Faster (Spectral) Algorithms via Approximation Theory

Nisheeth K. Vishnoi EPFL

Based on a recent monograph with Sushant Sachdeva (Yale) Simons Institute, Dec. 3, 2014

Many algorithms today rely on our ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^s v$, $A^{-1} v$, $\exp(-A)v$, ...
- or top few eigenvalues and eigenvectors.

Many algorithms today rely on our ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^s v$, $A^{-1} v$, $\exp(-A) v$, ...
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a **small number** of those of the form Bu where B is a matrix closely related to A (often A itself) and u is some vector.

Many algorithms today rely on our ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^s v$, $A^{-1} v$, $\exp(-A) v$, ...
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a **small number** of those of the form Bu where B is a matrix closely related to A (often A itself) and u is some vector.

 A key feature of these algorithms is that if the matrix-vector product for A can be computed quickly, e.g., when A is sparse, then Bu can also be computed in essentially the same time.

Many algorithms today rely on our ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^s v$, $A^{-1} v$, $\exp(-A) v$, ...
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a **small number** of those of the form Bu where B is a matrix closely related to A (often A itself) and u is some vector.

 A key feature of these algorithms is that if the matrix-vector product for A can be computed quickly, e.g., when A is sparse, then Bu can also be computed in essentially the same time.

The classical area in analysis of **approximation theory** provides the right framework to study these questions.

How well can functions be approximated by simpler ones?

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) **throughout** \mathcal{I}

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) **throughout** \mathcal{I}

$$\begin{split} &\inf_{p \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)|.\\ &\inf_{p,q \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)/q(x)|. \end{split}$$

 Σ_d : set of all polynomials of degree at most d.

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) throughout \mathcal{I}

$$\inf_{p \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)|.$$

$$\inf_{p,q \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)/q(x)|.$$

 Σ_d : set of all polynomials of degree at most d.

 150+ years of fascinating history, deep results and many applications.

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) **throughout** \mathcal{I}

$$\begin{split} &\inf_{p \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)|.\\ &\inf_{p,q \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)/q(x)|. \end{split}$$

 Σ_d : set of all polynomials of degree at most d.

- 150+ years of fascinating history, deep results and many applications.
- Interested in fundamental functions such as x^s , e^{-x} and 1/x over finite and infinite intervals such as [-1,1], [0,n], $[0,\infty)$.

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \to \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) throughout \mathcal{I}

$$\begin{split} &\inf_{p \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)|.\\ &\inf_{p,q \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)/q(x)|. \end{split}$$

 Σ_d : set of all polynomials of degree at most d.

- 150+ years of fascinating history, deep results and many applications.
- Interested in fundamental functions such as x^s , e^{-x} and 1/x over finite and infinite intervals such as [-1,1], [0,n], $[0,\infty)$.
- For our applications good enough approximations suffice.

A simple example:

A simple example:

Compute $A^s v$ where A is symmetric with eigenvalues in [-1,1], v is a vector and s is a large positive integer.

• The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.

A simple example:

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.

A simple example:

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.
- Candidate approximation to $A^s v$: $\sum_{i=0}^d a_i A^i v$.

A simple example:

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.
- Candidate approximation to $A^s v$: $\sum_{i=0}^d a_i A^i v$.
- The time to compute $\sum_{i=0}^{d} a_i A^i v$ is O(md).

A simple example:

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.
- Candidate approximation to $A^s v$: $\sum_{i=0}^d a_i A^i v$.
- The time to compute $\sum_{i=0}^{d} a_i A^i v$ is O(md).
- $\|\sum_{i=0}^d a_i A^i v A^s v\| \le \delta \|v\|$ since
 - ullet all the eigenvalues of A lie in [-1,1], and
 - $p_{s,d}$ is δ -close to x^s in the entire interval [-1,1].

A simple example:

Compute $A^s v$ where A is symmetric with eigenvalues in [-1,1], v is a vector and s is a large positive integer.

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.
- Candidate approximation to $A^s v$: $\sum_{i=0}^d a_i A^i v$.
- The time to compute $\sum_{i=0}^{d} a_i A^i v$ is O(md).
- $\|\sum_{i=0}^d a_i A^i v A^s v\| \le \delta \|v\|$ since
 - ullet all the eigenvalues of A lie in [-1,1], and
 - $p_{s,d}$ is δ -close to x^s in the entire interval [-1,1].

How small can d be?

For any s, for any $\delta > 0$, and $\frac{d}{d} \sim \sqrt{s \log(1/\delta)}$, there is a polynomial $p_{s,d}$ s.t. $\sup_{x \in [-1,1]} |p_{s,d}(x) - x^s| \leq \delta$.

