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1 Basic definitions

Logarithms are in base 2.
Entropy: H(X) =

∑
x Pr[X = x] log(1/Pr[X = x]).

For 0 ≤ p ≤ 1 we shorthand H(p) = p log(1/p) + (1− p) log(1/(1− p)).
Conditional entropy: H(X|Y ) =

∑
Pr[Y = y]H(X|Y = y) = H(X, Y )−H(Y ).

Chain rule: H(X1, . . . , Xn) = H(X1) +H(X2|X1) + . . .+H(Xn|X1, . . . , Xn−1).
Independence: If X1, . . . , Xn are independent then H(X1, . . . , Xn) =

∑
H(Xi).

Basic inequalities:

• H(X) ≥ 0.

• H(X|Y ) ≤ H(X) and H(X|Y, Z) ≤ H(X|Y ).

• If X is supported on a universe of size n then H(X) ≤ log n, with equality if X is
uniform.

2 Shearer’s lemma

Shearer’s lemma is a generalization of the basic inequality H(X1, . . . , Xn) ≤
∑
H(Xi). For

S ⊆ [n] we shorthand XS = (Xi : i ∈ S).

Lemma 2.1 (Shearer). Let X1, . . . , Xn be random variables. Let S1, . . . , Sm ⊆ [n] be subsets
such that each i ∈ [n] belongs to at least k sets. Then

k ·H(X1, . . . , Xn) ≤
m∑
j=1

H(XS).

Proof. By the chain rule

H(X1, . . . , Xn) = H(X1) +H(X2|X1) + . . .+H(Xn|X1, . . . , xn−1).
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If Sj = {i1, . . . , isj} with i1 < . . . < isj then

H(XSj
) = H(Xi1) +H(Xi2|Xi1) + . . .+H(Xisj

|Xi1 , . . . , Xisj−1)

≤ H(Xi1|X1, . . . , Xi1−1) +H(Xi2 |X1, . . . , Xi2−1) + . . .

The lemma follows since each term H(Xi|X1, . . . , Xi−1) appears k times in the LHS and at
least k times in the RHS.

The following is an equivalent version, which is sometimes more convenient.

Lemma 2.2 (Shearer; distribution). Let X1, . . . , Xn be random variables. Let S ⊆ [n] be a
random variable, such that Pr[Xi ∈ S] ≥ µ for all i ∈ [n]. Then

µ ·H(X1, . . . , Xn) ≤ ES[H(XS)].

3 Number of graph homomorphisms

Example 3.1. Let P ⊂ R3 be a set of points whose projection on each of the XY, Y Z,XZ
planes have at most n points. How many points can P have? We can have |P | = n3/2 if P
is a grid of size

√
n×
√
n×
√
n. We will show that this is tight by applying Shearer’s lemma.

Let (X, Y, Z) be a uniform point in P . Then H(X, Y, Z) = log |P |. On the other hand, by
Shearer’s lemma applied to the sets {{1, 2}, {1, 3}, {2, 3}},

2H(X, Y, Z) ≤ H(X, Y ) +H(X,Z) +H(Y, Z) ≤ 3 log n.

Hence log |P | ≤ H(X, Y, Z) ≤ 3
2

log n.

This is an instance of a more general phenomena. Let G, T be undirected graphs. A
homomorphism of T to G is σ : V (T ) → V (G) such that (u, v) ∈ E(T ) ⇒ (σ(u), σ(v)) ∈
E(G). Let Hom(T,G) be the family of all homomorphisms from T to G. Our goal will be
to bound |Hom(T,G)|.

A fractional independent set of T is a mapping ψ : V (T ) → [0, 1] such that for each
edge (u, v) ∈ E(T ), ψ(u) + ψ(v) ≤ 1. The fractional independent set number of T is
the maximum size (eg

∑
ψ(v)) of a fractional independent set, denoted α∗(T ). It is given

by a linear program, whose dual is the following. A fractional cover of T is a mapping
φ : E(T )→ [0, 1] such that for each vertex v ∈ V (T ),

∑
(u,v)∈E(T ) φ(u, v) ≥ 1. The fractional

cover number of T is the minimum size (eg
∑
φ(e)) of a fractional cover of T . It is equal to

α∗(T ) by linear programming duality.

