Faster (Spectral) Algorithms via Approximation Theory

Nisheeth K. Vishnoi EPFL

Based on a recent monograph with Sushant Sachdeva (Yale) Simons Institute, Dec. 3, 2014

Many algorithms today rely on our ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^{s} v, A^{-1} v, \exp (-A) v, \ldots$
- or top few eigenvalues and eigenvectors.

Many algorithms today rely on our ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^{s} v, A^{-1} v, \exp (-A) v, \ldots$
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a small number of those of the form $B u$ where B is a matrix closely related to A (often A itself) and u is some vector.

The Goal

Many algorithms today rely on our ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^{s} v, A^{-1} v, \exp (-A) v, \ldots$
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a small number of those of the form $B u$ where B is a matrix closely related to A (often A itself) and u is some vector.

- A key feature of these algorithms is that if the matrix-vector product for A can be computed quickly, e.g., when A is sparse, then Bu can also be computed in essentially the same time.

The Goal

Many algorithms today rely on our ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^{s} v, A^{-1} v, \exp (-A) v, \ldots$
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a small number of those of the form $B u$ where B is a matrix closely related to A (often A itself) and u is some vector.

- A key feature of these algorithms is that if the matrix-vector product for A can be computed quickly, e.g., when A is sparse, then Bu can also be computed in essentially the same time.

The classical area in analysis of approximation theory provides the right framework to study these questions.

Approximation Theory

Approximation Theory

Approximation Theory

Approximation Theory

Approximation Theory

How well can functions be approximated by simpler ones?

Approximation Theory

How well can functions be approximated by simpler ones？
Uniform（Chebyshev）Approximation by Polynomials／Rationals
For $f: \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I} ，what is the closest a degree d polynomial／rational function can remain to $f(x)$ throughout \mathcal{I}

Approximation Theory

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f: \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I}, what is the closest a degree d polynomial/rational function can remain to $f(x)$ throughout \mathcal{I}

$$
\begin{gathered}
\inf _{p \in \Sigma_{d}} \sup _{x \in \mathcal{I}}|f(x)-p(x)| . \\
\inf _{p, q \in \Sigma_{d}} \sup _{x \in \mathcal{I}}|f(x)-p(x) / q(x)| .
\end{gathered}
$$

Σ_{d} : set of all polynomials of degree at most d.

Approximation Theory

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f: \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I}, what is the closest a degree d polynomial/rational function can remain to $f(x)$ throughout \mathcal{I}

$$
\begin{gathered}
\inf _{p \in \Sigma_{d}} \sup _{x \in \mathcal{I}}|f(x)-p(x)| \\
\inf _{p, q \in \Sigma_{d}} \sup _{d}|f(x)-p(x) / q(x)| .
\end{gathered}
$$

Σ_{d} : set of all polynomials of degree at most d.

- 150+ years of fascinating history, deep results and many applications.

Approximation Theory

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f: \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I}, what is the closest a degree d polynomial/rational function can remain to $f(x)$ throughout \mathcal{I}

$$
\begin{gathered}
\inf _{p \in \Sigma_{d}} \sup _{x \in \mathcal{I}}|f(x)-p(x)| \\
\inf _{p, q \in \Sigma_{d}} \sup _{d}|f(x)-p(x) / q(x)| .
\end{gathered}
$$

Σ_{d} : set of all polynomials of degree at most d.

- 150+ years of fascinating history, deep results and many applications.
- Interested in fundamental functions such as x^{5}, e^{-x} and $1 / x$ over finite and infinite intervals such as $[-1,1],[0, n],[0, \infty)$.

Approximation Theory

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f: \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I}, what is the closest a degree d polynomial/rational function can remain to $f(x)$ throughout \mathcal{I}

$$
\begin{gathered}
\inf _{p \in \Sigma_{d}} \sup _{x \in \mathcal{I}}|f(x)-p(x)| \\
\inf _{p, q \in \Sigma_{d}} \sup _{x \in \mathcal{I}}|f(x)-p(x) / q(x)| .
\end{gathered}
$$

Σ_{d} : set of all polynomials of degree at most d.

- 150+ years of fascinating history, deep results and many applications.
- Interested in fundamental functions such as x^{5}, e^{-x} and $1 / x$ over finite and infinite intervals such as $[-1,1],[0, n],[0, \infty)$.
- For our applications good enough approximations suffice.

Algorithms/Numerical Linear Alg.- $f(A) v$, Eigenvalues,

Algorithms/Numerical Linear Alg.- $f(A) v$, Eigenvalues,

A simple example:
Compute $A^{s} v$ where A is symmetric with eigenvalues in $[-1,1]$, v is a vector and s is a large positive integer.

Algorithms/Numerical Linear Alg.- $f(A) v$, Eigenvalues,

A simple example:

Compute $A^{s} v$ where A is symmetric with eigenvalues in $[-1,1]$, v is a vector and s is a large positive integer.

- The straightforward way to compute $A^{s} v$ takes time $O(m s)$ where m is the number of non-zero entries in A.

Algorithms/Numerical Linear Alg.- $f(A) v$, Eigenvalues,

A simple example:

Compute $A^{s} v$ where A is symmetric with eigenvalues in $[-1,1]$, v is a vector and s is a large positive integer.

- The straightforward way to compute $A^{s} v$ takes time $O(m s)$ where m is the number of non-zero entries in A.
- Suppose x^{s} can be δ-approximated over the interval $[-1,1]$ by a degree d polynomial $p_{s, d}(x)=\sum_{i=0}^{d} a_{i} x^{i}$.

Algorithms/Numerical Linear Alg.- $f(A) v$, Eigenvalues,

A simple example:

Compute $A^{s} v$ where A is symmetric with eigenvalues in $[-1,1]$, v is a vector and s is a large positive integer.

- The straightforward way to compute $A^{s} v$ takes time $O(m s)$ where m is the number of non-zero entries in A.
- Suppose x^{s} can be δ-approximated over the interval $[-1,1]$ by a degree d polynomial $p_{s, d}(x)=\sum_{i=0}^{d} a_{i} x^{i}$.
- Candidate approximation to $A^{s} v: \sum_{i=0}^{d} a_{i} A^{i} v$.

Algorithms/Numerical Linear Alg.- $f(A) v$, Eigenvalues,

A simple example:

Compute $A^{s} v$ where A is symmetric with eigenvalues in $[-1,1]$, v is a vector and s is a large positive integer.