For any
$$s$$
, for any $\delta > 0$, and $\frac{d}{d} \sim \sqrt{s \log(1/\delta)}$, there is a polynomial $p_{s,d}$ s.t. $\sup_{x \in [-1,1]} |p_{s,d}(x) - x^s| \le \delta$.

• Simulating Random Walks: If A is random walk matrix of a graph, we can simulate s steps of a random walk in $m\sqrt{s}$ time.

For any s, for any $\delta > 0$, and $\frac{d}{d} \sim \sqrt{s \log(1/\delta)}$, there is a polynomial $p_{s,d}$ s.t. $\sup_{x \in [-1,1]} |p_{s,d}(x) - x^s| \leq \delta$.

- Simulating Random Walks: If A is random walk matrix of a graph, we can simulate s steps of a random walk in $m\sqrt{s}$ time.
- Conjugate Gradient Method: Given Ax = b with eigenvalues of A in (0,1], one can find y s.t. $\|y A^{-1}b\|_A \le \delta \|A^{-1}b\|_A$ in time roughly $m\sqrt{\kappa(A)\log 1/\delta}$.

For any s, for any $\delta>0$, and $\frac{d}{d}\sim\sqrt{s\log\left(\frac{1}{\delta}\right)}$, there is a polynomial $p_{s,d}$ s.t. $\sup_{x\in[-1,1]}|p_{s,d}(x)-x^s|\leq\delta.$

- Simulating Random Walks: If A is random walk matrix of a graph, we can simulate s steps of a random walk in $m\sqrt{s}$ time.
- Conjugate Gradient Method: Given Ax = b with eigenvalues of A in (0,1], one can find y s.t. $\|y A^{-1}b\|_A \le \delta \|A^{-1}b\|_A$ in time roughly $m\sqrt{\kappa(A)\log 1/\delta}$.
- Quadratic speedup over the Power Method: Given A, in time $\sim m/\sqrt{\delta}$ can compute a value $\mu \in [(1-\delta)\lambda_1(A), \lambda_1(A)]$.

The Chebyshev polynomial of deg. d is defined recursively to be:

$$T_d(x) \stackrel{\text{def}}{=} 2xT_{d-1}(x) - T_{d-2}(x)$$

for $d \geq 2$ with $T_0(x) \stackrel{\text{def}}{=} 1$, $T_1(x) \stackrel{\text{def}}{=} x$.

The Chebyshev polynomial of deg. d is defined recursively to be:

$$T_d(x) \stackrel{\text{def}}{=} 2xT_{d-1}(x) - T_{d-2}(x)$$

for $d \ge 2$ with $T_0(x) \stackrel{\text{def}}{=} 1$, $T_1(x) \stackrel{\text{def}}{=} x$.

Averaging Property

$$xT_d(x) = \frac{T_{d+1}(x) + T_{d-1}(x)}{2}.$$

The Chebyshev polynomial of deg. *d* is defined recursively to be:

$$T_d(x) \stackrel{\text{def}}{=} 2xT_{d-1}(x) - T_{d-2}(x)$$

for $d \geq 2$ with $T_0(x) \stackrel{\text{def}}{=} 1$, $T_1(x) \stackrel{\text{def}}{=} x$.

Averaging Property

$$xT_d(x) = \frac{T_{d+1}(x) + T_{d-1}(x)}{2}.$$

Boundedness Property

For any θ , and any integer d, $T_d(\cos \theta) = \cos(d\theta)$.

The Chebyshev polynomial of deg. *d* is defined recursively to be:

$$T_d(x) \stackrel{\text{def}}{=} 2xT_{d-1}(x) - T_{d-2}(x)$$

for $d \ge 2$ with $T_0(x) \stackrel{\text{def}}{=} 1$, $T_1(x) \stackrel{\text{def}}{=} x$.

Averaging Property

$$xT_d(x) = \frac{T_{d+1}(x) + T_{d-1}(x)}{2}.$$

Boundedness Property

For any θ , and any integer d, $T_d(\cos \theta) = \cos(d\theta)$.

