Faster (Spectral) Algorithms via Approximation Theory

Nisheeth K. Vishnoi
EPFL

Based on a recent monograph with Sushant Sachdeva (Yale)

Simons Institute, Dec. 3, 2014

The Goal

Many algorithms today rely on our ability to quickly compute good
approximations to matrix-function-vector products: e.g.,

o ASv, A"lv, exp(—A)v, ...

@ or top few eigenvalues and eigenvectors.

The Goal

Many algorithms today rely on our ability to quickly compute good
approximations to matrix-function-vector products: e.g.,

o ASv, A"lv, exp(—A)v, ...

@ or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a
small number of those of the form Bu where B is a matrix closely
related to A (often A itself) and u is some vector.

The Goal

Many algorithms today rely on our ability to quickly compute good
approximations to matrix-function-vector products: e.g.,

o ASv, A"lv, exp(—A)v, ...

@ or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a
small number of those of the form Bu where B is a matrix closely
related to A (often A itself) and u is some vector.

o A key feature of these algorithms is that if the matrix-vector
product for A can be computed quickly, e.g., when A is sparse,
then Bu can also be computed in essentially the same time.

The Goal

Many algorithms today rely on our ability to quickly compute good
approximations to matrix-function-vector products: e.g.,

o ASv, A"lv, exp(—A)v, ...

@ or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a
small number of those of the form Bu where B is a matrix closely
related to A (often A itself) and u is some vector.

o A key feature of these algorithms is that if the matrix-vector
product for A can be computed quickly, e.g., when A is sparse,
then Bu can also be computed in essentially the same time.

The classical area in analysis of approximation theory provides
the right framework to study these questions.

Approximation Theory

" 1
.

Approximation Theory

AR A

\é\

Approximation Theory

(

& = Max. error in approximating f(x) by p(x) over .7~

\Q\
>
>

Approximation Theory

How well can functions be approximated by simpler ones?)

Approximation Theory

How well can functions be approximated by simpler ones?)

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For f : R — R and an interval Z, what is the closest a degree d
polynomial/rational function can remain to f(x) throughout 7

Approximation Theory

How well can functions be approximated by simpler ones?)

Uniform (Chebyshev) Approximation by Polynomials/Rationals
For f : R — R and an interval Z, what is the closest a degree d
polynomial/rational function can remain to f(x) throughout 7

inf sup|f(x) — p(x)|.
A suplf(x) = p(x)|

inf sup|f(x) — P(x)/q(x)|.
p,qeidxeg| () /q()|

3 4: set of all polynomials of degree at most d.

Approximation Theory

How well can functions be approximated by simpler ones?)

Uniform (Chebyshev) Approximation by Polynomials/Rationals
For f : R — R and an interval Z, what is the closest a degree d
polynomial/rational function can remain to f(x) throughout 7

inf sup|f(x) — p(x)|.
A suplf(x) = p(x)|

inf sup|f(x) — P(x)/q(x)|.
p,qeidxeg| () /q()|

3 4: set of all polynomials of degree at most d.

@ 150+ years of fascinating history, deep results and many
applications.

Approximation Theory

How well can functions be approximated by simpler ones?)

Uniform (Chebyshev) Approximation by Polynomials/Rationals
For f : R — R and an interval Z, what is the closest a degree d
polynomial/rational function can remain to f(x) throughout 7

inf sup|f(x) — p(x)|.
A suplf(x) = p(x)|

inf sup|f(x) — P(x)/q(x)|.
p,qeidxeg| () /q()|

3 4: set of all polynomials of degree at most d.

@ 150+ years of fascinating history, deep results and many
applications.

@ Interested in fundamental functions such as x°, e™* and 1/x
over finite and infinite intervals such as [—1, 1], [0, n], [0, c0).

Approximation Theory

How well can functions be approximated by simpler ones?)

Uniform (Chebyshev) Approximation by Polynomials/Rationals
For f : R — R and an interval Z, what is the closest a degree d
polynomial/rational function can remain to f(x) throughout 7

inf sup|f(x) — p(x)|.
A suplf(x) = p(x)|

inf sup|f(x) — P(x)/q(x)|.
p,qeidxeg| () /q()|

3 4: set of all polynomials of degree at most d.