- The straightforward way to compute $A^{s} v$ takes time $O(m s)$ where m is the number of non-zero entries in A.
- Suppose x^{s} can be δ-approximated over the interval $[-1,1]$ by a degree d polynomial $p_{s, d}(x)=\sum_{i=0}^{d} a_{i} x^{i}$.
- Candidate approximation to $A^{s} v: \sum_{i=0}^{d} a_{i} A^{i} v$.
- The time to compute $\sum_{i=0}^{d} a_{i} A^{i} v$ is $O(m d)$.

Algorithms/Numerical Linear Alg.- $f(A) v$, Eigenvalues,

A simple example:

Compute $A^{s} v$ where A is symmetric with eigenvalues in $[-1,1]$, v is a vector and s is a large positive integer.

- The straightforward way to compute $A^{s} v$ takes time $O(m s)$ where m is the number of non-zero entries in A.
- Suppose x^{s} can be δ-approximated over the interval $[-1,1]$ by a degree d polynomial $p_{s, d}(x)=\sum_{i=0}^{d} a_{i} x^{i}$.
- Candidate approximation to $A^{s} v: \sum_{i=0}^{d} a_{i} A^{i} v$.
- The time to compute $\sum_{i=0}^{d} a_{i} A^{i} v$ is $O(m d)$.
- $\left\|\sum_{i=0}^{d} a_{i} A^{i} v-A^{s} v\right\| \leq \delta\|v\|$ since
- all the eigenvalues of A lie in $[-1,1]$, and
- $p_{s, d}$ is δ-close to x^{5} in the entire interval $[-1,1]$.

Algorithms/Numerical Linear Alg.-

A simple example:

Compute $A^{s} v$ where A is symmetric with eigenvalues in $[-1,1]$, v is a vector and s is a large positive integer.

- The straightforward way to compute $A^{s} v$ takes time $O(m s)$ where m is the number of non-zero entries in A.
- Suppose x^{s} can be δ-approximated over the interval $[-1,1]$ by a degree d polynomial $p_{s, d}(x)=\sum_{i=0}^{d} a_{i} x^{i}$.
- Candidate approximation to $A^{s} v: \sum_{i=0}^{d} a_{i} A^{i} v$.
- The time to compute $\sum_{i=0}^{d} a_{i} A^{i} v$ is $O(m d)$.
- $\left\|\sum_{i=0}^{d} a_{i} A^{i} v-A^{s} v\right\| \leq \delta\|v\|$ since
- all the eigenvalues of A lie in $[-1,1]$, and
- $p_{s, d}$ is δ-close to x^{5} in the entire interval $[-1,1]$.

Example: Approximating the Monomial

For any s, for any $\delta>0$, and $d \sim \sqrt{s \log (1 / \delta)}$, there is a polynomial $p_{s, d}$ s.t. $\sup \left|p_{s, d}(x)-x^{s}\right| \leq \delta$. $x \in[-1,1]$

Example: Approximating the Monomial

For any s, for any $\delta>0$, and $d \sim \sqrt{s \log (1 / \delta)}$, there is a polynomial $p_{s, d}$ s.t. sup $\left|p_{s, d}(x)-x^{s}\right| \leq \delta$. $x \in[-1,1]$

- Simulating Random Walks: If A is random walk matrix of a graph, we can simulate s steps of a random walk in $m \sqrt{s}$ time.

Example: Approximating the Monomial

For any s, for any $\delta>0$, and $d \sim \sqrt{s \log (1 / \delta)}$, there is a polynomial $p_{s, d}$ s.t. sup $\left|p_{s, d}(x)-x^{s}\right| \leq \delta$.

$$
x \in[-1,1]
$$

- Simulating Random Walks: If A is random walk matrix of a graph, we can simulate s steps of a random walk in $m \sqrt{s}$ time.
- Conjugate Gradient Method: Given $A x=b$ with eigenvalues of A in $(0,1]$, one can find y s.t. $\left\|y-A^{-1} b\right\|_{A} \leq \delta\left\|A^{-1} b\right\|_{A}$ in time roughly $m \sqrt{\kappa(A) \log 1 / \delta}$.

Example: Approximating the Monomial

For any s, for any $\delta>0$, and $d \sim \sqrt{s \log (1 / \delta)}$, there is a polynomial $p_{s, d}$ s.t. $\sup _{x \in[-1,1]}\left|p_{s, d}(x)-x^{s}\right| \leq \delta$.

$$
x \in[-1,1]
$$

- Simulating Random Walks: If A is random walk matrix of a graph, we can simulate s steps of a random walk in $m \sqrt{s}$ time.
- Conjugate Gradient Method: Given $A x=b$ with eigenvalues of A in $(0,1]$, one can find y s.t. $\left\|y-A^{-1} b\right\|_{A} \leq \delta\left\|A^{-1} b\right\|_{A}$ in time roughly $m \sqrt{\kappa(A) \log 1 / \delta}$.
- Quadratic speedup over the Power Method: Given A, in time $\sim m / \sqrt{\delta}$ can compute a value $\mu \in\left[(1-\delta) \lambda_{1}(A), \lambda_{1}(A)\right]$.

Chebyshev Polynomials

The Chebyshev polynomial of deg. d is defined recursively to be:

$$
T_{d}(x) \stackrel{\text { def }}{=} 2 x T_{d-1}(x)-T_{d-2}(x)
$$

for $d \geq 2$ with $T_{0}(x) \stackrel{\text { def }}{=} 1, T_{1}(x) \stackrel{\text { def }}{=} x$.

Chebyshev Polynomials

The Chebyshev polynomial of deg. d is defined recursively to be:

$$
T_{d}(x) \stackrel{\text { def }}{=} 2 x T_{d-1}(x)-T_{d-2}(x)
$$

for $d \geq 2$ with $T_{0}(x) \stackrel{\text { def }}{=} 1, T_{1}(x) \stackrel{\text { def }}{=} x$.

Averaging Property

$$
x T_{d}(x)=\frac{T_{d+1}(x)+T_{d-1}(x)}{2} .
$$

Chebyshev Polynomials

The Chebyshev polynomial of deg. d is defined recursively to be:

$$
T_{d}(x) \stackrel{\text { def }}{=} 2 x T_{d-1}(x)-T_{d-2}(x)
$$

for $d \geq 2$ with $T_{0}(x) \stackrel{\text { def }}{=} 1, T_{1}(x) \stackrel{\text { def }}{=} x$.