Thus, $|T_d(x)| \le 1$ for all $x \in [-1, 1]$.

$$D_s \stackrel{\text{def}}{=} \sum_{i=1}^s Y_i$$
 where Y_1, \dots, Y_s i.i.d. ± 1 w.p. $1/2$ ($D_0 \stackrel{\text{def}}{=} 0$).

$$D_s \stackrel{\text{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } 1/2 \ \left(D_0 \stackrel{\text{def}}{=} 0\right).$$
 Thus, $\Pr\left[|D_s| \geq \sqrt{2s\log\left(2/\delta\right)}\right] \leq \delta.$

$$D_s \stackrel{\text{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } 1/2 \text{ } (D_0 \stackrel{\text{def}}{=} 0).$$

$$\text{Thus, } \Pr\left[|D_s| \ge \sqrt{2s\log\left(2/\delta\right)}\right] \le \delta.$$

Key Claim:
$$\underset{Y_1,\ldots,Y_s}{\mathbf{E}}[T_{D_s}(x)] = x^s$$
.

$$D_s \stackrel{\text{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } 1/2 \text{ } (D_0 \stackrel{\text{def}}{=} 0).$$

$$\text{Thus, } \Pr\left[|D_s| \ge \sqrt{2s\log\left(2/\delta\right)}\right] \le \delta.$$

$$\text{Key Claim: } \mathop{\mathbf{E}}_{Y_1,\dots,Y_s}[T_{D_s}(x)] = x^s.$$

$$x^{s+1} = x \cdot \underset{Y_1, \dots, Y_s}{\mathbf{E}} T_{D_s}(x) = \underset{Y_1, \dots, Y_s}{\mathbf{E}} [x \cdot T_{D_s}(x)]$$

$$= \underset{Y_1, \dots, Y_s}{\mathbf{E}} [\frac{1}{2} (T_{D_s+1}(x) + T_{D_s-1}(x))] = \underset{Y_1, \dots, Y_{s+1}}{\mathbf{E}} [T_{D_{s+1}}(x)].$$

$$D_s \stackrel{\text{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } \frac{1}{2} \left(D_0 \stackrel{\text{def}}{=} 0 \right).$$

$$\text{Thus, } \Pr \left[|D_s| \ge \sqrt{2s \log \left(\frac{2}{\delta} \right)} \right] \le \delta.$$

$$\text{Key Claim: } \mathop{\mathbf{E}}_{Y_1,\dots,Y_s}[T_{D_s}(x)] = x^s.$$

$$x^{s+1} = x \cdot \underset{Y_1, \dots, Y_s}{\mathbf{E}} T_{D_s}(x) = \underset{Y_1, \dots, Y_s}{\mathbf{E}} [x \cdot T_{D_s}(x)]$$

$$= \underset{Y_1, \dots, Y_s}{\mathbf{E}} [\frac{1}{2} (T_{D_s+1}(x) + T_{D_s-1}(x))] = \underset{Y_1, \dots, Y_{s+1}}{\mathbf{E}} [T_{D_{s+1}}(x)].$$

Our Approximation to x^s :

$$p_{s,d}(x) \stackrel{\text{def}}{=} \underset{Y_1,\ldots,Y_s}{\mathsf{E}} \left[T_{D_s}(x) \cdot 1_{|D_s| \leq d} \right] \text{ for } d = \sqrt{2s \log{(2/\delta)}}.$$

Back to Approximating Monomials

$$D_s \stackrel{\text{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } \frac{1}{2} \left(D_0 \stackrel{\text{def}}{=} 0 \right).$$

$$\text{Thus, } \Pr \left[|D_s| \ge \sqrt{2s \log \left(\frac{2}{\delta} \right)} \right] \le \delta.$$

$$\text{Key Claim: } \mathop{\mathbf{E}}_{Y_1,\dots,Y_s}[T_{D_s}(x)] = x^s.$$

$$x^{s+1} = x \cdot \underset{Y_1, \dots, Y_s}{\mathbf{E}} T_{D_s}(x) = \underset{Y_1, \dots, Y_s}{\mathbf{E}} [x \cdot T_{D_s}(x)]$$

$$= \underset{Y_1, \dots, Y_s}{\mathbf{E}} [\frac{1}{2} (T_{D_s+1}(x) + T_{D_s-1}(x))] = \underset{Y_1, \dots, Y_{s+1}}{\mathbf{E}} [T_{D_{s+1}}(x)].$$

