=H(\pi(\sigma(1)))+H(\pi(\sigma(2)) \mid \pi(\sigma(1)))+\ldots+H(\pi(\sigma(n)) \mid \pi(\sigma(1)), \ldots, \pi(\sigma(n-1)))
$$

Averaging over uniformly chosen $\sigma \in S_{n}$, we get

$$
H(\pi)=\mathbb{E}_{\sigma} \sum_{i=1}^{n} H(\pi(\sigma(i)) \mid \pi(\sigma(1)), \ldots, \pi(\sigma(i-1)))
$$

(note: we think of σ as a fixed permutation, and not a random variable. Equivalently, we can condition also on σ in the entropy calculations). Letting $k_{\sigma, i}=\sigma^{-1}(i)$, we can reorder the terms as

$$
\begin{aligned}
H(\pi) & =\sum_{i=1}^{n} \mathbb{E}_{\sigma} H\left(\pi(i) \mid \pi(\sigma(1)), \ldots, \pi\left(\sigma\left(k_{\sigma, i}-1\right)\right)\right) \\
& \leq \sum_{i=1}^{n} \mathbb{E}_{\pi, \sigma} \log \left|D_{i} \backslash\left\{\pi(\sigma(1)), \ldots, \pi\left(\sigma\left(k_{\sigma, i}-1\right)\right)\right\}\right| \\
& =\sum_{i=1}^{n} \mathbb{E}_{\pi, \sigma} \log \left|\pi^{-1}\left(D_{i}\right) \backslash\left\{\sigma(1), \ldots, \sigma\left(k_{\sigma, i}-1\right)\right\}\right|
\end{aligned}
$$

Fix π, and consider the i-th term. For all $\pi \in P$ we have $\pi(i) \in D_{i}$, and hence $i \in \pi^{-1}\left(D_{i}\right)$. Consider the ordering of $\pi^{-1}\left(D_{i}\right)$ induced by σ. The set $\pi^{-1}\left(D_{i}\right) \cap\left\{\sigma(1), \ldots, \sigma\left(k_{\sigma, i}-1\right)\right\}$
is the set of all elements of $\pi^{-1}\left(D_{i}\right)$ which appear before i; moreover, as σ is uniform, the ordering of $\pi^{-1}\left(D_{i}\right)$ by σ is uniform, and hence

$$
\underset{\sigma}{\operatorname{Pr}}\left[\left|\pi^{-1}\left(D_{i}\right) \backslash\left\{\sigma(1), \ldots, \sigma\left(k_{\sigma, i}-1\right)\right\}\right|=j\right]=\frac{1}{d_{i}} \quad \forall j=1, \ldots, d_{i} .
$$

We thus conclude

$$
H(\pi) \leq \sum_{i=1}^{n} \sum_{j=1}^{d_{i}} \frac{\log j}{d_{i}}=\log \prod_{i=1}^{n}\left(d_{i}!\right)^{1 / d_{i}}
$$

9 Spencer theorem

Let A be an $n \times n$ matrix with 0,1 entries. If $x \in\{-1,1\}^{n}$ is chosen uniformly, then whp $\left|(A x)_{i}\right| \leq O(\sqrt{n})$; however the largest entry can be of the order of $\sqrt{n \log n}$. While this is true for most x, Spencer proved that there exist x for which $\left|(A x)_{i}\right| \leq O(\sqrt{n})$ for all $i \in[n]$.
Theorem 9.1 (Spencer [10]). For any $n \times n$ matrix A with 0,1 entries, there exists $x \in$ $\{-1,1\}^{n}$ such that $\|A x\|_{\infty} \leq O(\sqrt{n})$.

The main idea is to find a partial coloring: a partial solution $x \in\{-1,0,1\}^{n}$ such that $\|A x\|_{\infty} \leq O(\sqrt{n})$, and such that a constant fraction of the coordinates of x are in $\{-1,1\}$. Then, we recurse upon the uncolored (set to zero) variables. The error terms form a geometric sequence (almost), and hence sum to $O(\sqrt{n})$. Here we will just describe this partial coloring lemma.