@ 150+ years of fascinating history, deep results and many
applications.

@ Interested in fundamental functions such as x°, e™* and 1/x
over finite and infinite intervals such as [—1, 1], [0, n], [0, c0).

@ For our applications good enough approximations suffice.

Algorithms/Numerical Linear Alg.-

Algorithms/Numerical Linear Alg.-

A simple example:

Compute ASv where A is symmetric with eigenvalues in [—1,1],
v is a vector and s is a large positive integer.

Algorithms/Numerical Linear Alg.-

A simple example:

Compute ASv where A is symmetric with eigenvalues in [—1,1],
v is a vector and s is a large positive integer.

@ The straightforward way to compute A°v takes time O(ms)
where m is the number of non-zero entries in A.

Algorithms/Numerical Linear Alg.-

A simple example:

Compute ASv where A is symmetric with eigenvalues in [—1,1],
v is a vector and s is a large positive integer.

@ The straightforward way to compute A°v takes time O(ms)
where m is the number of non-zero entries in A.

@ Suppose x° can be §-approximated over the mterval [—1,1]
by a degree d polynomial ps 4(x) = Z Lo aiX

Algorithms/Numerical Linear Alg.-

A simple example:

Compute ASv where A is symmetric with eigenvalues in [—1,1],
v is a vector and s is a large positive integer.

@ The straightforward way to compute A°v takes time O(ms)
where m is the number of non-zero entries in A.

@ Suppose x° can be §-approximated over the mterval [—1,1]
by a degree d polynomial ps 4(x) = Z Lo aiX

o Candidate approximation to ASv: 5% a;A'v.

Algorithms/Numerical Linear Alg.-

A simple example:

Compute ASv where A is symmetric with eigenvalues in [—1,1],
v is a vector and s is a large positive integer.

@ The straightforward way to compute A°v takes time O(ms)
where m is the number of non-zero entries in A.

@ Suppose x° can be §-approximated over the mterval [—1,1]
by a degree d polynomial ps 4(x) = Z Lo aiX

o Candidate approximation to ASv: 5% a;A'v.
@ The time to compute 27:0 aiAlv is O(md).

Algorithms/Numerical Linear Alg.-

A simple example:

Compute ASv where A is symmetric with eigenvalues in [—1,1],
v is a vector and s is a large positive integer.

@ The straightforward way to compute A°v takes time O(ms)
where m is the number of non-zero entries in A.

@ Suppose x° can be J-approximated over the interval [—1,1]
by a degree d polynomial ps 4(x) = Z?:o aix'.

Candidate approximation to A°v: 7 a;A'v.
@ The time to compute 27:0 aiAlv is O(md).
1529, ajAlv — Asv|| < §|v| since

o all the eigenvalues of A lie in [-1,1], and
o ps g is 0-close to x° in the entire interval [—1,1].

Algorithms/Numerical Linear Alg.-

A simple example:

Compute ASv where A is symmetric with eigenvalues in [—1,1],
v is a vector and s is a large positive integer.

@ The straightforward way to compute A°v takes time O(ms)
where m is the number of non-zero entries in A.

@ Suppose x° can be J-approximated over the interval [—1,1]
by a degree d polynomial ps 4(x) = Z?:o aix'.

Candidate approximation to A°v: 7 a;A'v.
@ The time to compute 27:0 aiAlv is O(md).
1529, ajAlv — Asv|| < §|v| since

o all the eigenvalues of A lie in [-1,1], and
o ps g is 0-close to x° in the entire interval [—1,1].

How small can d be?)

Example: Approximating the Monomial

For any s, for any § > 0, and d ~ /s log (1/s), there is a

polynomial ps 4 s.t. sup |psq(x) —x°| < 0.
x€[—1,1]

Example: Approximating the Monomial

For any s, for any § > 0, and d ~ /s log (1/s), there is a

polynomial ps 4 s.t. sup |psq(x) —x°| < 0.
x€[—1,1]

o Simulating Random Walks: If A is random walk matrix of a
graph, we can simulate s steps of a random walk in my/s time.