Our Approximation to x^s :

$$p_{s,d}(x) \stackrel{\text{def}}{=} \underset{Y_1,\dots,Y_s}{\mathsf{E}} \left[T_{D_s}(x) \cdot \mathbf{1}_{|D_s| \leq d} \right] \ \text{for} \ d = \sqrt{2s \log\left(2/\delta\right)}.$$

$$\begin{aligned} \sup_{x \in [-1,1]} |p_{s,d}(x) - x^{s}| &= \sup_{x \in [-1,1]} \left| \mathop{\mathsf{E}}_{Y_{1},\dots,Y_{s}} \left[T_{D_{s}}(x) \cdot 1_{|D_{s}| > d} \right] \right| \\ &\leq \mathop{\mathsf{E}}_{Y_{1},\dots,Y_{s}} \left[1_{|D_{s}| > d} \cdot \sup_{x \in [-1,1]} |T_{D_{s}}(x)| \right] \leq \mathop{\mathsf{E}}_{Y_{1},\dots,Y_{s}} \left[1_{|D_{s}| > d} \right] \leq \delta. \end{aligned}$$

Suppose f(x) is δ -approximated by a Taylor polynomial $\sum_{s=0}^k c_s x^s$, then one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Suppose f(x) is δ -approximated by a Taylor polynomial $\sum_{s=0}^k c_s x^s$, then one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Approximating the Exponential

For every b>0, and δ , there is a polynomial $r_{b,\delta}$ s.t. $\sup_{x\in[0,b]}|e^{-x}-r_{b,\delta}(x)|\leq \delta$; degree $\sim \sqrt{b\log 1/\delta}$. (Taylor - $\Omega(b)$.)

Suppose f(x) is δ -approximated by a Taylor polynomial $\sum_{s=0}^{k} c_s x^s$, then one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Approximating the Exponential

For every b>0, and δ , there is a polynomial $r_{b,\delta}$ s.t. $\sup_{x\in[0,b]}|e^{-x}-r_{b,\delta}(x)|\leq \delta$; degree $\sim \sqrt{b\log 1/\delta}$. (Taylor $-\Omega(b)$.)

• Implies $\tilde{O}(m\sqrt{\|A\|\log 1/\delta})$ time algorithm to compute a δ -approximation to $e^{-A}v$ for a PSD A. Useful in solving SDPs.

Suppose f(x) is δ -approximated by a Taylor polynomial $\sum_{s=0}^k c_s x^s$, then one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Approximating the Exponential

For every b>0, and δ , there is a polynomial $r_{b,\delta}$ s.t. $\sup_{x\in[0,b]}|e^{-x}-r_{b,\delta}(x)|\leq \delta$; degree $\sim \sqrt{b\log 1/\delta}$. (Taylor - $\Omega(b)$.)

- Implies $\tilde{O}(m\sqrt{\|A\|\log 1/\delta})$ time algorithm to compute a δ -approximation to $e^{-A}v$ for a PSD A. Useful in solving SDPs.
- When A is a graph Laplacian, implies an optimal spectral algorithm for Balanced Separator that runs in time $\tilde{O}(m/\sqrt{\gamma})$. (γ is the target conductance) [Orecchia-Sachdeva-V. 2012].

Suppose f(x) is δ -approximated by a Taylor polynomial $\sum_{s=0}^k c_s x^s$, then one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Approximating the Exponential

For every b>0, and δ , there is a polynomial $r_{b,\delta}$ s.t. $\sup_{x\in[0,b]}|e^{-x}-r_{b,\delta}(x)|\leq \delta$; degree $\sim \sqrt{b\log 1/\delta}$. (Taylor - $\Omega(b)$.)

- Implies $\tilde{O}(m\sqrt{\|A\|\log 1/\delta})$ time algorithm to compute a δ -approximation to $e^{-A}v$ for a PSD A. Useful in solving SDPs.
- When A is a graph Laplacian, implies an optimal spectral algorithm for Balanced Separator that runs in time $O(m/\sqrt{\gamma})$. (γ is the target conductance) [Orecchia-Sachdeva-V. 2012].

How far can polynomial approximations take us?

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^s on [-1,1] requires degree $\Omega(\sqrt{s})$.
- Polynomials approx. to e^{-x} on [0, b] requires degree $\Omega(\sqrt{b})$.

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^s on [-1,1] requires degree $\Omega(\sqrt{s})$.
- Polynomials approx. to e^{-x} on [0, b] requires degree $\Omega(\sqrt{b})$.

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. $|p(x)| \le 1$ over [-1,1] must have its derivative $|p^{(1)}(x)| \le d^2$ for all $x \in [-1,1]$.

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^s on [-1,1] requires degree $\Omega(\sqrt{s})$.
- Polynomials approx. to e^{-x} on [0, b] requires degree $\Omega(\sqrt{b})$.

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. $|p(x)| \le 1$ over [-1,1] must have its derivative $|p^{(1)}(x)| \le d^2$ for all $x \in [-1,1]$.

• Chebyshev polynomials are a tight example for this theorem.

