Sketching complexity of 	graph cuts	
Alexandr Andoni

joint work with:	Robi Krauthgamer,
					David Woodruff

Graph compression
Why smaller graphs?
faster algorithms
use less storage space
easier visualization

 ?
Preserve some structure
Cuts

approximately
Other properties:
Distances, (multi-commodity) flows, electrical conductance…

Problem definition
Given G with n nodes and m edges
For any set S: cutG(S)≈cutH(S)
up to 1+ε approximation

G
H

Cut sparsifiers
[Benczur-Karger’96]:
can construct graph H with O(n/ε2log n) edges
Approach:
sample edges in the graph
non-uniform sampling

Cut sparsifiers: constructions
Ways to sample edges:
strong connectivity [BK’96]
connectivity, Nagamochi-Ibaraki index [FHHP’11]
random spanning trees [GRV’09, FHHP’11]
effective resistances [SS’08]
random spanners [KP’12]
Used to speed up cut problems [BK02, KL02, She09, Mad10]
All: sparsifiers of size O(n/ε2polylog n) edges
Can we do better?
Yes: O(n/ε2) edges [BSS’09]

Dependence on ε ?
Factor of 1/ε can be expensive!
Seems hard to avoid 1/ε2:
for spectral sparsification: O(n/ε2) is optimal [Alon-Boppana, Batson-Spielman-Srivastava’09]
But still…
for cut sparsifiers?
above lower bounds are for complete graph
we know how to estimate cuts in complete graphs!

Our results
Lower bound:
Ω(n/ε2) bits required to represent a cut sparsifier
Upper bound:
O(n/εpolylog n) sufficient for a relaxed notion!
Relaxations:
1) instead of graph H => sketch H (data structure)
2) each “query” cut S preserved with high probability
in contrast: all cuts at the same time

G
H

S

cut(S)

8

Motivating example
Sampling in complete graph:
sample each edge with Pr=s/n
degree of each node
vertex cut: need s≈1/ε2 for (1+ε) approximation
essentially optimal for spectral sparsification [AB, BSS09]
If only interested in cut values:
can store the degrees => O(n) space
for much larger cuts S, sampling is ok

Upper Bound
Three parts:
i) sketch description
ii) sketch size is O(n/ε log2n)
iii) estimation algorithm, correctness

will focus on unweighted graphs

i) Sketch
1) guess coarse cut value V
down-sample edges with probability 1/ε21/V
i.e., cuts of value ≈V become of value ≈1/ε2
2) decompose along sparse cuts:
in a connected component C, if exists P, |P|≤|C|/2, s.t.
	cut(P) ≤ 1/ε|P|
store cross-cut edges, (P, C\P)
delete cross-cut edges from the graph, repeat
3) from remaining graph, store:
connected (dense) components
degree dx for each node x
a sample of s=1/ε edges out of each node
for each i=1,2,3…
build sketch for guess V=2i

ii) Sketch size
Storing:
Edges across sparse cuts
Node degrees, connected components
Sample of 1/ε edges out of each node
Claim: total # edges across sparse cuts is O(n/ε · log n)
sparse cut P => store ≤|P|·1/ε edges
“charge” edges to nodes in P => 1/ε edges per node
if node is charged, the size of its connected component halfs => can be charged only O(log n) times!
Overall space: O(n/ε ·log n) · O(log n)

O(n) space
O(n/ε) space
O(n/ε log n) space

iii) Estimation
Given set S, need to estimate cut(S)
Assume V=factor 2 guess of cut(S)
estimate(S) = normalization * sum of
of sparse-cut edges in cut(S)
for each dense component C:
[sum of degrees inside SC] – [estimate of # edges inside SC]
where SC = S intersection C
(instead of: estimate of # of cross edges!)

=ε2V
(from down-sampling)

\sum_{x\in S_C} d_x - \sum_{(x,y)\in S_C} \frac{d_x}{s}\cdot \chi\left[(x,y) \hbox{sampled edge}\right]
13

Estimation illustration
estimate(S) = normalization * sum of
of sparse-cut edges in cut(S)
for each dense component C

dense components

C
S
SC

\sum_{x\in S_C} d_x - {\color[rgb]{0.900000,0.000000,0.000000}\sum_{(x,y)\in S_C\times S_C}\frac{d_x}{s}\cdot \chi\left[(x,y) \hbox{ sampled edge}\right]}
14

iii) Correctness
Each of 3 steps preserves cut value up to 1+ε

1) down-sample to ≈1/ε2 cut value
approximation error 1+ε
2) edges across sparse cuts: no further approx!
3) edges inside a dense component?
estimate of # edges inside SC has less variance than estimate of # edges across cut(SC)

Why not cross-cut edges?
cross-cut edges, cut(SC), can be ≈O(1/ε2)
Problem if all incident to one node:
need O(1/ε2) sampled edges from that node for 1+ε approximation
We show: no such issue for internal edges!
 is small => each node contributes few edges
more nodes => more samples

Inside-edges estimate
Estimate for component C:

Claim 1: SC is small: |SC|≤2/ε
cut(SC) ≥ 1/ε ·|SC| 	(SC not a sparse cut)
cut(SC) ≤ 2/ε2 			(guessed cut value up to fac 2)
hence |SC|≤2/ε

SC

Inside edges estimate

Claim 1: SC is small, |SC|≤2/ε
Claim 2: Σ has standard deviation 3ε·cut(SC)
edges inside SC can be large too, ≈O(1/ε2)
but cannot all be incident to the same node!
#edges inside large only if |SC|≈1/ε nodes
over all of them, 1/ε2 sampled edges!