Averaging Property

$$
x T_{d}(x)=\frac{T_{d+1}(x)+T_{d-1}(x)}{2} .
$$

Boundedness Property
For any θ, and any integer $d, T_{d}(\cos \theta)=\cos (d \theta)$.

Chebyshev Polynomials

The Chebyshev polynomial of deg. d is defined recursively to be:

$$
T_{d}(x) \stackrel{\text { def }}{=} 2 x T_{d-1}(x)-T_{d-2}(x)
$$

for $d \geq 2$ with $T_{0}(x) \stackrel{\text { def }}{=} 1, T_{1}(x) \stackrel{\text { def }}{=} x$.

Averaging Property

$$
x T_{d}(x)=\frac{T_{d+1}(x)+T_{d-1}(x)}{2} .
$$

Boundedness Property
For any θ, and any integer $d, T_{d}(\cos \theta)=\cos (d \theta)$.
Thus, $\left|T_{d}(x)\right| \leq 1$ for all $x \in[-1,1]$.

Back to Approximating Monomials

$$
D_{s} \stackrel{\text { def }}{=} \sum_{i=1}^{s} Y_{i} \text { where } Y_{1}, \ldots, Y_{s} \text { i.i.d. } \pm 1 \text { w.p. } 1 / 2\left(D_{0} \stackrel{\text { def }}{=} 0\right) .
$$

Back to Approximating Monomials

$$
\begin{gathered}
D_{s} \stackrel{\text { def }}{=} \sum_{i=1}^{s} Y_{i} \text { where } Y_{1}, \ldots, Y_{s} \text { i.i.d. } \pm 1 \text { w.p. } 1 / 2\left(D_{0} \stackrel{\text { def }}{=} 0\right) . \\
\text { Thus, } \operatorname{Pr}\left[\left|D_{s}\right| \geq \sqrt{2 s \log (2 / \delta)}\right] \leq \delta .
\end{gathered}
$$

Back to Approximating Monomials

$$
\begin{gathered}
D_{s} \stackrel{\text { def }}{=} \sum_{i=1}^{s} Y_{i} \text { where } Y_{1}, \ldots, Y_{s} \text { i.i.d. } \pm 1 \text { w.p. } 1 / 2\left(D_{0} \stackrel{\text { def }}{=} 0\right) . \\
\text { Thus, } \operatorname{Pr}\left[\left|D_{s}\right| \geq \sqrt{2 s \log (2 / \delta)}\right] \leq \delta .
\end{gathered}
$$

Key Claim: $\underset{Y_{1}, \ldots, Y_{s}}{\mathbf{E}}\left[T_{D_{s}}(x)\right]=x^{s}$.

Back to Approximating Monomials

$$
\begin{gathered}
D_{s} \stackrel{\text { def }}{=} \sum_{i=1}^{s} Y_{i} \text { where } Y_{1}, \ldots, Y_{s} \text { i.i.d. } \pm 1 \text { w.p. } 1 / 2\left(D_{0} \stackrel{\text { def }}{=}\right) . \\
\text { Thus, } \operatorname{Pr}\left[\left|D_{s}\right| \geq \sqrt{2 s \log (2 / s)]} \leq \delta .\right.
\end{gathered}
$$

Key Claim: $\underset{Y_{1}, \ldots, Y_{s}}{\mathbf{E}}\left[T_{D_{s}}(x)\right]=x^{s}$.

$$
\begin{aligned}
x^{s+1} & =x \cdot{ }_{Y_{1}, \ldots, Y_{s}}^{\mathbf{E}_{D_{s}}} T_{D_{1}}(x)={ }_{Y_{1}, \ldots, Y_{s}}^{\mathbf{E}}\left[x \cdot T_{D_{s}}(x)\right] \\
& \left.={ }_{Y_{1}, \ldots, Y_{s}} \mathbf{E}^{[1 / 2}\left[T_{D_{s}+1}(x)+T_{D_{s}-1}(x)\right)\right]={ }_{Y_{1}, \ldots, r_{s+1}} \mathbf{E}_{Y_{s}}\left[T_{D_{s+1}}(x)\right] .
\end{aligned}
$$

Back to Approximating Monomials

$$
\begin{gathered}
D_{s} \stackrel{\text { def }}{=} \sum_{i=1}^{s} Y_{i} \text { where } Y_{1}, \ldots, Y_{s} \text { i.i.d. } \pm 1 \text { w.p. } 1 / 2\left(D_{0} \stackrel{\text { def }}{=}\right) . \\
\text { Thus, } \operatorname{Pr}\left[\left|D_{s}\right| \geq \sqrt{2 s \log (2 / \delta)}\right] \leq \delta .
\end{gathered}
$$

Key Claim: $\underset{Y_{1}, \ldots, Y_{s}}{\mathbf{E}_{s}}\left[T_{D_{s}}(x)\right]=x^{s}$.

$$
\begin{aligned}
x^{s+1} & =x \cdot{ }_{\gamma_{1}, \ldots, r_{s}} \mathbf{E}_{D_{s}}(x)={ }_{\gamma_{1}, \ldots r_{s}}\left[x \cdot T_{D_{s}}(x)\right] \\
& \left.={ }_{\gamma_{1}, \ldots, r_{s}}{ }^{1} / 2\left(T_{D_{s}+1}(x)+T_{D_{s}-1}(x)\right)\right]={ }_{\gamma_{1}, \ldots, r_{\gamma_{s+1}}}\left[T_{D_{s+1}}(x)\right] .
\end{aligned}
$$

Our Approximation to x^{5} :

$$
p_{s, d}(x) \stackrel{\text { def }}{=}{ }_{Y_{1}, \ldots, Y_{s}}\left[T_{D_{s}}(x) \cdot 1_{\left|D_{s}\right| \leq d}\right] \text { for } d=\sqrt{2 s \log (2 / \delta)} .
$$

Back to Approximating Monomials

$D_{s} \stackrel{\text { def }}{=} \sum_{i=1}^{s} Y_{i}$ where Y_{1}, \ldots, Y_{s} i.i.d. ± 1 w.p. $1 / 2\left(D_{0} \stackrel{\text { def }}{=} 0\right)$. Thus, $\operatorname{Pr}\left[\left|D_{s}\right| \geq \sqrt{2 s \log (2 / \delta)}\right] \leq \delta$.