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^s on [-1,1] requires degree $\Omega(\sqrt{s})$.
- Polynomials approx. to e^{-x} on [0, b] requires degree $\Omega(\sqrt{b})$.

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. $|p(x)| \le 1$ over [-1,1] must have its derivative $|p^{(1)}(x)| \le d^2$ for all $x \in [-1,1]$.

• Chebyshev polynomials are a tight example for this theorem.

Bypass this barrier via rational functions!

For all integers $d \geq 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \leq 2^{-\Omega(d)}$.

For all integers $d \ge 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \le 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

For all integers $d \geq 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \leq 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

• No dependence on the length of the interval!

For all integers $d \ge 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \le 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

- No dependence on the length of the interval!
- Hence, for any $\delta > 0$, we have a rational function of degree $O(\log 1/\delta)$ that is a δ -approximation to e^{-x} . For most applications, an error of $\delta = 1/\operatorname{poly}(n)$ suffices, so we can choose $d = O(\log n)$.

For all integers $d \geq 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \leq 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

- No dependence on the length of the interval!
- Hence, for any $\delta > 0$, we have a rational function of degree $O(\log 1/\delta)$ that is a δ -approximation to e^{-x} . For most applications, an error of $\delta = 1/\text{poly}(n)$ suffices, so we can choose $d = O(\log n)$.
- Thus, $(S_d(A))^{-1} v \delta$ -approximates $e^{-A}v$.

For all integers $d \geq 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \leq 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

- No dependence on the length of the interval!
- Hence, for any $\delta > 0$, we have a rational function of degree $O(\log 1/\delta)$ that is a δ -approximation to e^{-x} . For most applications, an error of $\delta = 1/\operatorname{poly}(n)$ suffices, so we can choose $d = O(\log n)$.
- Thus, $(S_d(A))^{-1} v \delta$ -approximates $e^{-A}v$.

How do we compute $(S_d(A))^{-1} v$?

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

• Since *d* is $O(\log n)$, sufficient to compute $(A - \beta_i I)^{-1}u$.

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

- Since *d* is $O(\log n)$, sufficient to compute $(A \beta_i I)^{-1}u$.
- When A is Laplacian, and $\beta_i \leq 0$, then $A \beta_i I$ is **SDD!**

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

- Since *d* is $O(\log n)$, sufficient to compute $(A \beta_i I)^{-1} u$.
- When A is Laplacian, and $\beta_i \leq 0$, then $A \beta_i I$ is **SDD!**
- β_i s could be complex:
 - $S_d(x)$ has exactly one real zero $x_d \in [-d, -1]$ if d is odd, and no real zeros if d is even. Also, zeros of $S_d(x)$ grow linearly in magnitude with d.

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

- Since *d* is $O(\log n)$, sufficient to compute $(A \beta_i I)^{-1} u$.
- When A is Laplacian, and $\beta_i \leq 0$, then $A \beta_i I$ is **SDD!**
- β_is could be complex:
 S_d(x) has exactly one real zero x_d ∈ [-d, -1] if d is odd, and no real zeros if d is even. Also, zeros of S_d(x) grow linearly in magnitude with d.
- However, since S_d has real coefficients, its complex roots appear as conjugates. Hence, the task reduces to computing $(A^2 (\beta_i + \bar{\beta}_i)A + |\beta_i|^2 I)^{-1}u$.

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

- Since *d* is $O(\log n)$, sufficient to compute $(A \beta_i I)^{-1}u$.
- When A is Laplacian, and $\beta_i \leq 0$, then $A \beta_i I$ is **SDD!**
- β_is could be complex:
 S_d(x) has exactly one real zero x_d ∈ [-d, -1] if d is odd, and no real zeros if d is even. Also, zeros of S_d(x) grow linearly in magnitude with d.
- However, since S_d has real coefficients, its complex roots appear as conjugates. Hence, the task reduces to computing $(A^2 (\beta_i + \bar{\beta}_i)A + |\beta_i|^2 I)^{-1}u$.
- The matrix $(A^2 (\beta_i + \bar{\beta}_i)A + |\beta_i|^2 I)$ is PSD but the condition number can be comparable to that of A.

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

- Since *d* is $O(\log n)$, sufficient to compute $(A \beta_i I)^{-1}u$.
- When A is Laplacian, and $\beta_i \leq 0$, then $A \beta_i I$ is **SDD!**
- β_is could be complex:
 S_d(x) has exactly one real zero x_d ∈ [-d, -1] if d is odd, and no real zeros if d is even. Also, zeros of S_d(x) grow linearly in magnitude with d.
- However, since S_d has real coefficients, its complex roots appear as conjugates. Hence, the task reduces to computing $(A^2 (\beta_i + \bar{\beta}_i)A + |\beta_i|^2 I)^{-1}u$.
- The matrix $(A^2 (\beta_i + \bar{\beta}_i)A + |\beta_i|^2 I)$ is PSD but the condition number can be comparable to that of A.

