Electrical Flow Primitive and
Fast Graph Algorithms

Aleksander Madry
B

These are exciting times for fast graph algorithms

Last several years brought faster algorithms for
a number of fundamental graph problems

Central notion: Electrical flows

This talk: A quick tour through these algorithmic
applications and the underlying connections o

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

Recipe for elec. flow:
1) Treat edges as
resistors

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

. Input: Undirected graph G,
Electrical flows (Take 1) " oo f P

source s and sink t

resistance r,

(Another) recipe for electrical flow (of value F):

Input: Undirected graph G,

f source s and sink t

(u,v

no leaks at all v#s,t

v

excess of F at t

(Another) recipe for electrical flow (of value F):
Find vertex potentials ¢, such that setting, for all (u,v)

(u v) ((Pv ‘-Pu)/r(u v) (Ohm’s Iaw)
gives a valid s-t flow of value F

Crucial connection: Laplacian systems

Computing electrical flows boils down to solving Laplacian systems

[ST 04, KMP ’10, KMP 11, KOSZ 13, LS ’13, CKPPR ‘14]:
Laplacian systems can be (essentially)
solved in nearly-linear time

Key consequence: Electrical flows
become a powerful primitive

Electrical Flows and
the Maximum Flow Problem

Connection I: Energy minimization

Principle of least energy:
Electrical flows = £,-minimization

Electrical flow of value F:
The uniqgue minimizer of the energy

E(f) =5, r. f(e)?

among all s-t flows f of value F

Application:
Turning the fast electrical flow computation
into a fast max flow approx.

Approx. undirected max flow [christiano Kelner M. Spielman Teng ’11]
via electrical flows S

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

Approx. undirected max flow [christiano Kelner M. Spielman Teng ’11]
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1
-> Compute electrical flow of value F*

Approx. undirected max flow [christiano Kelner M. Spielman Teng ’11]
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

Approx. undirected max flow [christiano Kelner M. Spielman Teng ’11]
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

= To fix that: Increase resistances on the
overflowing edges
Repeat
- At the end: Take an average of
all the flows as the final answer

Evolution of resistances:

Based on Multiplicative Weight Update method
[FS ’97, PST '95, AHK ’05]

This approach yields an (1+&)-approx. to undirected
max flow in O(m*/3¢3) time algorithm

[Lee Srivastava Rao '13]: A different perspective with a better dependence
on € for unit capacity graphs
[Kelner Miller Peng ’12]: (1+€)-approx. to undirected k-commodity flow
in O(m?#/3 poly(k,1)) time

[Sherman ’13, Kelner Lee Orecchia Sidford ‘14]:
(1+¢€)-approx. to undirected k-commodity flow in O(m?t+°(l) k2 g-2) time

Underlying idea: j-tree-basedy ° I |
[KLOS 14] _~" elect. flow still used here
(efficiently computable) <« N Regularizer
oblivious-routing scheme
T /

gradient descent (in £.-norm)

Electrical Flows and
the Interior-point Methods

(Path-following) Interior-point method (IPM)

[Dikin ‘67, Karmarkar 84, Renegar ’88,...]

A powerful framework for solving general LPs (and more)

Idea: Take care of “hard” constraints
by adding a “barrier” to the objective

s.t. Ax=b
x20 \ «“ ” .
easy” constraints
\ (use projection)

“hard” constraints

LP: minc'x

(Path-following) Interior-point method (IPM)

[Dikin ‘67, Karmarkar 84, Renegar ’88,...]

A powerful framework for solving general LPs (and more)

Idea: Take care of “hard” constraints

cmin Ty -
LP(1): min ¢'x - p Z; log by adding a “barrier” to the objective

s.t. Ax=Db
x=>0"

Observe: The barrier term
enforces x 2 0 implicitly

Furthermore: for large pu, LP(p) is easy to solve and

LP(p) = original LP, as p=>0*

Path-following routine:
-> Start with (near-)optimal solution x(p) to LP(p) for large u>0

- Take an improvement step that gradually reduces p while
maintaining the (near-)optimality of x(p) (wrt current p)

>

central path = optimal solutions to LP(u) for all u>0

(0,0)

P, = {x| Ax = b}
X. — analytic center

Path-following routine:
-> Start with (near-)optimal solution x(p) to LP(p) for large u>0

- Take an improvement step that gradually reduces p while
maintaining the (near-)optimality of x(p) (wrt current p)

How to guide our improvement steps?

Use electrical flows!

