Electrical Flow Primitive and Fast Graph Algorithms

Aleksander Mądry

These are exciting times for fast graph algorithms

Last several years brought faster algorithms for a number of fundamental graph problems

Central notion: Electrical flows

This talk: A quick tour through these algorithmic applications and the underlying connections

Electrical flows (Take I)

Input: Undirected graph G, resistances r_e, source s and sink t

Recipe for elec. flow:

1) Treat edges as resistors

Electrical flows (Take I)

Input: Undirected graph G, resistances r_e, source s and sink t

resistance r_e

Recipe for elec. flow:

- 1) Treat edges as resistors
- 2) Connect a battery to s and t

Electrical flows (Take I)

Input: Undirected graph G,
resistances r_e,
source s and sink t

resistance r_e

Recipe for elec. flow:

- 1) Treat edges as resistors
- 2) Connect a battery to s and t

Electrical flows (Take II)

Input: Undirected graph G, resistances r_e, source s and sink t

resistance r_e

(Another) recipe for electrical flow (of value F):

(Another) recipe for electrical flow (of value F):

Find vertex potentials φ_v such that setting, for all (u,v)

$$f_{(u,v)} \leftarrow (\phi_v - \phi_u)/r_{(u,v)}$$
 (Ohm's law)

gives a valid s-t flow of value F

Crucial connection: Laplacian systems

Computing electrical flows boils down to solving Laplacian systems

[ST '04, KMP '10, KMP '11, KOSZ '13, LS '13, CKPPR '14]:
Laplacian systems can be (essentially)
solved in nearly-linear time

Key consequence: Electrical flows become a powerful primitive

Electrical Flows and the Maximum Flow Problem

Connection I: Energy minimization

Principle of least energy:

Electrical flows = ℓ_2 -minimization

Electrical flow of value F:

The unique minimizer of the energy

$$E(f) = \sum_{e} r_{e} f(e)^{2}$$

among all s-t flows f of value F

Application:

Turning the fast **electrical flow** computation into a fast **max flow** approx.

Approx. undirected max flow [Christiano Kelner M. Spielman Teng '11]
via electrical flows

Assume: F* known (via binary search)

→ Treat edges as resistors of resistance 1

Approx. undirected max flow [Christiano Kelner M. Spielman Teng'11]
via electrical flows

Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value **F***

Approx. undirected max flow [Christiano Kelner M. Spielman Teng '11]
via electrical flows

Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value F* (This flow has no leaks, but can overflow some edges)

Approx. undirected max flow [Christiano Kelner M. Spielman Teng'11] via electrical flows

Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value F* (This flow has no leaks, but can overflow some edges)
- → To fix that: Increase resistances on the overflowing edges

Repeat

→ At the end: Take an average of all the flows as the final answer

Evolution of resistances:

Based on Multiplicative Weight Update method [FS '97, PST '95, AHK '05]

This approach yields an $(1+\varepsilon)$ -approx. to undirected max flow in $\tilde{O}(m^{4/3}\varepsilon^{-3})$ time algorithm

[Lee Srivastava Rao '13]: A different perspective with a better dependence on ϵ for unit capacity graphs

[Kelner Miller Peng '12]: (1+ ϵ)-approx. to undirected k-commodity flow in $\tilde{O}(m^{4/3} \text{ poly}(k, \epsilon^{-1}))$ time

[Sherman '13, Kelner Lee Orecchia Sidford '14]:

(1+ ϵ)-approx. to undirected k-commodity flow in O(m^{1+o(1)} k² ϵ ⁻²) time

Underlying idea: j-tree-based elect. flow still used here

(efficiently computable) oblivious-routing scheme

Regularizer

gradient descent (in ℓ_{∞} -norm)

Electrical Flows and the Interior-point Methods

(Path-following) Interior-point method (IPM)

[Dikin '67, Karmarkar '84, Renegar '88,...]