Desire: A rational approximation with negative poles.

• How about $(1+x/d)^{-d}$? Converges to e^{-x} unif. over $[0,\infty)$.

- How about $(1+x/d)^{-d}$? Converges to e^{-x} unif. over $[0,\infty)$.
- Convergence rate slow: at x = 1 error is $\Theta(1/d)$.

- How about $(1+x/d)^{-d}$? Converges to e^{-x} unif. over $[0,\infty)$.
- Convergence rate slow: at x = 1 error is $\Theta(1/d)$.
- More generally, for every rational function of the form $1/p_d(x)$, where p_d is a degree-d polynomial with real roots:

$$\sup_{x \in [0,\infty)} |e^{-x} - 1/p_d(x)| = \Omega(1/d^2).$$

- How about $(1+x/d)^{-d}$? Converges to e^{-x} unif. over $[0,\infty)$.
- Convergence rate slow: at x = 1 error is $\Theta(1/d)$.
- More generally, for every rational function of the form $1/p_d(x)$, where p_d is a degree-d polynomial with real roots:

$$\sup_{x\in[0,\infty)}|e^{-x}-1/p_d(x)|=\Omega(1/d^2).$$

Saff-Schönhage-Varga 1975

For every d, there exists a degree-d polynomial p_d s.t., $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{p_d}{1+x/d} \right| \leq 2^{-\Omega(d)}.$

- How about $(1+x/d)^{-d}$? Converges to e^{-x} unif. over $[0,\infty)$.
- Convergence rate slow: at x = 1 error is $\Theta(1/d)$.
- More generally, for every rational function of the form $1/p_d(x)$, where p_d is a degree-d polynomial with real roots:

$$\sup_{x \in [0,\infty)} |e^{-x} - 1/p_d(x)| = \frac{\Omega(1/d^2)}{n}.$$

Saff-Schönhage-Varga 1975

For every d, there exists a degree-d polynomial p_d s.t., $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{p_d}{1+x/d} \right| \leq 2^{-\Omega(d)}.$

Sachdeva-V. 2014

Moreover, the coefficients of p_d are bounded by $d^{O(d)}$, and can be approximated up to an error of $d^{-\Theta(d)}$ using $\operatorname{poly}(d)$ arithmetic operations, where all intermediate numbers $\operatorname{poly}(d)$ bits.

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an **SDD** $A \succeq 0$, a vector v with ||v|| = 1 and δ , we compute a vector u s.t. $||\exp(-A)v - u|| \le \delta$, in time $\tilde{O}(m \log ||A|| \log 1/\delta)$.

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an **SDD** $A \succeq 0$, a vector v with ||v|| = 1 and δ , we compute a vector u s.t. $||\exp(-A)v - u|| \le \delta$, in time $\tilde{O}(m \log ||A|| \log 1/\delta)$.

Corollary [Orecchia-Sachdeva-V. 2012]

 $\sqrt{\gamma}$ -approximation for Balanced separator in time $\tilde{O}(m)$. Spectral guarantee for approximation, running time *independent* of γ

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an **SDD** $A \succeq 0$, a vector v with ||v|| = 1 and δ , we compute a vector u s.t. $||\exp(-A)v - u|| \le \delta$, in time $\tilde{O}(m \log ||A|| \log 1/\delta)$.

Corollary [Orecchia-Sachdeva-V. 2012]

 $\sqrt{\gamma}$ -approximation for Balanced separator in time $\tilde{O}(m)$. Spectral guarantee for approximation, running time *independent* of γ

SDD Solvers

Given Lx = b, L is SDD, and $\varepsilon > 0$, obtain a vector u s.t., $\|u - L^{-1}b\|_{L} \le \varepsilon \|L^{-1}b\|_{L}$. Time required $\tilde{O}\left(m\log^{1}/\varepsilon\right)$

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an **SDD** $A \succeq 0$, a vector v with ||v|| = 1 and δ , we compute a vector u s.t. $||\exp(-A)v - u|| \le \delta$, in time $\tilde{O}(m \log ||A|| \log 1/\delta)$.