Example: Approximating the Monomial

For any s, for any § > 0, and d ~ /s log (1/s), there is a

polynomial ps 4 s.t. sup |psq(x) —x°| < 0.
x€[—1,1]

o Simulating Random Walks: If A is random walk matrix of a
graph, we can simulate s steps of a random walk in my/s time.

o Conjugate Gradient Method: Given Ax = b with
eigenvalues of A in (0, 1], one can find y s.t.
ly — A=1b||a < 5||[A71b| 4 in time roughly my/k(A)log 1/s.

Example: Approximating the Monomial

For any s, for any § > 0, and d ~ /s log (1/s), there is a

polynomial ps 4 s.t. sup |psq(x) —x°| < 0.
x€[—1,1]

o Simulating Random Walks: If A is random walk matrix of a
graph, we can simulate s steps of a random walk in my/s time.

o Conjugate Gradient Method: Given Ax = b with
eigenvalues of A in (0, 1], one can find y s.t.
ly — A=1b||a < 5||[A71b| 4 in time roughly my/k(A)log 1/s.

o Quadratic speedup over the Power Method: Given A, in
time ~ m/\/5 can compute a value p € [(1 — 0)A1(A), A1(A)].

Chebyshev Polynomials

The Chebyshev polynomial of deg. d is defined recursively to be:
def
T4(x) = 2xTg_1(x) — Ty—2(x)

for d > 2 with To(x) &' 1, Ty(x) & x.

Chebyshev Polynomials

The Chebyshev polynomial of deg. d is defined recursively to be:
def
T4(x) = 2xTg_1(x) — Ty—2(x)

for d > 2 with To(x) &' 1, Ty(x) & x.

Averaging Property

xTq(x) = —Td“(x)—gTd_l(x) :

Chebyshev Polynomials

The Chebyshev polynomial of deg. d is defined recursively to be:
def
T4(x) = 2xTg_1(x) — Ty—2(x)

for d > 2 with To(x) &' 1, Ty(x) & x.

Averaging Property

xTy(x) = Td+1(X)-2FTd—1(X) _

Boundedness Property

For any 6, and any integer d, T4(cosf) = cos(df).

Chebyshev Polynomials

The Chebyshev polynomial of deg. d is defined recursively to be:
def
T4(x) = 2xTg_1(x) — Ty—2(x)

for d > 2 with To(x) &' 1, Ty(x) & x.

Averaging Property

xTy(x) = Td+1(X)-2FTd—1(X) _

Boundedness Property

For any 6, and any integer d, T4(cosf) = cos(df).
Thus, |T4(x)| <1 for all x € [-1,1].

Back to Approximating Monomials

Dy 'S5 Y where i, ..., Ysiid. +1 w.p. Y2 (D € 0).

Back to Approximating Monomials

Dy 'S5 Y where Yi,..., Y iid. +1 w.p. Y2 (D € 0).

Thus, Pr [\Ds\ > \/W(%)} <.

Back to Approximating Monomials

Dy 'S5 Y where Yi,..., Y iid. +1 w.p. Y2 (D € 0).

Thus, Pr [‘Ds‘ > \/WP/«S)} <.

Key Claim: y E [Tp.(x)] = x°. J

flgeoey Vg

Back to Approximating Monomials

Dy 'S5 Y where Yi,..., Y iid. +1 w.p. Y2 (D € 0).

Thus, Pr [‘Ds‘ > \/WP/«S)} <.

Key Claim: y E [Tp.(x)] = x° J
flgeoey Vg
o Yl,.I.E.,Ys Tp,(x) = Y1,..E.,Y5[X. To.(x)]
= Yl,F,Ys [Y2(Tp,41(x) + To,—1(x))] = Yl,A.IAE,YHl[TDs“(X)]‘

Back to Approximating Monomials

Dy 'S5 Y where Yi,..., Y iid. +1 w.p. Y2 (D € 0).

Thus, Pr [\Ds\ > \/W(%)] <.

Key Claim: y E [Tp.(x)] = x°. J

flgeoey Vg

T, x)].
Yiseey 17 Z T Ys+1[Ds+1()]

v E [TDS(X) . 1\D5|§d} for d = 25|Og (2/5).

Back to Approximating Monomials

Dy 'S5 Y where Yi,..., Y iid. +1 w.p. Y2 (D € 0).