A powerful framework for solving general LPs (and more)

LP: $min c^Tx$

s.t. Ax = b

x ≥ 0

Idea: Take care of "hard" constraints by adding a "barrier" to the objective

"easy" constraints
(use projection)

"hard" constraints

(Path-following) Interior-point method (IPM)

[Dikin '67, Karmarkar '84, Renegar '88,...]

A powerful framework for solving general LPs (and more)

LP(
$$\mu$$
): min $c^Tx - \mu \Sigma_i \log x_i$
s.t. $Ax = b$

Idea: Take care of "hard" constraints by adding a "barrier" to the objective

Observe: The barrier term enforces $x \ge 0$ implicitly

Furthermore: for large μ , LP(μ) is easy to solve and

 $LP(\mu) \rightarrow \text{ original } LP, \text{ as } \mu \rightarrow 0^+$

Path-following routine:

- \rightarrow Start with (near-)optimal solution $x(\mu)$ to $LP(\mu)$ for large $\mu>0$
- \rightarrow Take an **improvement step** that gradually reduces μ while maintaining the (near-)optimality of $x(\mu)$ (wrt current μ)

Path-following routine:

- \rightarrow Start with (near-)optimal solution $x(\mu)$ to $LP(\mu)$ for large $\mu>0$
- \rightarrow Take an **improvement step** that gradually reduces μ while maintaining the (near-)optimality of $x(\mu)$ (wrt current μ)

Use electrical flows!

Step 1: Descent ("Predict")

Solve: $\min \Sigma_i r_i u_i^2$

s.t. Au = b

x = current solution(near-optimal wrt $LP(\mu)$)

$$r_i = 1/x_i^2$$

Effect: Decreasing μ at the ϵ of optimality (centrality) of

Set: $x_1' = (1-\delta) x_1 + \delta u$

Formulation of electrical flow problem if **A** = edge-vertex incidence matrix

Use electrical flows!

$$x = current solution$$

(near-optimal wrt $LP(\mu)$)

$$r_i = 1/x_i^2$$

Set:
$$x_i' = (1-\delta) x_i + \delta u$$

 $\mu' = (1-\delta) \mu$

Use electrical flows!

Step 2: Centering ("Correct")

Solve:
$$\min \Sigma_i r_i' \hat{u}_i^2$$

s.t. $A\hat{u} = b'$

$$r_i = 1/x_i^2$$
 $r_i' = 1/(x_i')^2$

Set:
$$x_i' = (1-\delta) x_i + \delta u$$

 $\mu' = (1-\delta) \mu$

Use electrical flows!

Step 2: Centering ("Correct")

Solve: $\min \Sigma_i r_i' \hat{u}_i^2$ s.t. $A\hat{u} = b'$

Effect: x'' is near-optimal (centered) again and μ decreased

x = current solution (near-optimal wrt LP(μ))

$$r_i = 1/x_i^2$$
 $r_i' = 1/(x_i')^2$

Set:
$$x_i' = (1-\delta) x_i + \delta u$$

 $\mu' = (1-\delta) \mu$
 $x'' = (1-\delta) x_i' + \delta \hat{u}$

Can show: Setting $\delta \approx m^{-1/2}$ suffices (m = # of variables) \rightarrow O(m^{1/2} log ϵ^{-1}) iterations gives an ϵ -optimal solution [Renegar '88]

But: Understanding the electrical flow connection brings much more

Beyond the classical analysis of IPMs

Can show: Setting $\delta \approx m^{-1/2}$ suffices (m = # of variables) \rightarrow O(m^{1/2} log ϵ^{-1}) iterations gives an ϵ -optimal solution [Renegar '88]

1) When solving flow problems \rightarrow each iteration takes $\tilde{O}(m)$ time

[Daitch Spielman '08]: $\tilde{O}(m^{3/2} \log \epsilon^{-1})$ time alg. for "all" flow problems