Corollary [Orecchia-Sachdeva-V. 2012]

 $\sqrt{\gamma}$ -approximation for Balanced separator in time $\tilde{O}(m)$. Spectral guarantee for approximation, running time *independent* of γ

SDD Solvers

Given Lx = b, L is SDD, and $\varepsilon > 0$, obtain a vector u s.t., $\|u - L^{-1}b\|_{L} \le \varepsilon \|L^{-1}b\|_{L}$. Time required $\tilde{O}(m\log^{1}/\varepsilon)$

Are Laplacian solvers necessary for the matrix exponential?

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in (0, 1]$, there exist $\operatorname{poly}(\log(1/\varepsilon\delta))$ numbers $0 < w_j, t_j$ s.t. for all symm. $\varepsilon I \preceq A \preceq I$, $(1 - \delta)A^{-1} \preceq \sum_j w_j e^{-t_j A} \preceq (1 + \delta)A^{-1}$.

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in (0, 1]$, there exist $\operatorname{poly}(\log(1/\varepsilon\delta))$ numbers $0 < w_j, t_j$ s.t. for all symm. $\varepsilon I \preceq A \preceq I$, $(1 - \delta)A^{-1} \preceq \sum_j w_j e^{-t_j A} \preceq (1 + \delta)A^{-1}$.

• Weights w_j are $O(\text{poly}(1/\delta \varepsilon))$, we lose only a polynomial factor in the approximation error.

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in (0, 1]$, there exist $\operatorname{poly}(\log(1/\varepsilon\delta))$ numbers $0 < w_j, t_j$ s.t. for all symm. $\varepsilon I \preceq A \preceq I$, $(1 - \delta)A^{-1} \preceq \sum_j w_j e^{-t_j A} \preceq (1 + \delta)A^{-1}$.

- Weights w_j are $O(\text{poly}(1/\delta \varepsilon))$, we lose only a polynomial factor in the approximation error.
- For applications polylogarithmic dependence on both $1/\delta$ and the condition number of A ($1/\varepsilon$ in this case).

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in (0, 1]$, there exist $\operatorname{poly}(\log(1/\varepsilon\delta))$ numbers $0 < w_j, t_j$ s.t. for all symm. $\varepsilon I \preceq A \preceq I$, $(1 - \delta)A^{-1} \preceq \sum_j w_j e^{-t_j A} \preceq (1 + \delta)A^{-1}$.

- Weights w_j are $O(\text{poly}(1/\delta \varepsilon))$, we lose only a polynomial factor in the approximation error.
- For applications polylogarithmic dependence on both $1/\delta$ and the condition number of A ($1/\varepsilon$ in this case).
- Discretizing $x^{-1} = \int_0^\infty e^{-xt} dt$ naively **needs** poly($1/(\epsilon \delta)$) terms.

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in (0, 1]$, there exist $\operatorname{poly}(\log(1/\varepsilon\delta))$ numbers $0 < w_j, t_j$ s.t. for all symm. $\varepsilon I \preceq A \preceq I$, $(1 - \delta)A^{-1} \preceq \sum_j w_j e^{-t_j A} \preceq (1 + \delta)A^{-1}$.

- Weights w_j are $O(\text{poly}(1/\delta \varepsilon))$, we lose only a polynomial factor in the approximation error.
- For applications polylogarithmic dependence on both $1/\delta$ and the condition number of A ($1/\varepsilon$ in this case).
- Discretizing $x^{-1} = \int_0^\infty e^{-xt} dt$ naively **needs** poly($1/(\epsilon \delta)$) terms.
- Substituting $t = e^y$ in the above integral obtains the identity $x^{-1} = \int_{-\infty}^{\infty} e^{-xe^y + y} dy$.

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in (0, 1]$, there exist $\operatorname{poly}(\log(1/\varepsilon\delta))$ numbers $0 < w_j, t_j$ s.t. for all symm. $\varepsilon I \preceq A \preceq I$, $(1 - \delta)A^{-1} \preceq \sum_j w_j e^{-t_j A} \preceq (1 + \delta)A^{-1}$.

- Weights w_j are $O(\text{poly}(1/\delta \varepsilon))$, we lose only a polynomial factor in the approximation error.
- For applications polylogarithmic dependence on both $1/\delta$ and the condition number of A ($1/\varepsilon$ in this case).
- Discretizing $x^{-1} = \int_0^\infty e^{-xt} dt$ naively **needs** poly($1/(\varepsilon\delta)$) terms.
- Substituting $t = e^y$ in the above integral obtains the identity $x^{-1} = \int_{-\infty}^{\infty} e^{-xe^y + y} dy$.
- Discretizing this integral, we bound the error using the Euler-Maclaurin formula, Riemann zeta fn.; global error analysis!