Wrap-up of upper bound
Attentive variance calculation completes proof
1+O(ε) multiplicative approximation by Chebyshev inequality
As usual: “high probability” by repeating logarithmic number of times
Construction time?
requires computing sparse cuts… NP-hard problem!
OK to compute approximate sparse cuts!
α-approximation => sketch size O(α · n/ε · log2 n)
E.g., using [Madry’10]:
O(mn1+δ/ε) runtime for O(n/ε · polylog n) space

An application
Sketching for global min-cut
Theorem: can compute sketch(G), of size O(n/ε · polylog n) so that:
sketch(G1), sketch(G2) enough to compute global min-cut of G1+G2
Obviously extends to >>2 partitions of graph
Previous approaches have 1/ε2 dependence [AG09, KL13, AGM12, GKK10, GKP12, KLMMS14]

\sum_{x\in S_C} d_x - {\color[rgb]{0.900000,0.000000,0.000000}\sum_{(x,y)\in S_C\times S_C}\frac{d_x}{s}\cdot \chi\left[(x,y) \hbox{sampled edge}\right]}
20

Sketching for global min-cut
Idea:
store two “cut sparsifiers”:
1) relaxed: O(n/ε · polylog n) space
2) classic, for 1.5-approximation: O(n· log n) space
Why enough?
[Karger’94]: only ≤n3 cuts within 1.5 of global min-cut
list ≤n3 such cuts using (2)
for each, estimate up to 1+ε using (1)
In general: sketch good for polynomial # of (non-adaptive) queries

Lower Bound
Are relaxations necessary?
graph H => sketch H
each cut S preserved with high probability
Theorem: if sketch H can 1+ε approximate the value of every cut S, then H must use Ω(n/ε2) bits.
Proof: via communication complexity
need to use the fact that we can ask H an exponential number of cut queries!

Proof outline
Assume:
need to prove Ω(n2) bits required
Will solve Index(Gap-Ham) problem using sketch H
then, Index(Gap-Ham) lower bound => H lower bound

s1, s2…sn : strings in {0,1}n
t : string in {0,1}n
index 1≤k≤n
communication
Problem: distinguish
	Δ(t,sk)<n/2-r	(close)
	Δ(t,sk)>n/2+r	(far)

\varepsilon=10/\sqrt{n},\ r=0.1\sqrt{n}
http://inhabitat.com/university-of-leicester-unveils-green-alice-supercomputer/
http://gadgetsgo.com/BOB-Parents_TV-video_game_timer-control_for_kids.html
23

Index(Gap-Ham)
Essentially n-fold of Gap-Hamming
Distribution:
all s1, s2, …sn, t are random, conditioned on Δ(t,si) satisfying one of the 2 conditions
Lemma: Index(Gap-Ham) requires Ω(n2) communication

s1, s2…sn : strings in {0,1}n
t : string in {0,1}n
index 1≤k≤n
communication
Problem: distinguish
	Δ(t,sk)<n/2-r	(close)
	Δ(t,sk)>n/2+r	(far)

Index(Gap-Ham) via cut-sketch H
Alice constructs a graph G (with 2n nodes)
sends the cut-sketch H=sketch(G) to Bob
Bob uses H to decide on Index(Gap-Ham)

n=4
s1
s2
s3
s4

H

string t => set T
compute set S, of size n/2, minimizing cut(S U T)

t=0011
if k inside S, output
Δ(t,sk)<n/2-r

Intuition

Hence, Bob chooses S that maximizes
where
Need to prove: k in S iff Δ(t,sk)<n/2-r

n=4
s1
s2
s3
s4

H
string t => set T
compute set S, of size n/2, minimizing cut(S U T)
if k inside S, output
Δ(t,sk)<n/2-r

\hbox{cut}(S\cup T)=n/2\cdot n/2+\sum_{x\in T} d_x - \sum_{i\in S} |N(s_i)\cap T|
\sum_{i\in S} f_i
f_i=|N(s_i)\cap T|
26

Intuition 2
Bob chooses that maximizes
where
each distributed as Binomial
up to error => additive
Consider set s.t. is >n/4+r/2
i.e., exactly ’s for which implies “close” answer
If no approximation, then in L iff “close”
Still, 80% of must be contained in S with 90% probability
otherwise, error >>
if answer is “close”: since is random from , there is 80% chance also in (=>correct answer!)
similarly for “far”

Finale
Cut sparsifiers of O(n/ε log2 n) size
under relaxations:
1) sketch (instead of a graph)
2) “with high probability” per query (instead of “for all”)
relaxation (2) is necessary
otherwise, need O(n/ε2) size
Open questions:
first relaxation necessary?
i.e., estimate “#edges across cut” vs “sum degrees - #edges inside”
applications where “whp” guarantee enough ?
polynomial # of (non-adaptive) queries?
same guarantee for spectral sparsification ?
1/ε1.6 achievable [Chen, Qin, Woodruff, Zhang]

image1.emf

≈

image2.png

image3.png

image2.emf

∑

x∈SC

dx −
∑

(x,y)∈SC×SC

dx
s

· χ [(x, y) sampled edge]

image5.png

image4.png

image6.png

image7.emf

ε = 10/
√
n, r = 0.1

√
n

image8.emf

cut(S ∪ T) = n/2 · n/2 +
∑

x∈T

dx −
∑

i∈S

|N(si) ∩ T |

image9.emf

∑

i∈S

fi

image10.emf

fi = |N(si) ∩ T |

image12.png