Thus, Pr [\Ds\ > \/W(%)] <.

Key Claim: y E [Tp.(x)] = x°. J

flgeoey Vg

WE [To,(x) - 1jp,|>d)

sup |ps,a(x) —x°| = sup
x€[—1,1] x€[-1,1]

IN
m

Lipgsda- sup |To,(x)|| < E _ [lp,>q] < 6.
s x€[—1,1] LERI £

AAAAAA

A General Recipe?

Suppose f(x) is d-approximated by a Taylor polynomial Zf:o CsX°,
then one may instead try the approx. (with suitably shifted ps 4)

k
Z CSps,\/s log 1/6(X)
s=0

A General Recipe?

Suppose f(x) is d-approximated by a Taylor polynomial Zf:o CsX°,
then one may instead try the approx. (with suitably shifted ps 4)

k
Z CSps,\/s log 1/6(X)
s=0

| ‘
A\

Approximating the Exponential

For every b > 0, and 4, there is a polynomial rp 5 s.t.
SUPyc[o,b] |6 — rbs(x)| < &; degree ~ \/blog1/s. (Taylor -Q(b).)

A General Recipe?

Suppose f(x) is d-approximated by a Taylor polynomial Zf:o CsX°,
then one may instead try the approx. (with suitably shifted ps 4)

k
Z CSps,\/s log 1/6(X)
s=0

| ‘
A\

Approximating the Exponential

For every b > 0, and 4, there is a polynomial rp 5 s.t.
SUPyc[o,b] |6 — rbs(x)| < &; degree ~ \/blog1/s. (Taylor -Q(b).)

o Implies O(m+/[|Al[log1/s) time algorithm to compute a
d-approximation to e v for a PSD A. Useful in solving SDPs.

A General Recipe?

Suppose f(x) is d-approximated by a Taylor polynomial Zf:o CsX°,
then one may instead try the approx. (with suitably shifted ps 4)

k
Z CSps,\/s log 1/6(X)
s=0

Approximating the Exponential

For every b > 0, and 4, there is a polynomial rp 5 s.t.
SUPyc[o,b] |6 — rbs(x)| < &; degree ~ \/blog1/s. (Taylor -Q(b).)

o Implies O(m+/[|Al[log1/s) time algorithm to compute a
d-approximation to e v for a PSD A. Useful in solving SDPs.

© When A'is a graph Laplacian, implies an optimal spectral algorithm
for Balanced Separator that runs in time O(™/,/7). (v is the target
conductance) [Orecchia-Sachdeva-V. 2012].

A General Recipe?

Suppose f(x) is d-approximated by a Taylor polynomial Zf:o CsX°,
then one may instead try the approx. (with suitably shifted ps 4)

k
Z CSps,\/s log 1/6(X)
s=0

Approximating the Exponential

For every b > 0, and 4, there is a polynomial rp 5 s.t.
SUPyc[o,b] |6 — rbs(x)| < &; degree ~ \/blog1/s. (Taylor -Q(b).)

o Implies O(m+/[|Al[log1/s) time algorithm to compute a
d-approximation to e v for a PSD A. Useful in solving SDPs.

© When A'is a graph Laplacian, implies an optimal spectral algorithm
for Balanced Separator that runs in time O(™/,/7). (v is the target
conductance) [Orecchia-Sachdeva-V. 2012].

How far can polynomial approximations take us?)

Lower Bounds for Polynomial Approximations

Bad News [see Sachdeva-V. 2014]

@ Polynomial approx. to x° on [—1, 1] requires degree Q(y/s).
o Polynomials approx. to e on [0, b] requires degree Q(\/b).

Lower Bounds for Polynomial Approximations
Bad News [see Sachdeva-V. 2014]

@ Polynomial approx. to x° on [—1, 1] requires degree Q(y/s).

o Polynomials approx. to e on [0, b] requires degree Q(\/b).

v

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. |p(x)| <1 over [—1, 1] must have
its derivative |p(M)(x)| < d? for all x € [-1,1].

