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Many algorithms today rely on our ability to quickly compute good
approximations to matrix-function-vector products: e.g.,

o ASv, A"lv, exp(—A)v, ...

@ or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a
small number of those of the form Bu where B is a matrix closely
related to A (often A itself) and u is some vector.

o A key feature of these algorithms is that if the matrix-vector
product for A can be computed quickly, e.g., when A is sparse,
then Bu can also be computed in essentially the same time.

The classical area in analysis of approximation theory provides
the right framework to study these questions.
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polynomial/rational function can remain to f(x) throughout 7

inf sup|f(x) — p(x)|.
A suplf(x) = p(x)|

inf sup|f(x) — P(x)/q(x)|.
p,qeidxeg| ( ) /q( )|

3 4: set of all polynomials of degree at most d.

@ 150+ years of fascinating history, deep results and many
applications.

@ Interested in fundamental functions such as x°, e™* and 1/x
over finite and infinite intervals such as [—1, 1], [0, n], [0, c0).

@ For our applications good enough approximations suffice.
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polynomial ps 4 s.t.  sup |psq(x) —x°| < 0.
x€[—1,1]

o Simulating Random Walks: If A is random walk matrix of a
graph, we can simulate s steps of a random walk in my/s time.

o Conjugate Gradient Method: Given Ax = b with
eigenvalues of A in (0, 1], one can find y s.t.
ly — A=1b||a < 5||[A71b| 4 in time roughly my/k(A)log 1/s.

o Quadratic speedup over the Power Method: Given A, in
time ~ m/\/5 can compute a value p € [(1 — 0)A1(A), A1(A)].
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Chebyshev Polynomials

The Chebyshev polynomial of deg. d is defined recursively to be:
def
T4(x) = 2xTg_1(x) — Ty—2(x)

for d > 2 with To(x) &' 1, Ty(x) & x.

Averaging Property

xTy(x) = Td+1(X)-2FTd—1(X) _

Boundedness Property

For any 6, and any integer d, T4(cosf) = cos(df).
Thus, |T4(x)| <1 for all x € [-1,1].
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Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. |p(x)| <1 over [—1, 1] must have
its derivative |p(M)(x)| < d? for all x € [-1,1].

@ Chebyshev polynomials are a tight example for this theorem.

Bypass this barrier via rational functions!
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—X

SUPx¢[0,00) ‘e - Sd%x) ),

For all integers d > 0, there is a degree-d polynomial S4(x) s.t. I

Sa(x )def Zk 0 3T- (Proof by induction.) J

@ No dependence on the length of the interval!

@ Hence, for any § > 0, we have a rational function of degree
O(log1/5) that is a d-approximation to e *. For most applications,
an error of & = 1/poly(n) suffices, so we can choose d = O(log n).

@ Thus, (S4(A)) "' v d-approximates e Av.

How do we compute (S4(A)) ! v? J
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Desire: A rational approximation with negative poles. )
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e Convergence rate slow: at x = 1 error is ©(1/a).

@ More generally, for every rational function of the form 1/p,(x),
where py is a degree-d polynomial with real roots:
sup &7 = 1/py(x)| = Q(1/a?).
x€[0,00)
Saff-Schonhage-Varga 1975
For every d, there exists a degree-d polynomial py s.t.,

—X _ 1 —Q(d)
sup ‘e Pd < = ) <2 .
x€[0,00) g

Sachdeva-V. 2014

Moreover, the coefficients of py are bounded by d°@) and can be
approximated up to an error of d=©(9) using poly(d) arithmetic
operations, where all intermediate numbers poly(d) bits.
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Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an SDD A > 0, a vector v with |lv[[ =1 and J, we compute
a vector u s.t. |lexp(—A)v — u|| < 4, in time O (mlog|A|l log1/s).

Corollary [Orecchia-Sachdeva-V. 2012]

v/ Y-approximation for Balanced separator in time 6(m) Spectral
guarantee for approximation, running time independent of ~y

v

SDD Solvers

Given Lx = b, L is SDD, and £ > 0, obtain a vector u s.t.,
lu—L7b||e < e||L7'b||. . Time required O (mlog /<)

v

Are Laplacian solvers necessary for the matrix exponential? )
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Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For €,8 € (0,1], there exist poly(log(1/z6)) numbers 0 < w;, t; s.t.
for all symm. el < A=/, (1-86)A <Y wje 54 X (1+ )AL

Weights w; are O(poly(/s¢)), we lose only a polynomial factor in
the approximation error.

@ For applications polylogarithmic dependence on both /s and the
condition number of A (/e in this case).

@ Discretizing x ! = fooo et dt naively needs poly(1/(=5)) terms.

@ Substituting t = ¥ in the above integral obtains the identity
x~l= [ e7xtydy.

@ Discretizing this integral, we bound the error using the
Euler-Maclaurin formula, Riemann zeta fn.; global error analysis!
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A Heuristic for solving PSD Systems?

e Goal: compute A~y for A psd.
o Write A= A1+ -+ A.

@ Hence, e tA = e~ t(Art+AL),

@ Suppose magically:

Q kis small.
@ Computing e v easier for all i.
o e tArt+A) g o= tAL ... g~ AL

o Then A~lu~ 2wl e~ %Ay (from previous slide).

For large enough p, e(Bit+Bi) ~ (ep1 e
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Thanks for your attention! J