• **Goal**: compute $A^{-1}u$ for A psd.

- **Goal**: compute $A^{-1}u$ for A psd.
- Write $A = A_1 + \cdots + A_k$.

- **Goal**: compute $A^{-1}u$ for A psd.
- Write $A = A_1 + \cdots + A_k$.
- Hence, $e^{-tA} = e^{-t(A_1 + \dots + A_k)}$.

- **Goal**: compute $A^{-1}u$ for A psd.
- Write $A = A_1 + \cdots + A_k$.
- Hence, $e^{-tA} = e^{-t(A_1 + \dots + A_k)}$.
- Suppose magically:

- **Goal**: compute $A^{-1}u$ for A psd.
- Write $A = A_1 + \cdots + A_k$.
- Hence, $e^{-tA} = e^{-t(A_1 + \dots + A_k)}$.
- Suppose magically:

 - ② Computing $e^{-tA_i}v$ easier for all i.

- **Goal**: compute $A^{-1}u$ for A psd.
- Write $A = A_1 + \cdots + A_k$.
- Hence, $e^{-tA} = e^{-t(A_1 + \dots + A_k)}$.
- Suppose magically:

 - 2 Computing $e^{-tA_i}v$ easier for all i.
 - $\bullet^{-t(A_1+\cdots+A_k)}\approx e^{-tA_1}\cdots e^{-tA_k}.$

- **Goal**: compute $A^{-1}u$ for A psd.
- Write $A = A_1 + \cdots + A_k$.
- Hence, $e^{-tA} = e^{-t(A_1 + \dots + A_k)}$.
- Suppose magically:

 - 2 Computing $e^{-tA_i}v$ easier for all i.
 - $\bullet e^{-t(A_1+\cdots+A_k)}\approx e^{-tA_1}\cdots e^{-tA_k}.$
- Then $A^{-1}u \approx \sum_j w_j \prod_i e^{-t_j A_i} u$ (from previous slide).

- **Goal**: compute $A^{-1}u$ for A psd.
- Write $A = A_1 + \cdots + A_k$.
- Hence, $e^{-tA} = e^{-t(A_1 + \dots + A_k)}$.
- Suppose magically:

 - 2 Computing $e^{-tA_i}v$ easier for all i.
 - $\bullet e^{-t(A_1+\cdots+A_k)}\approx e^{-tA_1}\cdots e^{-tA_k}.$
- Then $A^{-1}u \approx \sum_{j} w_{j} \prod_{i} e^{-t_{j}A_{i}}u$ (from previous slide).

Theorem

For large enough
$$p$$
, $e^{(B_1+\cdots+B_k)} \approx \left(e^{\frac{B_1}{p}}\cdots e^{\frac{B_k}{p}}\right)^p$.

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of f(A)v to a small number of sparse matrix-vector computations.
 - Mere existence of good approximation suffices (see V. 2013).

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of f(A)v to a small number of sparse matrix-vector computations.
 - Mere existence of good approximation suffices (see V. 2013).
- Rational approx. can benefit from the ability to solve Lx = b.
- Much left to be explained in the fascinating world of rational approximations.

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of f(A)v to a small number of sparse matrix-vector computations.
 - Mere existence of good approximation suffices (see V. 2013).
- Rational approx. can benefit from the ability to solve Lx = b.
- Much left to be explained in the fascinating world of rational approximations.
- Challenge problem: Can we compute a δ -approximation to $W^s v$ in time $\tilde{O}(m \log s \cdot \log 1/\delta)$? (W is the random walk matrix of an undirected graph.)

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of f(A)v to a small number of sparse matrix-vector computations.
 - Mere existence of good approximation suffices (see V. 2013).
- Rational approx. can benefit from the ability to solve Lx = b.
- Much left to be explained in the fascinating world of rational approximations.
- Challenge problem: Can we compute a δ -approximation to $W^s v$ in time $\tilde{O}(m \log s \cdot \log 1/\delta)$? (W is the random walk matrix of an undirected graph.)
- Beyond Lx = b?

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of f(A)v to a small number of sparse matrix-vector computations.
 - Mere existence of good approximation suffices (see V. 2013).
- Rational approx. can benefit from the ability to solve Lx = b.
- Much left to be explained in the fascinating world of rational approximations.
- Challenge problem: Can we compute a δ -approximation to $W^s v$ in time $\tilde{O}(m \log s \cdot \log 1/\delta)$? (W is the random walk matrix of an undirected graph.)
- Beyond Lx = b?

Thanks for your attention!