Key Claim: $\underset{Y_{1}, \ldots, Y_{s}}{\mathbf{E}}\left[T_{D_{s}}(x)\right]=x^{s}$.

$$
\begin{aligned}
x^{s+1} & =x \cdot{ }_{Y_{1}, \ldots, Y_{s}}^{\mathbf{E}_{D_{s}}} T_{D_{1}}(x)={ }_{Y_{1}, \ldots, Y_{s}}^{\mathbf{E}}\left[x \cdot T_{D_{s}}(x)\right] \\
& ={ }_{Y_{1}, \ldots, Y_{s}}^{\mathbf{E}}{ }_{Y_{s} / 2}\left[1 / 2\left(T_{D_{s}+1}(x)+T_{D_{s}-1}(x)\right)\right]={ }_{Y_{1}, \ldots, Y_{s+1}} \mathbf{E}_{Y_{s}}\left[T_{D_{s+1}}(x)\right] .
\end{aligned}
$$

Our Approximation to x^{s} :

$$
p_{s, d}(x) \stackrel{\text { def }}{=} \underset{Y_{1}, \ldots, Y_{s}}{\mathbf{E}}\left[T_{D_{s}}(x) \cdot 1_{\left|D_{s}\right| \leq d}\right] \text { for } d=\sqrt{2 s \log (2 / \delta)} .
$$

$$
\begin{aligned}
\sup _{x \in[-1,1]}\left|p_{s, d}(x)-x^{s}\right| & =\sup _{x \in[-1,1]}\left|Y_{Y_{1}, \ldots, Y_{s}}^{\mathbf{E}}\left[T_{D_{s}}(x) \cdot 1_{\left|D_{s}\right|>d}\right]\right| \\
& \leq{\underset{Y_{1}, \ldots, Y_{s}}{\mathbf{E}}\left[1_{\left|D_{s}\right|>d} \cdot \sup _{x \in[-1,1]}\left|T_{D_{s}}(x)\right|\right] \leq \mathbf{Y}_{Y_{1}, \ldots, Y_{s}}\left[1_{\left|D_{s}\right|>d}\right] \leq \delta}^{\mathbf{E}} .
\end{aligned}
$$

A General Recipe?

Suppose $f(x)$ is δ-approximated by a Taylor polynomial $\sum_{s=0}^{k} c_{s} x^{s}$, then one may instead try the approx. (with suitably shifted $p_{s, d}$)

$$
\sum_{s=0}^{k} c_{s} p_{s, \sqrt{s \log 1 / \delta}}(x)
$$

A General Recipe?

Suppose $f(x)$ is δ-approximated by a Taylor polynomial $\sum_{s=0}^{k} c_{s} x^{s}$, then one may instead try the approx. (with suitably shifted $p_{s, d}$)

$$
\sum_{s=0}^{k} c_{s} p_{s, \sqrt{s \log 1 / \delta}}(x)
$$

Approximating the Exponential

For every $b>0$, and δ, there is a polynomial $r_{b, \delta}$ s.t.
$\sup _{x \in[0, b]}\left|e^{-x}-r_{b, \delta}(x)\right| \leq \delta$; degree $\sim \sqrt{b \log 1 / \delta}$. (Taylor $-\Omega(b)$.)

A General Recipe?

Suppose $f(x)$ is δ-approximated by a Taylor polynomial $\sum_{s=0}^{k} c_{s} x^{s}$, then one may instead try the approx. (with suitably shifted $p_{s, d}$)

$$
\sum_{s=0}^{k} c_{s} p_{s, \sqrt{s \log 1 / \delta}}(x)
$$

Approximating the Exponential

For every $b>0$, and δ, there is a polynomial $r_{b, \delta}$ s.t.
$\sup _{x \in[0, b]}\left|e^{-x}-r_{b, \delta}(x)\right| \leq \delta$; degree $\sim \sqrt{b \log 1 / \delta}$. (Taylor $-\Omega(b)$.)

- Implies $\tilde{O}(m \sqrt{\|A\| \log 1 / \delta})$ time algorithm to compute a δ-approximation to $e^{-A_{v}}$ for a PSD A. Useful in solving SDPs.

A General Recipe?

Suppose $f(x)$ is δ-approximated by a Taylor polynomial $\sum_{s=0}^{k} c_{s} x^{s}$, then one may instead try the approx. (with suitably shifted $p_{s, d}$)

$$
\sum_{s=0}^{k} c_{s} p_{s, \sqrt{s \log 1 / \delta}}(x)
$$

Approximating the Exponential

For every $b>0$, and δ, there is a polynomial $r_{b, \delta}$ s.t.
$\sup _{x \in[0, b]}\left|e^{-x}-r_{b, \delta}(x)\right| \leq \delta$; degree $\sim \sqrt{b \log 1 / \delta}$. (Taylor $-\Omega(b)$.)

- Implies $\tilde{O}(m \sqrt{\|A\| \log 1 / \delta})$ time algorithm to compute a δ-approximation to $e^{-A_{v}}$ for a PSD A. Useful in solving SDPs.
- When A is a graph Laplacian, implies an optimal spectral algorithm for Balanced Separator that runs in time $\tilde{O}(\mathrm{~m} / \sqrt{\gamma}) .(\gamma$ is the target conductance) [Orecchia-Sachdeva-V. 2012].

A General Recipe?

Suppose $f(x)$ is δ-approximated by a Taylor polynomial $\sum_{s=0}^{k} c_{s} x^{s}$, then one may instead try the approx. (with suitably shifted $p_{s, d}$)

$$
\sum_{s=0}^{k} c_{s} p_{s, \sqrt{s \log 1 / \delta}}(x)
$$

Approximating the Exponential

For every $b>0$, and δ, there is a polynomial $r_{b, \delta}$ s.t.
$\sup _{x \in[0, b]}\left|e^{-x}-r_{b, \delta}(x)\right| \leq \delta$; degree $\sim \sqrt{b \log 1 / \delta}$. (Taylor $-\Omega(b)$.)

- Implies $\tilde{O}(m \sqrt{\|A\| \log 1 / \delta})$ time algorithm to compute a δ-approximation to $e^{-A_{v}}$ for a PSD A. Useful in solving SDPs.
- When A is a graph Laplacian, implies an optimal spectral algorithm for Balanced Separator that runs in time $\tilde{O}(\mathrm{~m} / \sqrt{\gamma}) .(\gamma$ is the target conductance) [Orecchia-Sachdeva-V. 2012].

How far can polynomial approximations take us?

Lower Bounds for Polynomial Approximations

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^{s} on $[-1,1]$ requires degree $\Omega(\sqrt{s})$.
- Polynomials approx. to e^{-x} on $[0, b]$ requires degree $\Omega(\sqrt{b})$.