Lower Bounds for Polynomial Approximations
Bad News [see Sachdeva-V. 2014]

@ Polynomial approx. to x° on [—1, 1] requires degree Q(y/s).

o Polynomials approx. to e on [0, b] requires degree Q(\/b).

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. |p(x)| <1 over [—1, 1] must have
its derivative |p(M)(x)| < d? for all x € [-1,1].

@ Chebyshev polynomials are a tight example for this theorem.

Lower Bounds for Polynomial Approximations
Bad News [see Sachdeva-V. 2014]

@ Polynomial approx. to x° on [—1, 1] requires degree Q(y/s).

o Polynomials approx. to e on [0, b] requires degree Q(\/b).

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. |p(x)| <1 over [—1, 1] must have
its derivative |p(M)(x)| < d? for all x € [-1,1].

@ Chebyshev polynomials are a tight example for this theorem.

Bypass this barrier via rational functions!

Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supr[Opo) ‘G_X %‘ <2- Q(d)

Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supx6[07oo) ‘G_X %‘ <2- Q(d)

Sa(x)def Zk 0 3T- (Proof by induction.) J

Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supx6[07oo) ‘G_X %‘ <2- Q(d)

Sa(x)def Zk 0 3T- (Proof by induction.) J

@ No dependence on the length of the interval!

Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supx6[07oo) ‘G_X %‘ <2- Q(d)

Sa(x)def Zk 0 3T- (Proof by induction.) J

@ No dependence on the length of the interval!

@ Hence, for any § > 0, we have a rational function of degree
O(log1/5) that is a d-approximation to e *. For most applications,
an error of & = 1/poly(n) suffices, so we can choose d = O(log n).

Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supx6[07oo) ‘G_X %‘ <2- Q(d)

Sa(x)def Zk 0 3T- (Proof by induction.) J

@ No dependence on the length of the interval!

@ Hence, for any § > 0, we have a rational function of degree
O(log1/5) that is a d-approximation to e *. For most applications,
an error of & = 1/poly(n) suffices, so we can choose d = O(log n).

@ Thus, (S4(A)) "' v d-approximates e Av.

Example: Approximating the Exponential

—X

SUPx¢[0,00) ‘e - Sd%x)),

For all integers d > 0, there is a degree-d polynomial S4(x) s.t. I

Sa(x)def Zk 0 3T- (Proof by induction.) J

@ No dependence on the length of the interval!

@ Hence, for any § > 0, we have a rational function of degree
O(log1/5) that is a d-approximation to e *. For most applications,
an error of & = 1/poly(n) suffices, so we can choose d = O(log n).

@ Thus, (S4(A)) "' v d-approximates e Av.

How do we compute (S4(A)) ! v? J

Why any Rational Approximation is not Enough?

Factor Sq(x) = ao []%_,(x — B) and output ag [, (A — B,-I)_lv.J

Why any Rational Approximation is not Enough?

Factor Sq(x) = ao []%_,(x — B) and output ag [, (A — B,-I)_lv.J

e Since d is O(log n), sufficient to compute (A — ;1) tu.

Why any Rational Approximation is not Enough?

Factor Sq(x) = ao []%_,(x — B) and output ag [, (A — B,-I)_lv.J

e Since d is O(log n), sufficient to compute (A — ;1) tu.
@ When A is Laplacian, and 3; <0, then A — 3,/ is SDD!

Why any Rational Approximation is not Enough?

Factor Sq(x) = ao []%_,(x — B) and output ag [, (A — B,-I)_lv.J

e Since d is O(log n), sufficient to compute (A — ;1) tu.
@ When A is Laplacian, and 3; <0, then A — 3,/ is SDD!

@ [(3;s could be complex:
S4(x) has exactly one real zero x4 € [—d,—1] if d is odd, and no real

zeros if d is even. Also, zeros of Sq(x) grow linearly in magnitude with d.

Why any Rational Approximation is not Enough?

Factor Sq(x) = ao []%_,(x — B) and output ag [, (A — B,-I)_lv.J

e Since d is O(log n), sufficient to compute (A — ;1) tu.
@ When A is Laplacian, and 3; <0, then A — 3,/ is SDD!
@ ;s could be complex:

S4(x) has exactly one real zero x4 € [—d,—1] if d is odd, and no real

zeros if d is even. Also, zeros of Sq(x) grow linearly in magnitude with d.