Step 1: Descent (“Predict”) = current solution

(near-optimal wrt LP(p))

Solve: min Z.r; u.? 1/x?
;= /X

s.t. Au=b

\ Set: x' =(1-68)x.+d8u
Effect: Decreasing p at the ¢ Formulation of electrical flow problem
of optimality (centrality) of if A = edge-vertex incidence matrix

How to guide our improvement steps?

Use electrical flows!

Step 2: Centering (“Correct”) x = current solution

(near-optimal wrt LP(p))
r,=1/x2

Set: x’=(1-6)x,+6u
1 =(1-6) n

How to guide our improvement steps?

Use electrical flows!

Step 2: Centering (“Correct”) x = current solution

(near-optimal wrt LP(p))

(] 1 AZ
Solve: min Z;r/ {; r=1/x2 r’=1/(x)?

s.t. Al =Db’
Set: x’=(1-6)x,+6u
1 =(1-6) n

How to guide our improvement steps?

Use electrical flows!

Step 2: Centering (“Correct”) x = current solution

(near-optimal wrt LP(p))

(] 1 AZ
Solve: min Z;r/ {; r=1/x2 r’=1/(x)?

s.t. Ali=Db’
Set: x’=(1-6)x,+6u
Effect: x”’ is near-optimal (centered) n = (1-6) u
again and p decreased x”=(1-6)x”+ 8 U

Can show: Setting § = m'¥/2 suffices (m = # of variables)
-> 0(m'/2 log €1) iterations gives an g-optimal solution [Renegar '88]

But: Understanding the electrical flow connection brings much more

Beyond the classical analysis of IPMs

Can show: Setting 8§ = m¥/2 suffices (m = # of variables)
-> 0(m?/2 log €1) iterations gives an g-optimal solution [Renegar '88]

1) When solving flow problems = each iteration takes O(m) time

[Daitch Spielman ‘08]: O(m3/2 log £1) time alg. for “all” flow problems

2) Optimal setting of & corresponds to certain &,- vs. {,-norm interplay
[M. ‘13]: O(m1%/7) time alg. for unit-capacity max flow

(via perturbation + preconditioning of intermediate sol./central path)

[Lee Sidford ‘13]: O(mn?/2log £1) time alg. for “all” flow problems
(via a careful choice and reweighting of the barriers)

Electrical Flows, Random Walks,
and Random Spanning Tree
Generation

Random Spanning Trees

Goal: Output an G
uniformly random
spanning tree

More precisely: T(G) = set of all spanning trees of G

Random Spanning Trees

Goal: Output an G
uniformly random
spanning tree

More precisely: T(G) = set of all spanning trees of G

Task: Output a tree T with prob. | T{G) |2

Note: | T{(G)| can be as large as n"2

More generally: Given weight w, for each edge e

Task: Output a tree T with prob. proportional to M w,

Connection II: Random Spanning Trees

Key quantity: Effective resistance (between s and t)

eff(s t) xstT L+ x

S~

Pseudo-inverse
of the Laplacian

Vector with 1 at t, - 1 ats
and 0s everywhere else

Connection II: Random Spanning Trees

Key quantity: Effective resistance (between s and t)
Reff(sit) = xstT L+ xst

Alternatively: R_4(s,t) = potential difference @ @ induced
by an electrical flow f that sends a unit current fromstot

Yet differently (when all r,=1 and (s,t) is an edge):
R.(s,t) = the amount of flow f, sent directly over
the edge (s,t) by the unit-value electrical s-t flow f

Matrix Tree theorem [Kirchoff 1847]

Pr[e in arand. tree] =w_ R_«(e) wherer, =1/w,

Generating a Random Spanning Tree with Electr. Flows

- Order edges e,, e,,...,e, arbitrarily and start with T being empty
-> For each e;:

* Compute R(e;,) and add e, to T with that probability

* Update G by contracting e, if e in T and removing it 0.w.

Generating a Random Spanning Tree with Electr. Flows

- Order edges e,, e,,...,e, arbitrarily and start with T being empty
-> For each e;:

* Compute R(e;,) and add e, to T with that probability

* Update G by contracting e, if e in T and removing it 0.w.

= Output T

E—

Why does it work? /\

Conditioning on our choice

Generating a Random Spanning Tree with Electr. Flows

- Order edges e,, e,,...,e, arbitrarily and start with T being empty
-> For each e;:

* Compute R(e;,) and add e, to T with that probability

* Update G by contracting e, if e in T and removing it 0.w.