Theorem 3.2 (Alon [2], Freidgut-Kahn [6]). |Hom(T,G)| ≤ (2|E(G)|)α∗(T ).

This implies as a special case the previous example (up to constants). Let G be
a tri-partite graph with parts X, Y, Z. For every point (x, y, z) ∈ P add the edges
(x, y), (y, z), (x, z) to G. Then |E(G)| ≤ 3n. Let T =M, where α∗(M) = 3/2. Then

6|P | ≤ |Hom(M, G)| ≤ (6n)3/2.

One can also show that the bound is essentially tight for fixed T , as there exist graphs G for
which |Hom(T,G)| ≥ (|E(G)|/|E(T )|)α∗(T ). We will not show this here.
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Proof. Let σ : T → G be a uniform homomorphism in Hom(T,G). If v1, . . . , vn are the
vertices of T , then set Xi = σ(vi). We have H(X1, . . . , Xn) = log |Hom(T,G)|. Let φ be
a fractional cover of T with

∑
φ(e) = α∗(T ). Let S ∈ E(T ) be chosen with probability

Pr[S = {u, v}] = φ(u, v)/α∗(T ). Note that S ⊂ [n], with Pr[i ∈ S] ≥ 1/α∗(T ). Also,
H(XS) ≤ log(2|E(G)|) since if S = {u, v} then (Xu, Xv) is distributed over directed edges
of G. By Shearer’s lemma,

log |Hom(T,G)| = H(X1, . . . , Xn) ≤ α∗(T ) · ES[H(XS)] ≤ α∗(T ) · log(2|E(G)|).

4 Number of independent sets

Let G be a d-regular graph on n vertices. How many independent sets can G have? Let
I(G) denote the family of all independent sets I ⊂ V (G).

Theorem 4.1 (Kahn [8]). If G is bi-partite then

|I(G)| ≤ (2d+1 − 1)
n
2d .

This is tight: take G to be the union of n/2d copies of Kd,d. The result was extended to
general d-regular graphs by Zhao [11].

Proof. Assume V (G) = [n], and let A∪B = [n] be a partition so that E(G) ⊂ A×B, where
we assume |A| ≥ |B|. Let I ⊂ [n] be a uniform independent set, and set Xi = 1i∈I . Then
log |I(G)| = H(X1, . . . , Xn). We shorthand XA = {Xi : i ∈ A}, XB = {Xi : inB}. We have

H(X1, . . . , Xn) = H(XA) +H(XB|XA).

For each b ∈ B let N(b) ⊂ A be the neighbors of b. Let Qb = [I ∩ N(b) = ∅] be the event
that non of the neighbors of b are in I, and let qv = Pr[Qv]. We first bound the second term,

H(XB|XA) ≤
∑
b∈B

H(Xb|XA) ≤
∑
b∈B

H(Xb|XN(b)) ≤
∑
b∈B

H(Xb|Qb).

Note that H(Xb|Qb) = qb ·H(Xb|Qb = 1) ≤ qb, since Qb ⇒ Xb = 0 and Xb ∈ {0, 1}, hence

H(XB|XA) ≤
∑
b∈B

qb.

Next we bound H(XA). Note that the sets N(b) cover each element of A exactly d times,
hence by Shearer’s lemma,

H(XA) ≤ 1

d

∑
b∈B

H(XN(b)).
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We can bound

H(XN(b)) = H(XN(b)|Qb) +H(Qb) ≤ (1− qb) log(2d − 1) +H(qb).

Combining these estimates, we obtain

H(X1, . . . , Xn) ≤
∑
b∈B

qb +
1

d

∑
b∈B

(
H(qb) + (1− qb) log(2d − 1)

)
=

n

2d
log(2d − 1) +

1

d

∑
b∈B

(
H(qb) + qb log

2d

2d − 1

)

Differentiation gives that H(x) + x log 2d

2d−1 is maximized at x0 = 2d

2d+1−1 , hence

H(X1, . . . , Xn) ≤ n

2d

(
log(2d − 1) +H(x0) + x0 log

2d

2d − 1

)
=

n

2d
log(2d+1 − 1).

5 Weighted version, and applications

The following is a combinatorial version of Shearer’s lemma. A hypergraph H = (V,E) is
simply a family of subsets E ⊂ 2V .