Lower Bounds for Polynomial Approximations

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^{s} on $[-1,1]$ requires degree $\Omega(\sqrt{s})$.
- Polynomials approx. to e^{-x} on $[0, b]$ requires degree $\Omega(\sqrt{b})$.

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)
Any degree- d polynomial p s.t. $|p(x)| \leq 1$ over $[-1,1]$ must have its derivative $\left|p^{(1)}(x)\right| \leq d^{2}$ for all $x \in[-1,1]$.

Lower Bounds for Polynomial Approximations

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^{s} on $[-1,1]$ requires degree $\Omega(\sqrt{s})$.
- Polynomials approx. to e^{-x} on $[0, b]$ requires degree $\Omega(\sqrt{b})$.

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)
Any degree- d polynomial p s.t. $|p(x)| \leq 1$ over $[-1,1]$ must have its derivative $\left|p^{(1)}(x)\right| \leq d^{2}$ for all $x \in[-1,1]$.

- Chebyshev polynomials are a tight example for this theorem.

Lower Bounds for Polynomial Approximations

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^{s} on $[-1,1]$ requires degree $\Omega(\sqrt{s})$.
- Polynomials approx. to e^{-x} on $[0, b]$ requires degree $\Omega(\sqrt{b})$.

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)
Any degree- d polynomial p s.t. $|p(x)| \leq 1$ over $[-1,1]$ must have its derivative $\left|p^{(1)}(x)\right| \leq d^{2}$ for all $x \in[-1,1]$.

- Chebyshev polynomials are a tight example for this theorem.

Bypass this barrier via rational functions!

Example: Approximating the Exponential

For all integers $d \geq 0$, there is a degree- d polynomial $S_{d}(x)$ s.t. $\sup _{x \in[0, \infty)}\left|e^{-x}-\frac{1}{S_{d}(x)}\right| \leq 2^{-\Omega(d)}$.

Example: Approximating the Exponential

For all integers $d \geq 0$, there is a degree- d polynomial $S_{d}(x)$ s.t. $\sup _{x \in[0, \infty)}\left|e^{-x}-\frac{1}{S_{d}(x)}\right| \leq 2^{-\Omega(d)}$.

$$
S_{d}(x) \stackrel{\text { def }}{=} \sum_{k=0}^{d} \frac{x^{k}}{k!} \text {. (Proof by induction.) }
$$

Example: Approximating the Exponential

For all integers $d \geq 0$, there is a degree- d polynomial $S_{d}(x)$ s.t. $\sup _{x \in[0, \infty)}\left|e^{-x}-\frac{1}{S_{d}(x)}\right| \leq 2^{-\Omega(d)}$.

$$
S_{d}(x) \stackrel{\text { def }}{=} \sum_{k=0}^{d} \frac{x^{k}}{k!} \text {. (Proof by induction.) }
$$

- No dependence on the length of the interval!

Example: Approximating the Exponential

For all integers $d \geq 0$, there is a degree- d polynomial $S_{d}(x)$ s.t. $\sup _{x \in[0, \infty)}\left|e^{-x}-\frac{1}{S_{d}(x)}\right| \leq 2^{-\Omega(d)}$.

$$
S_{d}(x) \stackrel{\text { def }}{=} \sum_{k=0}^{d} \frac{x^{k}}{k!} \text {. (Proof by induction.) }
$$

- No dependence on the length of the interval!
- Hence, for any $\delta>0$, we have a rational function of degree $O(\log 1 / \delta)$ that is a δ-approximation to e^{-x}. For most applications, an error of $\delta=1 /$ poly (n) suffices, so we can choose $d=O(\log n)$.

Example: Approximating the Exponential

For all integers $d \geq 0$, there is a degree- d polynomial $S_{d}(x)$ s.t. $\sup _{x \in[0, \infty)}\left|e^{-x}-\frac{1}{S_{d}(x)}\right| \leq 2^{-\Omega(d)}$.

$$
S_{d}(x) \stackrel{\text { def }}{=} \sum_{k=0}^{d} \frac{x^{k}}{k!} \text {. (Proof by induction.) }
$$

- No dependence on the length of the interval!
- Hence, for any $\delta>0$, we have a rational function of degree $O(\log 1 / \delta)$ that is a δ-approximation to e^{-x}. For most applications, an error of $\delta=1 /$ poly (n) suffices, so we can choose $d=O(\log n)$.
- Thus, $\left(S_{d}(A)\right)^{-1} v \delta$-approximates $e^{-A} v$.

Example: Approximating the Exponential

For all integers $d \geq 0$, there is a degree- d polynomial $S_{d}(x)$ s.t. $\sup _{x \in[0, \infty)}\left|e^{-x}-\frac{1}{S_{d}(x)}\right| \leq 2^{-\Omega(d)}$.

$$
S_{d}(x) \stackrel{\text { def }}{=} \sum_{k=0}^{d} \frac{x^{k}}{k!} \text {. (Proof by induction.) }
$$

- No dependence on the length of the interval!
- Hence, for any $\delta>0$, we have a rational function of degree $O(\log 1 / \delta)$ that is a δ-approximation to e^{-x}. For most applications, an error of $\delta=1 /$ poly (n) suffices, so we can choose $d=O(\log n)$.
- Thus, $\left(S_{d}(A)\right)^{-1} v \delta$-approximates $e^{-A} v$.

How do we compute $\left(S_{d}(A)\right)^{-1} v$?

Why any Rational Approximation is not Enough?

Factor $S_{d}(x)=\alpha_{0} \prod_{i=1}^{d}\left(x-\beta_{i}\right)$ and output $\alpha_{0} \prod_{i=1}^{d}\left(A-\beta_{i} /\right)^{-1} v$.

Why any Rational Approximation is not Enough?

Factor $S_{d}(x)=\alpha_{0} \prod_{i=1}^{d}\left(x-\beta_{i}\right)$ and output $\alpha_{0} \prod_{i=1}^{d}\left(A-\beta_{i} I\right)^{-1} v$.

- Since d is $O(\log n)$, sufficient to compute $\left(A-\beta_{i} I\right)^{-1} u$.

Why any Rational Approximation is not Enough?

Factor $S_{d}(x)=\alpha_{0} \prod_{i=1}^{d}\left(x-\beta_{i}\right)$ and output $\alpha_{0} \prod_{i=1}^{d}\left(A-\beta_{i} I\right)^{-1} v$.

