A Robust Form of Kruskal's Identifiability Theorem

Aditya Bhaskara (Google NYC)

ション ふゆ マ キャット しょう くしゃ

Background: "understanding" data

Data from various sources:

QUESTION ("simple explanation"): can we think of data as being *generated* from a model with a small number of parameters?

・ロト ・個ト ・モト ・モト

Background: "understanding" data

Data from various sources:

QUESTION ("simple explanation"): can we think of data as being *generated* from a model with a small number of parameters?

Very successful; e.g. topic models for documents, hidden markov models for speech, ...

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Large collection of documents

Carricature model: each document is about a topic, and each topic is a distribution over n words;

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Large collection of documents

Carricature model: each document is about a topic, and each topic is a distribution over n words; e.g.

	aardvark	apple	ball	lion	 zebra
sports	0	0.0002	0.005	0.0001	
wildlife	0.0006	0	0.0001	0.005	

Large collection of documents

Carricature model: each document is about a topic, and each topic is a distribution over n words; e.g.

	aardvark	apple	ball	lion	 zebra
sports	0	0.0002	0.005	0.0001	
wildlife	0.0006	0	0.0001	0.005	

Model parameters:

• probability that document is on topic $i: w_i$ (sum to 1)

ション ふゆ マ キャット しょう くしゃ

• word probability vector for topic i: $p_i \in \mathbb{R}^n$

Topic model for documents

Generating a document: say r-word document

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Topic model for documents

Generating a document: say r-word document

ASSUMPTION: picking a document from corpus at random, randomly sampling r words \equiv picking r word document as above

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Topic model for documents

Generating a document: say r-word document

ASSUMPTION: picking a document from corpus at random, randomly sampling r words \equiv picking r word document as above

Goal: find the $\{w_r, p_r\}$

ション ふゆ マ キャット しょう くしゃ

What about tensors?

Experiment: Pick three random words from random document QUESTION: What is

 $\Pr[\text{word}_1 = i, \text{word}_2 = j, \text{word}_3 = k]?$

・ロト ・ 日 ・ モー・ モー・ うへぐ

What about tensors?

Experiment: Pick three random words from random document QUESTION: What is

 $\Pr[\operatorname{word}_1 = i, \operatorname{word}_2 = j, \operatorname{word}_3 = k]?$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Precisely equal to $\sum_{r=1}^{R} w_r p_r(i) p_r(j) p_r(k)$.

What about tensors?

Experiment: Pick three random words from random document QUESTION: What is

$$\Pr[\operatorname{word}_1 = i, \operatorname{word}_2 = j, \operatorname{word}_3 = k]?$$

Precisely equal to $\sum_{r=1}^{R} w_r p_r(i) p_r(j) p_r(k)$.

 \therefore Finding parameters \equiv tensor decomposition!

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Recipe for tensor methods in mixture models

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Algebraic statistics literature: [Allman, Mathias, Rhodes 09], ...

1. Estimate a tensor whose decomposition allows reading off the model parameters

Recipe for tensor methods in mixture models

うして ふゆう ふほう ふほう ふしつ

Algebraic statistics literature: [Allman, Mathias, Rhodes 09], ...

- 1. Estimate a tensor whose decomposition allows reading off the model parameters
- 2. Use tensor decomposition

Recipe for tensor methods in mixture models

うして ふゆう ふほう ふほう ふしつ

Algebraic statistics literature: [Allman, Mathias, Rhodes 09], ...

- 1. Estimate a tensor whose decomposition allows reading off the model parameters
- 2. Use tensor decomposition

Many applications: mixtures of gaussians, hidden markov models, communities, crabs, ...

Are we done?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Efficiency We need polynomial time algorithms for decomposition! Given $T = \sum_{r=1}^{R} p_r \otimes p_r \otimes p_r$, can we find $\{p_r\}_{r=1}^{R}$?

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Efficiency

We need polynomial time algorithms for decomposition! Given $T = \sum_{r=1}^{R} p_r \otimes p_r \otimes p_r$, can we find $\{p_r\}_{r=1}^{R}$?

Robustness

Algorithm needs to work with *noisy* tensor

In applications, we estimate the tensor from samples. N samples $\implies 1/\sqrt{N}$ error per entry, typically.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Efficiency

We need polynomial time algorithms for decomposition! Given $T = \sum_{r=1}^{R} p_r \otimes p_r \otimes p_r$, can we find $\{p_r\}_{r=1}^{R}$?

Robustness

Algorithm needs to work with *noisy* tensor

In applications, we estimate the tensor from samples. N samples $\implies 1/\sqrt{N}$ error per entry, typically.

GOAL: Given, target accuracy ε , and

$$T = \sum_{r=1}^{R} p_r \otimes p_r \otimes p_r + \mathcal{N}, \text{ with } \|\mathcal{N}\| < \varepsilon/\text{poly}(n),$$

recover $\{p_r\}$ up to error ε .

A success story: the full rank case

Given
$$T = \sum_{r=1}^{R} p_r \otimes p_r \otimes p_r + \mathcal{N}, \quad ||\mathcal{N}|| < \varepsilon/\text{poly}(n)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Define P: matrix $(n \times R)$ with columns $\{p_r\}$.

A success story: the full rank case

Given
$$T = \sum_{r=1}^{R} p_r \otimes p_r \otimes p_r + \mathcal{N}, \quad ||\mathcal{N}|| < \varepsilon/\text{poly}(n)$$

Define P: matrix $(n \times R)$ with columns $\{p_r\}$.