@ However, since Sy has real coefficients, its complex roots
appear as conjugates. Hence, the task reduces to computing

(A2 —(Bi + ,3_,')/4 + ‘B,“zl)_lu.

Why any Rational Approximation is not Enough?

Factor Sq(x) = ao []%_,(x — B) and output ag [, (A — B,-I)_lv.J

e Since d is O(log n), sufficient to compute (A — ;1) tu.
@ When A is Laplacian, and 3; <0, then A — 3,/ is SDD!

@ ;s could be complex:
S4(x) has exactly one real zero x4 € [—d,—1] if d is odd, and no real

zeros if d is even. Also, zeros of Sq(x) grow linearly in magnitude with d.

@ However, since Sy has real coefficients, its complex roots
appear as conjugates. Hence, the task reduces to computing

(A% — (Bi + BA+ |BiP1) .
o The matrix (A% — (3; + Bi)A + |Bi|?!) is PSD but the
condition number can be comparable to that of A.

Why any Rational Approximation is not Enough?

Factor Sq(x) = ao []%_,(x — B) and output ag [, (A — B,-I)_lv.J

e Since d is O(log n), sufficient to compute (A — ;1) tu.
@ When A is Laplacian, and 3; <0, then A — 3,/ is SDD!

@ [(3;s could be complex:
S4(x) has exactly one real zero x4 € [—d,—1] if d is odd, and no real

zeros if d is even. Also, zeros of Sq(x) grow linearly in magnitude with d.

@ However, since Sy has real coefficients, its complex roots
appear as conjugates. Hence, the task reduces to computing

(A% — (Bi + BA+ |BiP1) .
o The matrix (A% — (3; + Bi)A + |Bi|?!) is PSD but the
condition number can be comparable to that of A.

Desire: A rational approximation with negative poles.)

Rational Approximation with Negative Poles

o How about (1 + x/d)~9? Converges to e unif. over [0, c0).

Rational Approximation with Negative Poles

o How about (1 + x/d)~9? Converges to e unif. over [0, c0).

e Convergence rate slow: at x = 1 error is ©(1/a).

Rational Approximation with Negative Poles

@ How about (1 + x/d)~9? Converges to e~ unif. over [0, c0).
e Convergence rate slow: at x = 1 error is ©(1/a).

@ More generally, for every rational function of the form 1/p,(x),
where py is a degree-d polynomial with real roots:

sup e — Ypa(x)| = Q(1/a2).
x€[0,00)

Rational Approximation with Negative Poles

@ How about (1 + x/d)~9? Converges to e~ unif. over [0, c0).
e Convergence rate slow: at x = 1 error is ©(1/a).

@ More generally, for every rational function of the form 1/p,(x),
where py is a degree-d polynomial with real roots:

sup &7 = 1/py(x)| = Q(1/a?).
x€[0,00)

Saff-Schonhage-Varga 1975

For every d, there exists a degree-d polynomial py s.t.,

—x _ 1 —Q(d)
sup ‘e Pd < =) <2 .
x€[0,00) g

Rational Approximation with Negative Poles

@ How about (1 + x/d)~9? Converges to e~ unif. over [0, c0).
e Convergence rate slow: at x = 1 error is ©(1/a).

@ More generally, for every rational function of the form 1/p,(x),
where py is a degree-d polynomial with real roots:
sup &7 = 1/py(x)| = Q(1/a?).
x€[0,00)
Saff-Schonhage-Varga 1975
For every d, there exists a degree-d polynomial py s.t.,

—X _ 1 —Q(d)
sup ‘e Pd < =) <2 .
x€[0,00) g

Sachdeva-V. 2014

Moreover, the coefficients of py are bounded by d°@) and can be
approximated up to an error of d=©(9) using poly(d) arithmetic
operations, where all intermediate numbers poly(d) bits.

Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an SDD A > 0, a vector v with |lv[[=1 and J, we compute
a vector u s.t. |lexp(—A)v — u|| < 4, in time O (mlog|A|l log1/s).

Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an SDD A > 0, a vector v with |lv[[=1 and J, we compute
a vector u s.t. |lexp(—A)v — u|| < 4, in time O (mlog|A|l log1/s).