- Since d is $O(\log n)$, sufficient to compute $\left(A-\beta_{i} I\right)^{-1} u$.
- When A is Laplacian, and $\beta_{i} \leq 0$, then $A-\beta_{i} l$ is SDD!

Why any Rational Approximation is not Enough?

Factor $S_{d}(x)=\alpha_{0} \prod_{i=1}^{d}\left(x-\beta_{i}\right)$ and output $\alpha_{0} \prod_{i=1}^{d}\left(A-\beta_{i} I\right)^{-1} v$.

- Since d is $O(\log n)$, sufficient to compute $\left(A-\beta_{i} I\right)^{-1} u$.
- When A is Laplacian, and $\beta_{i} \leq 0$, then $A-\beta_{i} l$ is SDD!
- β_{i} s could be complex:
$S_{d}(x)$ has exactly one real zero $x_{d} \in[-d,-1]$ if d is odd, and no real zeros if d is even. Also, zeros of $S_{d}(x)$ grow linearly in magnitude with d.

Why any Rational Approximation is not Enough?

Factor $S_{d}(x)=\alpha_{0} \prod_{i=1}^{d}\left(x-\beta_{i}\right)$ and output $\alpha_{0} \prod_{i=1}^{d}\left(A-\beta_{i} I\right)^{-1} v$.

- Since d is $O(\log n)$, sufficient to compute $\left(A-\beta_{i} I\right)^{-1} u$.
- When A is Laplacian, and $\beta_{i} \leq 0$, then $A-\beta_{i} l$ is SDD!
- β_{i} s could be complex:
$S_{d}(x)$ has exactly one real zero $x_{d} \in[-d,-1]$ if d is odd, and no real zeros if d is even. Also, zeros of $S_{d}(x)$ grow linearly in magnitude with d.
- However, since S_{d} has real coefficients, its complex roots appear as conjugates. Hence, the task reduces to computing $\left(A^{2}-\left(\beta_{i}+\bar{\beta}_{i}\right) A+\left|\beta_{i}\right|^{2} I\right)^{-1} u$.

Why any Rational Approximation is not Enough?

Factor $S_{d}(x)=\alpha_{0} \prod_{i=1}^{d}\left(x-\beta_{i}\right)$ and output $\alpha_{0} \prod_{i=1}^{d}\left(A-\beta_{i} I\right)^{-1} v$.

- Since d is $O(\log n)$, sufficient to compute $\left(A-\beta_{i} I\right)^{-1} u$.
- When A is Laplacian, and $\beta_{i} \leq 0$, then $A-\beta_{i} l$ is SDD!
- β_{i} s could be complex:
$S_{d}(x)$ has exactly one real zero $x_{d} \in[-d,-1]$ if d is odd, and no real zeros if d is even. Also, zeros of $S_{d}(x)$ grow linearly in magnitude with d.
- However, since S_{d} has real coefficients, its complex roots appear as conjugates. Hence, the task reduces to computing $\left(A^{2}-\left(\beta_{i}+\bar{\beta}_{i}\right) A+\left|\beta_{i}\right|^{2} I\right)^{-1} u$.
- The matrix $\left(A^{2}-\left(\beta_{i}+\bar{\beta}_{i}\right) A+\left|\beta_{i}\right|^{2} I\right)$ is PSD but the condition number can be comparable to that of A.

Why any Rational Approximation is not Enough?

Factor $S_{d}(x)=\alpha_{0} \prod_{i=1}^{d}\left(x-\beta_{i}\right)$ and output $\alpha_{0} \prod_{i=1}^{d}\left(A-\beta_{i} I\right)^{-1} v$.

- Since d is $O(\log n)$, sufficient to compute $\left(A-\beta_{i} I\right)^{-1} u$.
- When A is Laplacian, and $\beta_{i} \leq 0$, then $A-\beta_{i} l$ is SDD!
- β_{i} could be complex:
$S_{d}(x)$ has exactly one real zero $x_{d} \in[-d,-1]$ if d is odd, and no real zeros if d is even. Also, zeros of $S_{d}(x)$ grow linearly in magnitude with d.
- However, since S_{d} has real coefficients, its complex roots appear as conjugates. Hence, the task reduces to computing $\left(A^{2}-\left(\beta_{i}+\bar{\beta}_{i}\right) A+\left|\beta_{i}\right|^{2} I\right)^{-1} u$.
- The matrix $\left(A^{2}-\left(\beta_{i}+\bar{\beta}_{i}\right) A+\left|\beta_{i}\right|^{2} I\right)$ is PSD but the condition number can be comparable to that of A.

Desire: A rational approximation with negative poles.

Rational Approximation with Negative Poles

- How about $(1+x / d)^{-d}$? Converges to e^{-x} unif. over $[0, \infty)$.

Rational Approximation with Negative Poles

- How about $(1+x / d)^{-d}$? Converges to e^{-x} unif. over $[0, \infty)$.
- Convergence rate slow: at $x=1$ error is $\Theta(1 / d)$.

Rational Approximation with Negative Poles

- How about $(1+x / d)^{-d}$? Converges to e^{-x} unif. over $[0, \infty)$.
- Convergence rate slow: at $x=1$ error is $\Theta(1 / d)$.
- More generally, for every rational function of the form $1 / p_{d}(x)$, where p_{d} is a degree- d polynomial with real roots:

$$
\sup _{x \in[0, \infty)}\left|e^{-x}-1 / p_{d}(x)\right|=\Omega\left(1 / d^{2}\right)
$$

Rational Approximation with Negative Poles

- How about $(1+x / d)^{-d}$? Converges to e^{-x} unif. over $[0, \infty)$.
- Convergence rate slow: at $x=1$ error is $\Theta(1 / d)$.
- More generally, for every rational function of the form $1 / p_{d}(x)$, where p_{d} is a degree- d polynomial with real roots:

$$
\sup _{x \in[0, \infty)}\left|e^{-x}-1 / p_{d}(x)\right|=\Omega\left(1 / d^{2}\right)
$$

Saff-Schönhage-Varga 1975

For every d, there exists a degree- d polynomial p_{d} s.t.,
$\sup _{x \in[0, \infty)}\left|e^{-x}-p_{d}\left(\frac{1}{1+x / d}\right)\right| \leq 2^{-\Omega(d)}$.