2) Optimal setting of δ corresponds to certain ℓ_2 - vs. ℓ_4 -norm interplay

[M. '13]: $\tilde{O}(m^{10/7})$ time alg. for unit-capacity max flow (via perturbation + preconditioning of intermediate sol./central path)

[Lee Sidford '13]: $\tilde{O}(mn^{1/2} \log \epsilon^{-1})$ time alg. for "all" flow problems (via a careful choice and reweighting of the barriers)

Electrical Flows, Random Walks, and Random Spanning Tree Generation

Random Spanning Trees

Goal: Output an uniformly random spanning tree

More precisely:

T(G) = set of all spanning trees of G

Random Spanning Trees

Goal: Output an uniformly random spanning tree

More precisely:

T(G) = set of all spanning trees of G

Task: Output a tree **T** with prob. $|T(G)|^{-1}$

Note: |T(G)| can be as large as n^{n-2}

More generally: Given weight \mathbf{w}_{e} for each edge \mathbf{e}

Task: Output a tree **T** with prob. proportional to $\Pi_e w_e$

Connection II: Random Spanning Trees

Key quantity: Effective resistance (between **s** and **t**)

$$R_{eff}(s,t) = \chi_{st}^T \mathbf{L}^+ \chi_{st}$$

Vector with 1 at t, -1 at s and 0s everywhere else

Pseudo-inverse of the Laplacian

Connection II: Random Spanning Trees

Key quantity: Effective resistance (between **s** and **t**)

$$R_{eff}(s,t) = \chi_{st}^T L^+ \chi_{st}$$

Alternatively: $R_{eff}(s,t)$ = potential difference ϕ_t - ϕ_s induced by an electrical flow f that sends a **unit current** from s to t

Yet differently (when all $r_e=1$ and (s,t) is an edge):

 $R_{eff}(s,t)$ = the amount of flow f_{st} sent directly over the edge (s,t) by the unit-value electrical s-t flow f

Matrix Tree theorem [Kirchoff 1847]

 $Pr[e \text{ in a rand. tree}] = w_e R_{eff}(e)$ where $r_e = 1/w_e$

- \rightarrow Order edges $e_1, e_2,...,e_m$ arbitrarily and start with **T** being empty
- \rightarrow For each e_i :
 - Compute R_{eff}(e_i) and add e_i to T with that probability
 - Update G by contracting e_i if e in T and removing it o.w.

- \rightarrow Order edges $e_1, e_2,...,e_m$ arbitrarily and start with **T** being empty
- \rightarrow For each e_i :
 - Compute R_{eff}(e_i) and add e_i to T with that probability
 - Update G by contracting e_i if e in T and removing it o.w.
- → Output **T**

- \rightarrow Order edges $e_1, e_2,...,e_m$ arbitrarily and start with **T** being empty
- \rightarrow For each e_i :
 - Compute R_{eff}(e_i) and add e_i to T with that probability
 - Update G by contracting e_i if e in T and removing it o.w.
- → Output **T**

Running time?

Bottleneck: Computing R_{eff}(e_i)

But: $R_{eff}(e) = \chi_e^T L^+ \chi_e \rightarrow Use Laplacian solver$

Slight difficulty: Need to solve a Laplacian system exactly

[Propp '0 Resulting runtime: $min(m n^{\omega}, \tilde{O}(m^2))$

- \rightarrow Order edges $e_1, e_2,...,e_m$ arbitrarily and start with **T** being empty
- \rightarrow For each e_i :
 - Compute R_{eff}(e_i) and add e_i to T with that probability
 - Update G by contracting e_i if e in T and removing it o.w.
- → Output **T**

Running time?

Bottleneck: Computing R_{eff}(e_i)

But: $R_{eff}(e) = \chi_e^T L^+ \chi_e \rightarrow Use Laplacian solver$

Slight difficulty: Need to solve a Laplacian system exactly

Resulting runtime: $min(n^{\omega}, \tilde{O}(m^2))$

Can we do better? Yes! (At least when the graph is sparse.)