Corollary [Orecchia-Sachdeva-V. 2012]

v/ Y-approximation for Balanced separator in time 6(m) Spectral
guarantee for approximation, running time independent of ~y

Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an SDD A > 0, a vector v with |lv[[=1 and J, we compute
a vector u s.t. |lexp(—A)v — u|| < 4, in time O (mlog|A|l log1/s).

Corollary [Orecchia-Sachdeva-V. 2012]

v/ Y-approximation for Balanced separator in time 6(m) Spectral
guarantee for approximation, running time independent of ~y

v

SDD Solvers

Given Lx = b, L is SDD, and € > 0, obtain~a vector u s.t.,
lu—L7b||e < e||L7'b||. . Time required O (mlog /<)

v

Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an SDD A > 0, a vector v with |lv[[=1 and J, we compute
a vector u s.t. |lexp(—A)v — u|| < 4, in time O (mlog|A|l log1/s).

Corollary [Orecchia-Sachdeva-V. 2012]

v/ Y-approximation for Balanced separator in time 6(m) Spectral
guarantee for approximation, running time independent of ~y

v

SDD Solvers

Given Lx = b, L is SDD, and £ > 0, obtain a vector u s.t.,
lu—L7b||e < e||L7'b||. . Time required O (mlog /<)

v

Are Laplacian solvers necessary for the matrix exponential?)

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For €,8 € (0,1], there exist poly(log(1/z6)) numbers 0 < w;, t; s.t.
for all symm. el < A=/, (1-86)A <Y wje 54 X (1+)AL

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For €,8 € (0,1], there exist poly(log(1/z6)) numbers 0 < w;, t; s.t.
for all symm. el < A=/, (1-86)A <Y wje 54 X (1+)AL

@ Weights w; are O(poly(1/se)), we lose only a polynomial factor in
the approximation error.

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For €,8 € (0,1], there exist poly(log(1/z6)) numbers 0 < w;, t; s.t.
for all symm. el < A=/, (1-86)A <Y wje 54 X (1+)AL

@ Weights w; are O(poly(1/se)), we lose only a polynomial factor in
the approximation error.

@ For applications polylogarithmic dependence on both /s and the
condition number of A (/e in this case).

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For €,8 € (0,1], there exist poly(log(1/z6)) numbers 0 < w;, t; s.t.
for all symm. el < A=/, (1-86)A <Y wje 54 X (1+)AL

@ Weights w; are O(poly(1/se)), we lose only a polynomial factor in
the approximation error.

@ For applications polylogarithmic dependence on both /s and the
condition number of A (/e in this case).

@ Discretizing x ! = fooo et dt naively needs poly(1/(=5)) terms.

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For €,8 € (0,1], there exist poly(log(1/z6)) numbers 0 < w;, t; s.t.
for all symm. el < A=/, (1-86)A <Y wje 54 X (1+)AL

@ Weights w; are O(poly(1/se)), we lose only a polynomial factor in
the approximation error.

@ For applications polylogarithmic dependence on both /s and the
condition number of A (/e in this case).

@ Discretizing x ! = fooo et dt naively needs poly(1/(=5)) terms.

@ Substituting t = ¥ in the above integral obtains the identity
x~l= [e7xtydy.

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For €,8 € (0,1], there exist poly(log(1/z6)) numbers 0 < w;, t; s.t.
for all symm. el < A=/, (1-86)A <Y wje 54 X (1+)AL

Weights w; are O(poly(/s¢)), we lose only a polynomial factor in
the approximation error.

@ For applications polylogarithmic dependence on both /s and the
condition number of A (/e in this case).

@ Discretizing x ! = fooo et dt naively needs poly(1/(=5)) terms.

@ Substituting t = ¥ in the above integral obtains the identity
x~l= [e7xtydy.

@ Discretizing this integral, we bound the error using the
Euler-Maclaurin formula, Riemann zeta fn.; global error analysis!

A Heuristic for solving PSD Systems?

e Goal: compute A~y for A psd.

A Heuristic for solving PSD Systems?

e Goal: compute A~y for A psd.
o Write A= A1+ -+ A.