Rational Approximation with Negative Poles

- How about $(1+x / d)^{-d}$? Converges to e^{-x} unif. over $[0, \infty)$.
- Convergence rate slow: at $x=1$ error is $\Theta(1 / d)$.
- More generally, for every rational function of the form $1 / p_{d}(x)$, where p_{d} is a degree- d polynomial with real roots:

$$
\sup _{x \in[0, \infty)}\left|e^{-x}-1 / p_{d}(x)\right|=\Omega\left(1 / d^{2}\right)
$$

Saff-Schönhage-Varga 1975

For every d, there exists a degree- d polynomial p_{d} s.t.,

$$
\sup _{x \in[0, \infty)}\left|e^{-x}-p_{d}\left(\frac{1}{1+x / d}\right)\right| \leq 2^{-\Omega(d)}
$$

Sachdeva-V. 2014

Moreover, the coefficients of p_{d} are bounded by $d^{O(d)}$, and can be approximated up to an error of $d^{-\Theta(d)}$ using poly (d) arithmetic operations, where all intermediate numbers poly (d) bits.

Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014
Given an SDD $A \succeq 0$, a vector v with $\|v\|=1$ and δ, we compute a vector u s.t. $\|\exp (-A) v-u\| \leq \delta$, in time $\tilde{O}(m \log \|A\| \log 1 / \delta)$.

Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an SDD $A \succeq 0$, a vector v with $\|v\|=1$ and δ, we compute a vector u s.t. $\|\exp (-A) v-u\| \leq \delta$, in time $\tilde{O}(m \log \|A\| \log 1 / \delta)$.

Corollary [Orecchia-Sachdeva-V. 2012]

$\sqrt{\gamma}$-approximation for Balanced separator in time $\tilde{O}(m)$. Spectral guarantee for approximation, running time independent of γ

Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an SDD $A \succeq 0$, a vector v with $\|v\|=1$ and δ, we compute a vector u s.t. $\|\exp (-A) v-u\| \leq \delta$, in time $\tilde{O}(m \log \|A\| \log 1 / \delta)$.

Corollary [Orecchia-Sachdeva-V. 2012]

$\sqrt{\gamma}$-approximation for Balanced separator in time $\tilde{O}(m)$. Spectral guarantee for approximation, running time independent of γ

SDD Solvers

Given $L x=b, L$ is SDD, and $\varepsilon>0$, obtain a vector u s.t., $\left\|u-L^{-1} b\right\|_{L} \leq \varepsilon\left\|L^{-1} b\right\|_{L}$. Time required $\tilde{O}(m \log 1 / \varepsilon)$

Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an SDD $A \succeq 0$, a vector v with $\|v\|=1$ and δ, we compute a vector u s.t. $\|\exp (-A) v-u\| \leq \delta$, in time $\tilde{O}(m \log \|A\| \log 1 / \delta)$.

Corollary [Orecchia-Sachdeva-V. 2012]

$\sqrt{\gamma}$-approximation for Balanced separator in time $\tilde{O}(m)$. Spectral guarantee for approximation, running time independent of γ

SDD Solvers

Given $L x=b, L$ is SDD, and $\varepsilon>0$, obtain a vector u s.t., $\left\|u-L^{-1} b\right\|_{L} \leq \varepsilon\left\|L^{-1} b\right\|_{L}$. Time required $\tilde{O}(m \log 1 / \varepsilon)$

Are Laplacian solvers necessary for the matrix exponential?

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014
For $\varepsilon, \delta \in(0,1]$, there exist poly $(\log (1 / \varepsilon \delta))$ numbers $0<w_{j}$, t_{j} s.t. for all symm. $\varepsilon I \preceq A \preceq I,(1-\delta) A^{-1} \preceq \sum_{j} w_{j} e^{-t_{j} A} \preceq(1+\delta) A^{-1}$.

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014
For $\varepsilon, \delta \in(0,1]$, there exist poly $(\log (1 / \varepsilon \delta))$ numbers $0<w_{j}$, t_{j} s.t. for all symm. $\varepsilon l \preceq A \preceq I,(1-\delta) A^{-1} \preceq \sum_{j} w_{j} e^{-t_{j} A} \preceq(1+\delta) A^{-1}$.

- Weights w_{j} are $O(\operatorname{poly}(1 / \delta \varepsilon))$, we lose only a polynomial factor in the approximation error.

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in(0,1]$, there exist poly $(\log (1 / \varepsilon \delta))$ numbers $0<w_{j}$, t_{j} s.t. for all symm. $\varepsilon l \preceq A \preceq I,(1-\delta) A^{-1} \preceq \sum_{j} w_{j} e^{-t_{j} A} \preceq(1+\delta) A^{-1}$.

- Weights w_{j} are $O(\operatorname{poly}(1 / \delta \varepsilon))$, we lose only a polynomial factor in the approximation error.
- For applications polylogarithmic dependence on both $1 / \delta$ and the condition number of A ($1 / \varepsilon$ in this case).

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in(0,1]$, there exist poly $(\log (1 / \varepsilon \delta))$ numbers $0<w_{j}$, t_{j} s.t. for all symm. $\varepsilon l \preceq A \preceq I,(1-\delta) A^{-1} \preceq \sum_{j} w_{j} e^{-t_{j} A} \preceq(1+\delta) A^{-1}$.

- Weights w_{j} are $O(\operatorname{poly}(1 / \delta \varepsilon))$, we lose only a polynomial factor in the approximation error.
- For applications polylogarithmic dependence on both $1 / \delta$ and the condition number of A ($1 / \varepsilon$ in this case).
- Discretizing $x^{-1}=\int_{0}^{\infty} e^{-x t} \mathrm{~d} t$ naively needs poly $(1 /(\varepsilon \delta))$ terms.

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in(0,1]$, there exist poly $(\log (1 / \varepsilon \delta))$ numbers $0<w_{j}$, t_{j} s.t. for all symm. $\varepsilon l \preceq A \preceq I,(1-\delta) A^{-1} \preceq \sum_{j} w_{j} e^{-t_{j} A} \preceq(1+\delta) A^{-1}$.

- Weights w_{j} are $O(\operatorname{poly}(1 / \delta \varepsilon))$, we lose only a polynomial factor in the approximation error.
- For applications polylogarithmic dependence on both $1 / \delta$ and the condition number of A ($1 / \varepsilon$ in this case).
- Discretizing $x^{-1}=\int_{0}^{\infty} e^{-x t} \mathrm{~d} t$ naively needs poly $(1 /(\varepsilon \delta))$ terms.
- Substituting $t=e^{y}$ in the above integral obtains the identity $x^{-1}=\int_{-\infty}^{\infty} e^{-x e^{y}+y} d y$.