= Output T

Running time?
Bottleneck: Computing R «(e)

But: R «(e) = x." L™ x. = Use Laplacian solver

Slight difficulty: Need to solve a LaplacianW

[Propp‘d Resulting runtime: min(m n®, O(m?))

Generating a Random Spanning Tree with Electr. Flows

- Order edges e,, e,,...,e, arbitrarily and start with T being empty
-> For each e;:

* Compute R(e;,) and add e, to T with that probability

* Update G by contracting e, if e in T and removing it 0.w.

= Output T

Running time?
Bottleneck: Computing R «(e)

But: R «(e) = x." L™ x. = Use Laplacian solver

Slight difficulty: Need to solve a Laplacian system gxa-eﬂ?
Resulting runtime: min(n®, O(m?2))

Can we do better? Yes! (At least when the graph is sparse.)

Rand. Spanning Trees and Random Walksp

[Broder ’89, Aldous ’90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Rand. Spanning Trees and Random Walksp

[Broder ’89, Aldous ’90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Rand. Spanning Trees and Random Walksp

[Broder ’89, Aldous ’90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Rand. Spanning Trees and Random Walksp

[Broder ’89, Aldous ’90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Rand. Spanning Trees and Random Walksp

[Broder ’89, Aldous ’90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Rand. Spanning Trees and Random Walksp

[Broder ’89, Aldous ’90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Rand. Spanning Trees and Random Walksp

[Broder ’89, Aldous ’90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Why does it work? Magic! (aka coupling from the past)

Running time?
O(cover time) = O(mn)

[W’96]: Can get O(mean hitting time) but still O(mn) in the worst case

Can we improve upon that?
K

n

Bad case: Lollipop-like graph
Q(mn)=Q(n3) cover time

What happens: The walk resides mainly in K -the path-like
part is covered only after a lot of attempts

Observe: We know how the tree looks like in K very early on

Idea: Cut the graph into pieces with good cover time
and find trees in each piece separately

Can we improve upon that?

Problem: This would require
splicing of random forests

What happens: The walk resides mainly in K -the path-like
part is covered only after a lot of attempts

Observe: We know how the tree looks like in K very early on

Idea: Cut the graph into pieces with good cover time
and find trees in each piece separately

Different Approach

[Kelner M. ‘09]

Decompose the graph into pieces with:
= Low diameter each
= Small “interface”

Different Approach

[Kelner M. ‘09]

Decompose the graph into pieces with:
= Low diameter each
= Small “interface”

Modification: When simulating the random walk, shortcut revisits
to pieces that were already explored in full

Note: We still retain enough information to output the final tree

Different Approach

[Kelner M. ‘09]

Decompose the graph into pieces with:
- Low diameter each = we cover each piece relatively quickly
= Small “interface”

Modification: When simulating the random walk, shortcut revisits
to pieces that were already explored in full

Note: We still retain enough information to output the final tree

Different Approach

[Kelner M. ‘09]

Decompose the graph into pieces with:
- Low diameter each = we cover each piece relatively quickly
- Small “interface” = we do not walk too much over that interface

Modification: When simulating the random walk, shortcut revisits
to pieces that were already explored in full

Note: We still retain enough information to output the final tree

Missing element: How to compute the shortcutting jumps? J

Different Approach

[Kelner M. ‘09]

Need: P,(e,v) = prob. we exit D via edge e after entering through v J

Electrical flows can help us compute that!

Connection lll: Absorption of Random Walks

Want to compute:
q.(v) = prob. that
a random walk
started at v reaches t
before reaching s)

To compute q(v):
- Compute an electrical s-t flow
-> Normalize the voltage potentials ¢ so as $.=0 and ¢=1

Then: q.(v) = ¢,

Result: We can (approx.) compute q.,(v) for all vin O(m) time

Different Approach

[Kelner M. 09
(

Need: P,(e,v) = prob. we exit D via edge e after entering through v J

Observe: Py(e,v) = q (V) J

[Propp ‘09]: Computing good approx. to voltages suffices

Putting it all together: Generation of
a random spanning tree in O(mn*) time

Breaking the Q(n3/2* -~~~ S
[M. Straszak%arnawski ‘(14] =Nn* paths with =n” vertices each J

e

—@- 4 o— @

—@- @ - @

—e— o : .-
T __—
expanders J

Problem: This graph has an Q(n3/2) cover time
and there is no nice way to cut it

To overcome this: Work with the “right” metric.