A Heuristic for solving PSD Systems?

e Goal: compute A~y for A psd.
o Write A= A1+ -+ A.

@ Hence, e tA = e~ t(Art+AL),

A Heuristic for solving PSD Systems?

e Goal: compute A~y for A psd.
o Write A= A1+ -+ A.
@ Hence, e tA = e~ t(Art+AL),

@ Suppose magically:
Q kis small.

A Heuristic for solving PSD Systems?

e Goal: compute A~y for A psd.
o Write A= A1+ -+ A.

@ Hence, e tA = e~ t(Art+AL),

@ Suppose magically:

Q kis small.

@ Computing e ™

iv easier for all i.

A Heuristic for solving PSD Systems?

e Goal: compute A~y for A psd.
o Write A= A1+ -+ A.

@ Hence, e tA = e~ t(Art+AL),

@ Suppose magically:

Q kis small.

@ Computing e " v easier for all /.
o e tArt+A) g o= tAL ... g~ AL

tA

A Heuristic for solving PSD Systems?

e Goal: compute A~y for A psd.
o Write A= A1+ -+ A.

@ Hence, e tA = e~ t(Art+AL),

@ Suppose magically:

Q kis small.

@ Computing e " v easier for all /.
o e tArt+A) g o= tAL ... g~ AL

tA

o Then A~lu~ 2wl e~ %Ay (from previous slide).

A Heuristic for solving PSD Systems?

e Goal: compute A~y for A psd.
o Write A= A1+ -+ A.

@ Hence, e tA = e~ t(Art+AL),

@ Suppose magically:

Q kis small.
@ Computing e v easier for all i.
o e tArt+A) g o= tAL ... g~ AL

o Then A~lu~ 2wl e~ %Ay (from previous slide).

For large enough p, e(Bit+Bi) ~ (ep1 e

Conclusion

@ Uniform approx. the right notion for algorithmic applications.

@ Taylor series often not the best.

Conclusion

@ Uniform approx. the right notion for algorithmic applications.
@ Taylor series often not the best.

e Often reduce computations of f(A)v to a small number of
sparse matrix-vector computations.

o Mere existence of good approximation suffices (see V. 2013).

Conclusion

@ Uniform approx. the right notion for algorithmic applications.

Taylor series often not the best.

Often reduce computations of f(A)v to a small number of
sparse matrix-vector computations.

o Mere existence of good approximation suffices (see V. 2013).

Rational approx. can benefit from the ability to solve Lx = b.

@ Much left to be explained in the fascinating world of rational
approximations.

Conclusion

@ Uniform approx. the right notion for algorithmic applications.
@ Taylor series often not the best.

o Often reduce computations of f(A)v to a small number of
sparse matrix-vector computations.

o Mere existence of good approximation suffices (see V. 2013).

@ Rational approx. can benefit from the ability to solve Lx = b.

@ Much left to be explained in the fascinating world of rational
approximations.

@ Challenge problem: Can we compute a §-approximation to
W=v in time O(m logs - log1/5)? (W is the random walk
matrix of an undirected graph.)

Conclusion

@ Uniform approx. the right notion for algorithmic applications.
@ Taylor series often not the best.

o Often reduce computations of f(A)v to a small number of
sparse matrix-vector computations.

o Mere existence of good approximation suffices (see V. 2013).

@ Rational approx. can benefit from the ability to solve Lx = b.

@ Much left to be explained in the fascinating world of rational
approximations.

@ Challenge problem: Can we compute a §-approximation to
W=v in time O(m logs - log1/5)? (W is the random walk
matrix of an undirected graph.)

@ Beyond Lx = b?

Conclusion

@ Uniform approx. the right notion for algorithmic applications.
@ Taylor series often not the best.

o Often reduce computations of f(A)v to a small number of
sparse matrix-vector computations.

o Mere existence of good approximation suffices (see V. 2013).

@ Rational approx. can benefit from the ability to solve Lx = b.

@ Much left to be explained in the fascinating world of rational
approximations.

@ Challenge problem: Can we compute a §-approximation to
W=v in time O(m logs - log1/5)? (W is the random walk
matrix of an undirected graph.)

@ Beyond Lx = b?

Thanks for your attention! J