Lemma 5.1 (Shearer; hypergraphs). Let H be a hypergraph. Let S1, . . . , Sm ⊂ V be subsets
of vertices, such that each v ∈ V belongs to at least k subsets. Define the projected hypergraph
Hi with V (Hi) = Si and E(Hi) = {e ∩ Si : e ∈ E}. Then

|E(H)|k ≤
∏
|E(Hi)|.

Proof. Let |V (H)| = n, X1, . . . , Xn ∈ {0, 1} be the indicator of a uniform edge e ∈ E. Then
H(X1, . . . , Xn) = log |E(H)| and H(XV (Hi)) ≤ log |E(Hi)|, since XV (Hi) is a random variable
supported on E(Hi).

Freidgut proved a weighted version of Shearer’s lemma. Let wi : E(Hi) → R≥0 be some
nonnegative weight function. For e ∈ E let ei = e ∩ Si ∈ E(Hi).

Theorem 5.2 (Weighted Shearer lemma, Freidgut [5]). Under the same conditions, ∑
e∈E(H)

m∏
i=1

wi(ei)

k

≤
m∏
i=1

∑
ei∈E(Hi)

wi(ei)
k.

Corollary 5.3. For any n× n matrices A,B,C,

Tr(ABC)2 ≤ Tr(AAt) · Tr(BBt) · Tr(CCt).
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Proof. We need to prove:(∑
Ai,jBj,kCk,i

)2
≤
∑

A2
i,j ·
∑

B2
j,k ·

∑
C2
k,i.

Clearly, we may assume all entries of A,B,C are nonnegative.
Let H be a complete tri-partite hypergraph with 3 parts I, J,K of size n each. Let

H1, H2, H3 be the projected graphs to I ∪ J, J ∪ K, I ∪ K, respectively. Each vertex of H
belongs to two of the projected graphs. Define weights (on 2-edges) by

w(i, j) = Ai,j, w(j, k) = Bj,k, wk,i = Ck,i.

Then ∑
e∈E(H)

w1(e1)w2(e2)w3(e3) =
∑
i,j,k

Ai,jBj,kCk,i

and (for example) ∑
e∈E(H1)

w1(e1)
2 =

∑
A2
i,j.

6 Read-k functions

Let x ∈ {0, 1}n be uniform bits. Let f1, . . . , fm : {0, 1}n → {0, 1} be boolean functions,
where each fi depends only on variables in some set Si ⊂ [n]. Assume furthermore that
Pr[fi = 1] = p. If the sets S1, . . . , Sm are pairwise disjoint then fi(x) are independent, and
in particular

Pr[f1(x) = . . . = fm(x) = 1] = pm.

Shearer’s lemma allows us to extend this to the case where there is limited intersections.

Definition 6.1 (read-k functions). The functions f1, . . . , fm are said to be read-k if each xi
participates in at most k functions. That is, |{j : i ∈ Sj}| ≤ k for all i ∈ [n].

Lemma 6.2. If f1, . . . , fm are read-k with Pr[fi = 1] = p then

Pr[f1(x) = . . . = fm(x) = 1] ≤ pm/k.

Proof. Let q = Pr[f1(x) = . . . = fm(x) = 1]. We may assume wlog that each xi is contained
in exactly k sets. Let A = {x ∈ {0, 1}n : f1(x) = . . . = fm(x) = 1} and Ai = {x ∈ {0, 1}Si :
fi(x) = 1}. We have |A| = q2n and |Ai| = p2|Si|. Let (X1, . . . , Xn) ∈ A be uniformly
distributed. By Shearer’s lemma,

k ·H(X1, . . . , Xn) ≤
∑

H(XAi
).
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The lemma follows since H(X1, . . . , Xn) = log |A| = log q + n and H(XAi
) ≤ log |Ai| =

log p+ |Si|. Hence

k(log q + n) ≤ m · log p+
∑
|Si| = m · log p+ kn.

For example, if G = G(n, 1/2) is a random graph on n vertices, and Ev is some event
which depends only on the edges touching a vertex v, then

Pr[∀v Ev] ≤
∏

Pr[Ev]
1/2.

The power 1/2 is tight. For example, choose a maximal matching M on {1, . . . , n} (n even)
and let Ev be the event ”the unique edge in M which touches v appears in G”.