Rand. Spanning Trees and Random Walks

[Broder '89, Aldous '90]: Generate random spanning tree using random walks

- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**

Rand. Spanning Trees and Random Walks

[Broder '89, Aldous '90]: Generate random spanning tree using random walks

- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**

Rand. Spanning Trees and Random Walks

[Broder '89, Aldous '90]: Generate random spanning tree using random walks

- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**

[Broder '89, Aldous '90]: Generate random spanning tree using random walks

- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**

[Broder '89, Aldous '90]: Generate random spanning tree using random walks

- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**

[Broder '89, Aldous '90]: Generate random spanning tree using random walks

- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**

[Broder '89, Aldous '90]: Generate random spanning tree using random walks

- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**

Why does it work?

Magic! (aka coupling from the past)

Running time?

O(cover time) = O(mn)

[W'96]: Can get O(mean hitting time) but still O(mn) in the worst case

Can we improve upon that?

What happens: The walk resides mainly in K_n - the path-like part is covered only after a lot of attempts

Observe: We know how the tree looks like in K_n very early on

Idea: Cut the graph into pieces with good cover time and find trees in each piece separately

Can we improve upon that?

What happens: The walk resides mainly in K_n - the path-like part is covered only after a lot of attempts

Observe: We know how the tree looks like in K_n very early on

Idea: Cut the graph into pieces with good cover time and find trees in each piece separately

- → Low diameter each
- → Small "interface"

- → Low diameter each
- → Small "interface"

Modification: When simulating the random walk, **shortcut** revisits to pieces that were already explored in full

Note: We still retain enough information to output the final tree

- → Low diameter each = we cover each piece relatively quickly
- → Small "interface"

Modification: When simulating the random walk, **shortcut** revisits to pieces that were already explored in full

Note: We still retain enough information to output the final tree

- → Low diameter each = we cover each piece relatively quickly
- → Small "interface" = we do not walk too much over that interface

Modification: When simulating the random walk, **shortcut** revisits to pieces that were already explored in full

Note: We still retain enough information to output the final tree

Missing element: How to compute the shortcutting jumps?

Different Approach

[Kelner M. '09]

Need: $P_D(e,v)$ = prob. we exit **D** via edge **e** after entering through **v**

Electrical flows can help us compute that!

Connection III: Absorption of Random Walks

Want to compute:
q_{st}(v) = prob. that
a random walk
started at v reaches t
before reaching s

To compute $q_{st}(v)$:

- → Compute an electrical s-t flow
- \rightarrow Normalize the voltage potentials ϕ so as $\phi_s=0$ and $\phi_t=1$

Then: $q_{st}(v) = \phi_v$

Result: We can (approx.) compute $q_{st}(v)$ for all v in $\tilde{O}(m)$ time

Different Approach

Need: $P_D(e,v)$ = prob. we exit **D** via edge **e** after entering through **v**

Observe: $P_D(e,v) = q_{uu}*(v)$

[Propp '09]: Computing good approx. to voltages suffices

Putting it all together: Generation of a random spanning tree in Õ(mn½) time

Breaking the $\Omega(n^{3/2})$ and $\approx n^{1/2}$ paths with $\approx n^{1/2}$ vertices each expanders

Problem: This graph has an $\Omega(n^{3/2})$ cover time and there is no nice way to cut it

To overcome this: Work with the "right" metric.

Connection IV: Cover and Commute Times of Random Walks

Recall (effective resistance between **s** and **t**): $R_{\text{eff}}(s,t) = \text{potential difference } \boldsymbol{\phi_t} - \boldsymbol{\phi_s} \text{ induced by}$ an electrical flow **f** that sends a **unit current** from **s** to **t**

Can show: For any two vertices s and t

CommuteTime(s,t) = $2m R_{eff}(s,t)$

[Matthews '88]: For any subgraph D of effective resistance diameter γ CoverTime(D) = O(m γ) Breaking the $\Omega(n^{3/2})$ having $\approx n^{\frac{1}{2}}$ paths with $\approx n^{\frac{1}{2}}$ vertices each expanders

Problem: This graph has an $\Omega(n^{3/2})$ cover time and there is no nice way to cut it

To overcome this: Work with the "right" metric.

