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Very successful; e.g. topic models for documents, hidden
markov models for speech, ...
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Topic model for documents

Large collection of documents

Carricature model: each document is about a topic, and each
topic is a distribution over n words; e.g.

aardvark | apple ball lion | ... | zebra
sports 0 0.0002 | 0.005 | 0.0001
wildlife | 0.0006 0 0.0001 | 0.005

Model parameters:
» probability that document is on topic i : w; (sum to 1)

» word probability vector for topic 7 : p; € R
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Generating a document: say r-word document

wy
Topic

r words

ASSUMPTION: picking a document from corpus at random,
randomly sampling r» words = picking r word document as
above

Goal: find the {w,,p,}
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What about tensors?

Experiment: Pick three random words from random document

QUESTION: What is
Pr[word; = ¢, words = j, words = k|?

Precisely equal to Zf;l wypr (1) pr(5)pr (k).

(i,, k)
\\_/ = Zle wy(pr @ pr @ pr).

Finding parameters = tensor decomposition!
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Recipe for tensor methods in mixture models

Algebraic statistics literature: [Allman, Mathias, Rhodes 09], ...

1. Estimate a tensor whose decomposition allows reading off
the model parameters

2. Use tensor decomposition

Many applications: mixtures of gaussians, hidden markov
models, communities, crabs, ...



Are we done?
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Two caveats

Efficiency
We need polynomial time algorithms for decomposition!
Given T = Zil Pr ® pr @ py, can we find {p,} 2,7

Robustness

Algorithm needs to work with noisy tensor

In applications, we estimate the tensor from samples. N
samples = 1/4/N error per entry, typically.

GOAL: Given, target accuracy ¢, and

R
T= Zp'r' &Q pr & Dr +N, with HNH < 6/p01y(n),
r=1

recover {p,} up to error ¢.
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A success story: the full rank case

R
Given T = ZPT @pr @pr+ N, [|N| <e/poly(n)

r=1
Define P : matrix (n x R) with columns {p,}.

Theorem

If or(P) > 1/poly (n), then can find {p,} up to error € in polynomial
time.

Discovered many times: [Harshman 72], [Leurgans, et al. 93], [Chang 96], [Anandkumar, et al.
10], [Goyal et al. 13], ...
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Beyond non degeneracy

QUESTION: Can we approximately recover parameters under
weaker conditions? What about the case R > n?

This talk: easier problem of identifiability.
Theorem (Informal theorem.)
If the Kruskal rank condition holds, then it is possible to recover
the decomposition up to error .
» Not efficient ®; open problem to do it efficiently

» Can be done if the components are nearly orthogonal
[Anandkumar et al. 14]
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Kruskal’s theorem (1977)

R
T:Zai®bi®ci

r=1

GOAL: Find conditions under which the decomposition unique.

Kruskal rank
For matrix A(n x R), the rank is the largest integer k(A) s.t.
every k(A) columns of A are linearly independent.

Note: Much stronger than the usual notion of rank; reminiscent of restricted isometry

Theorem (Kruskal)

Suppose T is defined as above, and A, B,C are n X R matrices
with columns a,, by, c., respectively.
Then a sufficient condition for uniqueness of decomposition is

k(A) + k(B) + k(C) > 2R + 2
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Our result

R
T:Zai®b¢®0i+/\f

r=1

GOAL: Find conditions under which decomposition is unique*.

Robust Kruskal rank

For matrix A(n x R) and parameter 7 > 0, the rank is the
largest integer k,(A) s.t. every n x k,(A) submatrix has
condition number < 7.

Note: Recall that condition number of B is omax(B)/omin(B)-

Theorem (Rough)

Let T be as above, and A, B,C be n X R matrices as before.
Then the decomposition is robustly unique if

ke (A) + kr (B) + k- (C) > 2R + 2



Our result

rank k-tensors

We show: For any € > 0, there is an ¢/ = £/poly(n), such that
T =, T' implies the decompositions are e-close, up to a
permutation.



Our result
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Theorem (Formal)

Suppose T, T are defined as above, and A, B,C,A’,B’,C" aren x R
matrices. Further, suppose for some T > 0, that

kr(A)+ k- (B)+ k- (C)>2R+2.
Then for any € > 0, there is an &' = /poly(n, ) such that if
T —T'|| <€, then there exist diagonal matrices T4, T'p,T¢c, and a

permutation 11 such that ToTl'pl'c = I, and

A =.T4IIA, B =.TglB, C =.TcIC.
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Remarks

» Conditions only about k-(A), k-(B), k- (C); nothing is
needed about A’, B, C’ (except an upper bound on column
lengths)

» Implies that no tensor close to T has rank < R

» Naturally generalizes to higher order tensors (similar to De
Lathauwer’s extension of Kruskal’s theorem)

Main difficulty in proof: handling 1/poly(n) noise

(If ¢’ = e/exp(n), much easier to show that decompositions are e-close)
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Proof overview

Suppose A, B,C, A’, B',C" are n x R, column lengths < p, and
kr(A) =k (B) =k, (C)=n ; R=4n/3.

(I.e., any n columns of A, B, C are well conditioned (thus lin.ind.))

1. Show that A’ is a scaled permutation of A, B’ of B, C' of C

2. Show that permutations are equal, and scalings multiply to
identity

Crux: first part — “permutation lemma”
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Permutation lemma

Sufficient conditions for A, A’ having same columns (up to
permutation)

/ * %
b
(Suppose for now, that no two cols of A’ are parallel)

Key idea. Look at the spaces spanned S
by subsets of columns of A, A’.

Definition: (Ag) := span of columns
indexed by S C [R]

Informal: Suppose for all S of size (n — 1), (A%) “contains” at
least |S| columns of A. Then the same is true for all S.

(If true for |S| = 1, then every column of A’ is parallel to some column of A)
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» define S; = S U {i}, for various i ¢ S — (n/3) + 2 such..
> let 7; be indices of cols of A that lie in (A% ); [T;| > (n — 1)

Main idea. Any col in T; N T; must be contained in (A%)

1. Say we have: a =) cgara, +aja; =3 g Bra, + Bja;

!, a/; are not parallel, this means «; = 5; =0

2. Since a;, j
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Making things robust — permutation lemma

Sufficient conditions for A, A" having approzimately same
columns (up to permutation)

Key idea. Look at the spaces spanned

by subsets of columns of A, A’. A

Informal: Suppose for all S of size (n — 1), (A%) contains at
least |S| columns of A, up to error e. Then the same is true for
all S, with error ¢'.

(If true for singletons, then every col of A’ is €’-close to a scaling of a col of A)
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Directions

Are there polynomial time algorithms under Kruskal’s
conditions?

What about other tensor based algorithms in the case R > n?
(a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et
al. 13])

(b) Recent work assuming incoherence [Anandkumar, et al. 14]

Can we show “robust” uniqueness under more algebraic
conditions?

Can we show that a generic n X n X n tensor has a “stable”
unique decomposition up to rank n?/4?



Thank youl

Questions?