We prove here an analog of the Chernoff bound for read-k functions. Recall that if
Y1, . . . , Ym ∈ {0, 1} are independent, with Pr[Yi = 1] = p, then Chernoff bound tell us that

Pr[Y1 + . . .+ Ym ≥ (p+ ε)m] ≤ exp(−2ε2m).

Theorem 6.3 (Gavinsky-Lovett-Saks-Srinivasan [7]). If f1, . . . , fm are read-k with Pr[fi =
1] = p then

Pr[f1(x) + . . .+ fm(x) ≥ (p+ ε)m] ≤ exp(−2ε2m/k).

The proof uses the Kullback-Leibler divergence between distributions.

Definition 6.4. Let µ, µ′ be two distributions on the same domain. The KL-divergence
between them is defined as

DKL(µ || µ′) =
∑

µ(x) log
µ(x)

µ′(x)
.

If X,X ′ are random variables distributed like µ, µ′ then DKL(X || X ′) = DKL(µ || µ′).

Fact 6.5.

(i) DKL(X || X ′) ≥ 0.

(ii) For any function φ, DKL(φ(X) || φ(X ′)) ≤ DKL(X || X ′).

(iii) If X is supported on a set A, and U is uniform on A, then DKL(X || U) = H[U ]−H[X].

(iv) Let U be uniform over a set A. Let A′ ⊂ A with |A′| = p|A|. Let X be any random
variable of A with Pr[X ∈ A′] = q. Then

DKL(X || U) ≥ DKL(q || p),

where DKL(q || p) = q log q
p

+ (1− q) log 1−q
1−p .
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Lemma 6.6 (Shearer lemma for KL divergence). Let X1, . . . , Xn be random variables. Let
U1, . . . , Un be independent random variables, where Ui is uniform over a set containing the
support of Xi. Let S1, . . . , Sm ⊂ [n] be such that each i ∈ [n] belongs to at most k sets. Then

k ·DKL(X1, . . . , Xn || U1, . . . , Un) ≥
∑

DKL(XSi
|| USi

).

Proof. We may assume wlog that each i ∈ [n] belongs to exactly k sets. Hence by Shearer’s
lemma, k ·H(X1, . . . , Xn) ≤

∑
H(XSi

). Now apply fact (iii).

k ·DKL(X1, . . . , Xn || U1, . . . , Un) = kH(U1, . . . , Un)− kH(X1, . . . , Xn)

= k
∑

H(Ui)− kH(X1, . . . , Xn)

and ∑
DKL(XSi

|| USi
) =

∑
H(USi

)−H(XSi
) = k

∑
H(Ui)−

∑
H(XSi

).

Proof of Theorem 6.3. Let

A = {x ∈ {0, 1}n : f1(x) + . . .+ fm(x) ≥ (p+ ε)m}.

Let X ∈ A be uniformly distributed, and let U ∈ {0, 1}n be uniform. We have

log Pr[f1(x) + . . .+ fm(x) ≥ (p+ ε)m] = log
|A|
2n

= H[X]−H[U ] = −DKL(X || U).

Let XSi
, USi

be the restrictions of X,U to Si, respectively. Then by Shearer’s lemma for KL
divergence,

k ·DKL(X || U) ≥
∑

DKL(XSi
|| USi

).

Let Ai = {0, 1}Si and let A′i = {x ∈ Ai : fi(x) = 1}. Then |A′i| = p|Ai|, and USi
is uniform

on Ai. Let qi = Pr[Xi ∈ Ai]. Hence by fact (iv),

DKL(XSi
|| USi

) ≥ DKL(qi || p).

By convexity of the KL divergence function, we have

DKL(X || U) ≥ 1

k

m∑
i=1

DKL(qi || p) ≥
m

k
DKL(q || p),

where q = (q1 + . . .+ qm)/m. By assumption, any X satisfies fi(X) = 1 for at least (p+ ε)m
indices i ∈ [m], hence

q1 + . . .+ qm =
∑

Pr[Xi ∈ Ai] =
∑

E[1Xi∈Ai
] =

∑
E[fi(X)] = E

[∑
fi(X)

]
≥ (p+ ε)m.

Hence q ≥ p+ ε, and we conclude that

log Pr[f1(x) + . . .+ fm(x) ≥ (p+ ε)m] ≤ −DKL(X || U) ≤ −(m/k) ·DKL(p+ ε || p).