Lemma 9.2 (partial coloring lemma). For any $n \times n$ matrix A with 0,1 entries, there exists $x \in\{-1,0,1\}^{n}$ such that

1. $\|A x\|_{\infty} \leq O(\sqrt{n})$.
2. At least $n / 4$ (say) of the coordinates of x are in $\{-1,1\}$.

Proof. Let $C \geq 1$ be a constant to be determined later. We will find $x^{\prime}, x^{\prime \prime} \in\{-1,1\}^{n}$ such that $\left\|A x^{\prime}-A x^{\prime \prime}\right\|_{\infty} \leq C \sqrt{n}$, and such that $x^{\prime}, x^{\prime \prime}$ disagree on $n / 4$ of the coordinates. Then setting $x=\left(x^{\prime}-x^{\prime \prime}\right) / 2$ gives the required solution. To this end, let $X \in\{-1,1\}^{n}$ be uniformly chosen, and consider the random variables $Y_{i}(X)=\left\lfloor(A X)_{i} / C \sqrt{n}\right\rfloor$ for $i \in[n]$. Standard estimates show that $\operatorname{Pr}\left[Y_{i} \geq t\right] \leq \exp \left(-\Omega\left(C^{2} t^{2}\right)\right)$, and in particular if we choose C a large enough constant, we get $H\left(Y_{i}\right) \leq 1 / 4$. Hence

$$
H\left(Y_{1}, \ldots, Y_{n}\right) \leq \sum_{i=1}^{n} H\left(Y_{i}\right) \leq n / 4
$$

In particular, there must be some values y_{1}, \ldots, y_{n} such that $\operatorname{Pr}\left[Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right] \geq$ $2^{-n / 4}$. Let $S=\left\{x \in\{-1,1\}^{n}: Y_{i}(x)=y_{i} \forall i \in[n]\right\}$. Then $|S| \geq 2^{3 n / 4}$, and for any $x^{\prime}, x^{\prime \prime} \in S$ we have $\left\|A x^{\prime}-A x^{\prime \prime}\right\|_{\infty} \leq C \sqrt{n}$. To conclude the lemma, observe that any subset of $\{0,1\}^{n}$ of size $2^{3 n / 4}$ must contain two points which disagree on at least $n / 4$ coordinates.

References

[1] S. Ajesh Babu and J. Radhakrishnan. An entropy based proof of the moore bound for irregular graphs. Arxiv-eprints, pages 1-6, 2010.
[2] N. Alon. On the number of subgraphs of prescribed type of graphs with a given number of edges. Israel Journal of Mathematics, 38(1-2):116-130, 1981.
[3] N. Alon, S. Hoory, and N. Linial. The moore bound for irregular graphs. Graphs and Combinatorics, 18(1):53-57, 2002.
[4] L. Bregman. Some properties of nonnegative matrices and their permanents. In Soviet Math. Dokl, volume 14, pages 945-949, 1973.
[5] E. Friedgut. Hypergraphs, entropy, and inequalities. American Mathematical Monthly, pages 749-760, 2004.
[6] E. Friedgut and J. Kahn. On the number of copies of one hypergraph in another. Israel Journal of Mathematics, 105(1):251-256, 1998.
[7] D. Gavinsky, S. Lovett, M. Saks, and S. Srinivasan. A tail bound for read-k families of functions. Random Structures \mathcal{B} Algorithms, 2014.
[8] J. Kahn. An entropy approach to the hard-core model on bipartite graphs. Combinatorics, Probability and Computing, 10(03):219-237, 2001.
[9] J. Radhakrishnan. An entropy proof of bregman's theorem. journal of combinatorial theory, Series A, 77(1):161-164, 1997.
[10] J. Spencer. Six standard deviations suffice. Transactions of the American Mathematical Society, 289(2):679-706, 1985.
[11] Y. Zhao. The number of independent sets in a regular graph. Combinatorics, Probability and Computing, 19(02):315-320, 2010.