This graph looks much nicer in **effective resistance metric** (given by L^{-1/2}) than in the graph distance metric

[M. Straszak Tarnawski '14]

Problem: This graph has an $\Omega(n^{3/2})$ cover time and there is no nice way to cut it

To overcome this: Work with the "right" metric.

This graph looks much nicer in **effective resistance metric** (given by L^{-1/2}) than in the graph distance metric

[M. Straszak Tarnawski '14]

This identifies a large, low-diameter region in the effective resistance metric with "simple" exterior

Effective resistance diam. vs. Cover time connection:

- → Figure out how the tree looks like in this region quickly
- → Condition on this choice (by modifying the graph) and proceed to next phase (we made a lot of progress!)

[M. Straszak Tarnawski '14]

Missing element: What if the exterior of our large low-diameter region is **not** "simple"?

Tie effect. resist. to graph cuts: Argue that there exists a **good cut** separating the two regions

[M. Straszak Tarnawski '14]

Missing element: What if the exterior of our large low-diameter region is **not** "simple"?

Putting it all together: An O(m^{4/3+o(1)}) time sampling algorithm

Tie effect. resist. to graph cuts: Argue that there exists a **good cut** separating the two regions

Electrical Flows and Cuts

Electrical Flows and Sparsification [Spielman Srivastava '08]

A simple sparsification algorithm:

- \rightarrow Given graph **G**, compute effective resistances $R_{eff}(e)$ of all edges
- → Sample ≈ $ε^{-2}$ n log n edges independently (with replacements) and proportionally to their effective resistances $R_{eff}(e)$
- → Take **H = union** of all the sampled edges (after reweighting by an inverse of sampling probability)

[Spielman Srivastava '08]: Whp H preserves all the cuts of G up to a multiplicative error of $(1+\epsilon)$

Bottom line: R_{eff}(e) is a good measure of importance of an edge e wrt connectivity.

Electrical Flows and Thin Trees

[Asadpour Goemans M. Oveis Gharan Saberi '10]

Spanning tree T is α -thin iff $\delta_T(U) \le \alpha \delta_G(U)/k$, for every cut U

[Asadpour Goemans M. Oveis Gharan Saberi '10]: Ability to find α -thin trees = $O(\alpha)$ -approx. to ATSP

Electrical Flows and Thin Trees

[Asadpour Goemans M. Oveis Gharan Saberi '10]

How to find good α -thin trees?

Independent sampling: Gives $\alpha = \Theta(\log n)$

A better way:

- (1) Compute weights w_e so as Pr[e in a rand. tree] close to uniform
- (2) Sample a random spanning tree with respect to these weights

(1) → All cuts are good in expectation

Negative correlation of random tree edge sampling

+ Karger's "trick" \rightarrow Gives $\alpha = \Theta(\log n/\log \log n)$

Can we do better?

[Markus Spielman Srivastava '13]+[Harvey Olver '14]:

Can get α =O(1) for a spectral analogue of the question

Conclusions

Electrical Flows and Graph Algorithms

Electrical flows: A powerful new tool for fast graph alg.

- → Wealth of connections to graphs
- → Very fast computation

Key question: Where else can electrical flows primitive be useful?

Electrical Flows and Graph Algorithms

Key question: Where else can electrical flows primitive be useful?

- → Advancing our understanding of the convergence of interior-point methods? Inspire new types of IPMs?
- → Better "spectral" graph algorithms? (Stability is the key?)
- → What other properties of random walks we can get a hold on using electrical flows?
- → Effective resistance metric as a basic way of looking at graphs? (Seems more robust than shortest-path metric)
- → Theory of directed flows/walks?

Thank you

Questions?