Connection IV: Cover and Commute Times of Random Walks

Recall (effective resistance between s and t):
R.«(s,t) = potential difference ¢~ P induced by

an electrical flow f that sends a unit current fromstot

Can show: For any two vertices s and t

CommuteTime(s,t) = 2m R_«(s,t)

[Matthews ’88]: For any subgraph D of effective resistance diametery

CoverTime(D) = O(my)

Breaking the Q(n3/2* -~~~ S
[M. Straszakgl'arnawski ‘(14] =Nn* paths with =n” vertices each J

e

—o ° —
—o-

\ /
expanders J

Problem: This graph has an Q(n3/2) cover time
and there is no nice way to cut it

To overcome this: Work with the “right” metric.

This graph looks much nicer in effective resistance metric
(given by L) than in the graph distance metric

Breaking the Q(n3/2) barrier
[M. Straszak Tarnawski ‘14]

Problem: This graph has an Q(n3/2) cover time
and there is no nice way to cut it

To overcome this: Work with the “right” metric.

This graph looks much nicer in effective resistance metric
(given by L) than in the graph distance metric

Breaking the Q(n3/2) barrier
[M. Straszak Tarnawski ‘14]

effective resistance metric with “simple” exterior

This identifies a large, low-diameter region in the J

Effective resistance diam. vs. Cover time connection:
-> Figure out how the tree looks like in this region quickly
- Condition on this choice (by modifying the graph) and
proceed to next phase (we made a lot of progress!)

Breaking the Q(n3/2) barrier
[M. Straszak Tarnawski ‘14]

Missing element: What if the exterior of
our large low-diameter region is not “simple”?

Expanders G, and G, are far in
the effective resistance metric

Tie effect. resist. to graph cuts: Argue that there exists
a good cut separating the two regions

Breaking the Q(n3/2) barrier
[M. Straszak Tarnawski ‘14]

Missing element: What if the exterior of
our large low-diameter region is not “simple”?

Putting it all together: An O(m?/3+2(1)) time sampling algorithm J

Tie effect. resist. to graph cuts: Argue that there exists
a good cut separating the two regions

Electrical Flows and Cuts

Electrical Flows and Sparsification [spielman Srivastava ‘08]

A simple sparsification algorithm:
-> Given graph G, compute effective resistances R «(e) of all edges

-> Sample = £2n log n edges independently (with replacements)
and proportionally to their effective resistances R_«(e)

- Take H = union of all the sampled edges (after reweighting
by an inverse of sampling probability)

[Spielman Srivastava ‘08]: Whp H preserves all the cuts of G
up to a multiplicative error of (1+€)

Bottom line: R _«(e) is a good measure of
importance of an edge e wrt connectivity.

Electrical Flows and Thin Trees
[Asadpour Goemans M. Oveis Gharan Saberi ‘10]

- T

Assume: G k-regular
and k-connected

Think: Finding such tree T
is an “extreme” form of
(upper) cut sparsification Seo -

Spanning tree T is a-thin iff
6:(U) < a 65(U)/k, foreverycutU

[Asadpour Goemans M. Oveis Gharan Saberi ‘10]:

Ability to find a-thin trees = O(a)-approx. to ATSP

Electrical Flows and Thin Trees
[Asadpour Goemans M. Oveis Gharan Saberi ‘10]

How to find good a-thin trees?

Independent sampling: Gives a=0(log n)

A better way:
(1) Compute weights w, so as Pr[e in a rand. tree] close to uniform
(2) Sample a random spanning tree with respect to these weights

(1) = All cuts are good in expectation

Negative correlation of random tree edge sampling
+ Karger’s “trick” = Gives a=0(log n/log log n)
Can we do better?

[Markus Spielman Srivastava ‘13]+[Harvey Olver '14]:
Can get a=0(1) for a spectral analogue of the question

Conclusions

Electrical Flows and Graph Algorithms
N L=

F— e

Electrical flows: A powerful new tool for fast graph alg.

- Wealth of connections to graphs
= Very fast computation

Key question: Where else can electrical flows
primitive be useful?

Electrical Flows and Graph Algorithms

Key question: Where else can electrical flows
primitive be useful?

- Advancing our understanding of the convergence of
interior-point methods? Inspire new types of IPMs?

- Better “spectral” graph algorithms? (Stability is the key?)

- What other properties of random walks we can get a hold
on using electrical flows?

- Effective resistance metric as a basic way of looking at
graphs? (Seems more robust than shortest-path metric)

- Theory of directed flows/walks?

Thank you

Questions?