The bound
Pr[f1(x) + . . .+ fm(x) ≥ (p+ ε)m] ≤ exp(−2ε2m/k)

follows from 2−DKL(p+ε || p) ≤ exp(−2ε2).
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7 Moore bound in irregular graphs

Let G be a d-regular graph on n vertices with girth g. We assume here throughout that
g = 2r + 1 is odd, although the results can be extended to even girth. Moore’s bound gives
a lower bound on n:

n ≥ 1 + d
r−1∑
i=0

(d− 1)i.

The proof is simple: fix a vertex v ∈ V (G). Let ni(v) be the number of vertices of distance
i from v, for i = 0, . . . , r. The number of non backtracking paths of length i ≥ 1 from v
is ni(v) = d(d − 1)i−1, and they all must lead to distinct vertices by the girth assumption.
Hence, n ≥ n0(v) + . . .+ nr(v).

Alon, Hoory and Linial extended this bound to the case where the average degree is d.

Theorem 7.1 (Alon-Hoory-Linial [3]). Let G be a graph on n vertices with average degree
d and girth g = 2r + 1. Then

n ≥ 1 + d
r−1∑
i=0

(d− 1)i.

We present an information theoretic proof due to Ajesh Babu and Radhakrishnan [1]. In
the proof, we may assume that the minimum degree is 2, as removing vertices of degree 1
can only increase the average degree, and does not change the girth.

Proof. Let dv = deg(v). Let π be a distribution on vertices given by π(v) = dv
2|E| . We will

prove: Ev∼π[ni(v)] ≥ d(d − 1)i−1, and the theorem follows. To prove that, let v ∼ π and
sample a uniform non backtracking path of length i from v, which we denote v = v0, v1, . . . , vi.
That is, v1 is a uniform neighbor of v, and for j ≥ 1, vj+1 is a uniform neighbor of vj other
than vj−1. We make two observations: each vertex vj is distributed according to π; and each
edge (vj, vj+1) is a uniform directed edge in G. Now,

logE[ni(v)] ≥ E[log ni(v)]

≥ H[v1, . . . , vi|v]

= H[v1|v] +H[v2|v, v1] + . . .+H[vi|v, v1, . . . , vi−1]

= E

[
log dv +

i−1∑
j=1

log(dvj − 1)

]
= E

[
log
{
dv(dv − 1)i−1

}]
=

1

dn

∑
v

dv log
{
dv(dv − 1)i−1

}
≥ 1

d
· d log

{
d(d− 1)i−1

}
= log

{
d(d− 1)i−1

}
,

where the last inequality follows from the convexity of the function x log(x(x − 1)i−1) for
x ≥ 2.
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8 Brégman theorem: bounding the permanent

Let A be an n × n matrix with 0, 1 entries. The permanent of A is
∑

π∈Sn
Ai,π(i). Minc

conjectured, and Brégman proved, the following theorem.

Theorem 8.1 (Brégman’s theorem [4]). Let d1, . . . , dn be the row sums of A. Then

per(A) ≤
∏

(di!)
1/di .

It is tight, eg if d1 = . . . = dn = d and A consists of n/d blocks of size d× d of all ones.
We present an entropy based proof due to Radhakrishnan [9].

Proof. Let P = {π ∈ Sn : Ai,π(i) = 1 ∀i ∈ [n]}. Then |P | = per(A). Let π ∈ P be uniformly
chosen, and consider the random variable (π(1), . . . , π(n)). We have

log |P | = H(π(1), . . . , π(n))

= H(π(1)) +H(π(2)|π(1)) + . . .+H(π(n)|π(1), . . . , π(n− 1)).

Consider the i-th term in the sum. Let Di = {j : Ai,j = 1} with |Di| = di, and consider some
fixing of π(1) = x1, . . . , π(i− 1) = xi−1. Then π(i) can take any value in Di \ {x1, . . . , xi−1},
and hence H(π(i)|π(1) = x1, . . . , π(i − 1) = xi−1) ≤ log |Di \ {x1, . . . , xi−1}|. It is not clear
how to evaluate this directly. The trick is to enumerate the rows in a random order.