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in(0,1]$, there exist poly $(\log (1 / \varepsilon \delta))$ numbers $0<w_{j}, t_{j}$ s.t. for all symm. $\varepsilon I \preceq A \preceq I,(1-\delta) A^{-1} \preceq \sum_{j} w_{j} e^{-t_{j} A} \preceq(1+\delta) A^{-1}$.

- Weights w_{j} are $O(\operatorname{poly}(1 / \delta \varepsilon))$, we lose only a polynomial factor in the approximation error.
- For applications polylogarithmic dependence on both $1 / \delta$ and the condition number of A ($1 / \varepsilon$ in this case).
- Discretizing $x^{-1}=\int_{0}^{\infty} e^{-x t} \mathrm{~d} t$ naively needs poly $(1 /(\varepsilon \delta))$ terms.
- Substituting $t=e^{y}$ in the above integral obtains the identity $x^{-1}=\int_{-\infty}^{\infty} e^{-x e^{y}+y} \mathrm{~d} y$.
- Discretizing this integral, we bound the error using the Euler-Maclaurin formula, Riemann zeta fn.; global error analysis!

A Heuristic for solving PSD Systems?

- Goal: compute $A^{-1} u$ for A psd.

A Heuristic for solving PSD Systems?

- Goal: compute $A^{-1} u$ for A psd.
- Write $A=A_{1}+\cdots+A_{k}$.

A Heuristic for solving PSD Systems?

- Goal: compute $A^{-1} u$ for A psd.
- Write $A=A_{1}+\cdots+A_{k}$.
- Hence, $e^{-t A}=e^{-t\left(A_{1}+\cdots+A_{k}\right)}$.

A Heuristic for solving PSD Systems?

- Goal: compute $A^{-1} u$ for A psd.
- Write $A=A_{1}+\cdots+A_{k}$.
- Hence, $e^{-t A}=e^{-t\left(A_{1}+\cdots+A_{k}\right)}$.
- Suppose magically:
(1) k is small.

A Heuristic for solving PSD Systems?

- Goal: compute $A^{-1} u$ for A psd.
- Write $A=A_{1}+\cdots+A_{k}$.
- Hence, $e^{-t A}=e^{-t\left(A_{1}+\cdots+A_{k}\right)}$.
- Suppose magically:
(1) k is small.
(2) Computing $e^{-t A_{i}} v$ easier for all i.

A Heuristic for solving PSD Systems?

- Goal: compute $A^{-1} u$ for A psd.
- Write $A=A_{1}+\cdots+A_{k}$.
- Hence, $e^{-t A}=e^{-t\left(A_{1}+\cdots+A_{k}\right)}$.
- Suppose magically:
(1) k is small.
(2) Computing $e^{-t A_{i}} v$ easier for all i.
(3) $e^{-t\left(A_{1}+\cdots+A_{k}\right)} \approx e^{-t A_{1}} \cdots e^{-t A_{k}}$.

A Heuristic for solving PSD Systems?

- Goal: compute $A^{-1} u$ for A psd.
- Write $A=A_{1}+\cdots+A_{k}$.
- Hence, $e^{-t A}=e^{-t\left(A_{1}+\cdots+A_{k}\right)}$.
- Suppose magically:
(1) k is small.
(2) Computing $e^{-t A_{i}} v$ easier for all i.
(3) $e^{-t\left(A_{1}+\cdots+A_{k}\right)} \approx e^{-t A_{1}} \cdots e^{-t A_{k}}$.
- Then $A^{-1} u \approx \sum_{j} w_{j} \prod_{i} e^{-t_{j} A_{i}} u$ (from previous slide).

A Heuristic for solving PSD Systems?

- Goal: compute $A^{-1} u$ for A psd.
- Write $A=A_{1}+\cdots+A_{k}$.
- Hence, $e^{-t A}=e^{-t\left(A_{1}+\cdots+A_{k}\right)}$.
- Suppose magically:
(1) k is small.
(2) Computing $e^{-t A_{i}} v$ easier for all i.
(3) $e^{-t\left(A_{1}+\cdots+A_{k}\right)} \approx e^{-t A_{1}} \cdots e^{-t A_{k}}$.
- Then $A^{-1} u \approx \sum_{j} w_{j} \prod_{i} e^{-t_{j} A_{i}} u$ (from previous slide).

Theorem

For large enough $p, e^{\left(B_{1}+\cdots+B_{k}\right)} \approx\left(e^{\frac{B_{1}}{p}} \cdots e^{\frac{B_{k}}{p}}\right)^{p}$.

Conclusion

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.

Conclusion

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of $f(A) v$ to a small number of sparse matrix-vector computations.
- Mere existence of good approximation suffices (see V. 2013).

Conclusion

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of $f(A) v$ to a small number of sparse matrix-vector computations.
- Mere existence of good approximation suffices (see V. 2013).
- Rational approx. can benefit from the ability to solve $L x=b$.
- Much left to be explained in the fascinating world of rational approximations.
- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of $f(A) v$ to a small number of sparse matrix-vector computations.
- Mere existence of good approximation suffices (see V. 2013).
- Rational approx. can benefit from the ability to solve $L x=b$.
- Much left to be explained in the fascinating world of rational approximations.
- Challenge problem: Can we compute a δ-approximation to $W^{s} v$ in time $\tilde{O}(m \log s \cdot \log 1 / \delta)$? $(W$ is the random walk matrix of an undirected graph.)
- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of $f(A) v$ to a small number of sparse matrix-vector computations.
- Mere existence of good approximation suffices (see V. 2013).
- Rational approx. can benefit from the ability to solve $L x=b$.
- Much left to be explained in the fascinating world of rational approximations.
- Challenge problem: Can we compute a δ-approximation to $W^{s} v$ in time $\tilde{O}(m \log s \cdot \log 1 / \delta)$? $(W$ is the random walk matrix of an undirected graph.)
- Beyond $L x=b$?
- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of $f(A) v$ to a small number of sparse matrix-vector computations.
- Mere existence of good approximation suffices (see V. 2013).
- Rational approx. can benefit from the ability to solve $L x=b$.
- Much left to be explained in the fascinating world of rational approximations.
- Challenge problem: Can we compute a δ-approximation to $W^{s} v$ in time $\tilde{O}(m \log s \cdot \log 1 / \delta)$? (W is the random walk matrix of an undirected graph.)
- Beyond $L x=b$?