For σ ∈ Sn and consider the random variable π(σ(1)), . . . , π(σ(n)). We have

H(π) = H(π(σ(1))) +H(π(σ(2))|π(σ(1))) + . . .+H(π(σ(n))|π(σ(1)), . . . , π(σ(n− 1)))

Averaging over uniformly chosen σ ∈ Sn, we get

H(π) = Eσ
n∑
i=1

H(π(σ(i))|π(σ(1)), . . . , π(σ(i− 1))).

(note: we think of σ as a fixed permutation, and not a random variable. Equivalently, we
can condition also on σ in the entropy calculations). Letting kσ,i = σ−1(i), we can reorder
the terms as

H(π) =
n∑
i=1

EσH(π(i)|π(σ(1)), . . . , π(σ(kσ,i − 1)))

≤
n∑
i=1

Eπ,σ log |Di \ {π(σ(1)), . . . , π(σ(kσ,i − 1))}|

=
n∑
i=1

Eπ,σ log |π−1(Di) \ {σ(1), . . . , σ(kσ,i − 1)}|.

Fix π, and consider the i-th term. For all π ∈ P we have π(i) ∈ Di, and hence i ∈ π−1(Di).
Consider the ordering of π−1(Di) induced by σ. The set π−1(Di) ∩ {σ(1), . . . , σ(kσ,i − 1)}
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is the set of all elements of π−1(Di) which appear before i; moreover, as σ is uniform, the
ordering of π−1(Di) by σ is uniform, and hence

Pr
σ

[|π−1(Di) \ {σ(1), . . . , σ(kσ,i − 1)}| = j] =
1

di
∀j = 1, . . . , di.

We thus conclude

H(π) ≤
n∑
i=1

di∑
j=1

log j

di
= log

n∏
i=1

(di!)
1/di .

9 Spencer theorem

Let A be an n × n matrix with 0, 1 entries. If x ∈ {−1, 1}n is chosen uniformly, then whp
|(Ax)i| ≤ O(

√
n); however the largest entry can be of the order of

√
n log n. While this is

true for most x, Spencer proved that there exist x for which |(Ax)i| ≤ O(
√
n) for all i ∈ [n].

Theorem 9.1 (Spencer [10]). For any n × n matrix A with 0, 1 entries, there exists x ∈
{−1, 1}n such that ‖Ax‖∞ ≤ O(

√
n).

The main idea is to find a partial coloring : a partial solution x ∈ {−1, 0, 1}n such that
‖Ax‖∞ ≤ O(

√
n), and such that a constant fraction of the coordinates of x are in {−1, 1}.

Then, we recurse upon the uncolored (set to zero) variables. The error terms form a geometric
sequence (almost), and hence sum to O(

√
n). Here we will just describe this partial coloring

lemma.

Lemma 9.2 (partial coloring lemma). For any n×n matrix A with 0, 1 entries, there exists
x ∈ {−1, 0, 1}n such that

1. ‖Ax‖∞ ≤ O(
√
n).

2. At least n/4 (say) of the coordinates of x are in {−1, 1}.
Proof. Let C ≥ 1 be a constant to be determined later. We will find x′, x′′ ∈ {−1, 1}n
such that ‖Ax′ − Ax′′‖∞ ≤ C

√
n, and such that x′, x′′ disagree on n/4 of the coordinates.

Then setting x = (x′ − x′′)/2 gives the required solution. To this end, let X ∈ {−1, 1}n
be uniformly chosen, and consider the random variables Yi(X) = b(AX)i/C

√
nc for i ∈ [n].

Standard estimates show that Pr[Yi ≥ t] ≤ exp(−Ω(C2t2)), and in particular if we choose C
a large enough constant, we get H(Yi) ≤ 1/4. Hence

H(Y1, . . . , Yn) ≤
n∑
i=1

H(Yi) ≤ n/4.

In particular, there must be some values y1, . . . , yn such that Pr[Y1 = y1, . . . , Yn = yn] ≥
2−n/4. Let S = {x ∈ {−1, 1}n : Yi(x) = yi ∀i ∈ [n]}. Then |S| ≥ 23n/4, and for any x′, x′′ ∈ S
we have ‖Ax′ −Ax′′‖∞ ≤ C

√
n. To conclude the lemma, observe that any subset of {0, 1}n

of size 23n/4 must contain two points which disagree on at least n/4 coordinates.
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