Theorem If $\sigma_R(P) > 1/\operatorname{poly}'(n)$, then can find $\{p_r\}$ up to error ε in polynomial time.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A success story: the full rank case

Given
$$T = \sum_{r=1}^{R} p_r \otimes p_r \otimes p_r + \mathcal{N}, \quad ||\mathcal{N}|| < \varepsilon/\text{poly}(n)$$

Define P: matrix $(n \times R)$ with columns $\{p_r\}$.

Theorem If $\sigma_R(P) > 1/poly'(n)$, then can find $\{p_r\}$ up to error ε in polynomial time.

Discovered many times: [Harshman 72], [Leurgans, et al. 93], [Chang 96], [Anandkumar, et al. 10], [Goyal et al. 13], ...

ション ふゆ アメリア ション ひゃく

QUESTION: Can we approximately recover parameters under weaker conditions? What about the case R > n?

・ロト ・ 日 ・ モー・ モー・ うへぐ

QUESTION: Can we approximately recover parameters under weaker conditions? What about the case R > n?

This talk: easier problem of *identifiability*. Theorem (Informal theorem.) If the Kruskal rank condition holds, then it is possible to recover the decomposition up to error ε .

ション ふゆ マ キャット しょう くしゃ

QUESTION: Can we approximately recover parameters under weaker conditions? What about the case R > n?

This talk: easier problem of *identifiability*.

Theorem (Informal theorem.)

If the Kruskal rank condition holds, then it is possible to recover the decomposition up to error ε .

うして ふゆう ふほう ふほう ふしつ

▶ Not efficient ☺; open problem to do it efficiently

QUESTION: Can we approximately recover parameters under weaker conditions? What about the case R > n?

This talk: easier problem of *identifiability*.

Theorem (Informal theorem.)

If the Kruskal rank condition holds, then it is possible to recover the decomposition up to error ε .

- ▶ Not efficient ☺; open problem to do it efficiently
- ► Can be done if the components are *nearly orthogonal* [Anandkumar et al. 14]

ション ふゆ マ キャット マックシン

$$T = \sum_{r=1}^{R} a_i \otimes b_i \otimes c_i$$

GOAL: Find conditions under which the decomposition unique.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$T = \sum_{r=1}^{R} a_i \otimes b_i \otimes c_i$$

GOAL: Find conditions under which the decomposition unique.

Kruskal rank For matrix $A(n \times R)$, the rank is the largest integer k(A) s.t. every k(A) columns of A are linearly independent.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$T = \sum_{r=1}^{R} a_i \otimes b_i \otimes c_i$$

GOAL: Find conditions under which the decomposition unique.

Kruskal rank For matrix $A(n \times R)$, the rank is the largest integer k(A) s.t. every k(A) columns of A are linearly independent.

うして ふゆう ふほう ふほう ふしつ

Note: Much stronger than the usual notion of rank; reminiscent of restricted isometry

$$T = \sum_{r=1}^{R} a_i \otimes b_i \otimes c_i$$

GOAL: Find conditions under which the decomposition unique.

Kruskal rank For matrix $A(n \times R)$, the *rank* is the largest integer k(A) s.t. every k(A) columns of A are linearly independent.

Note: Much stronger than the usual notion of rank; reminiscent of restricted isometry Theorem (Kruskal)

Suppose T is defined as above, and A, B, C are $n \times R$ matrices with columns a_r, b_r, c_r , respectively. Then a sufficient condition for uniqueness of decomposition is

$$k(A) + k(B) + k(C) \ge 2R + 2$$

$$T = \sum_{r=1}^{R} a_i \otimes b_i \otimes c_i + \mathcal{N}$$

GOAL: Find conditions under which decomposition is unique^{*}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$T = \sum_{r=1}^{R} a_i \otimes b_i \otimes c_i + \mathcal{N}$$

GOAL: Find conditions under which decomposition is unique^{*}.

ション ふゆ マ キャット マックシン

Robust Kruskal rank For matrix $A(n \times R)$ and parameter $\tau > 0$, the rank is the largest integer $k_{\tau}(A)$ s.t. every $n \times k_{\tau}(A)$ submatrix has condition number $< \tau$.

Note: Recall that condition number of B is $\sigma_{\max}(B)/\sigma_{\min}(B)$.

$$T = \sum_{r=1}^{R} a_i \otimes b_i \otimes c_i + \mathcal{N}$$

GOAL: Find conditions under which decomposition is unique^{*}.

Robust Kruskal rank For matrix $A(n \times R)$ and parameter $\tau > 0$, the rank is the largest integer $k_{\tau}(A)$ s.t. every $n \times k_{\tau}(A)$ submatrix has condition number $< \tau$.

Note: Recall that condition number of B is $\sigma_{\max}(B)/\sigma_{\min}(B)$.

Theorem (Rough)

Let T be as above, and A, B, C be $n \times R$ matrices as before. Then the decomposition is robustly unique if

$$k_{\tau}(A) + k_{\tau}(B) + k_{\tau}(C) \ge 2R + 2$$

We show: For any $\varepsilon > 0$, there is an $\varepsilon' = \varepsilon/\text{poly}(n)$, such that $T =_{\varepsilon'} T'$ implies the decompositions are ε -close, up to a permutation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$T = \sum_{r=1}^{R} a_i \otimes b_i \otimes c_i \quad ; \quad T' = \sum_{r=1}^{R} a'_i \otimes b'_i \otimes c'_i$$

Theorem (Formal)

Suppose T, T' are defined as above, and A, B, C, A', B', C' are $n \times R$ matrices. Further, suppose for some $\tau > 0$, that

$$k_{\tau}(A) + k_{\tau}(B) + k_{\tau}(C) \ge 2R + 2.$$

Then for any $\varepsilon > 0$, there is an $\varepsilon' = \varepsilon/\operatorname{poly}(n, \tau)$ such that if $||T - T'|| < \varepsilon'$, then there exist diagonal matrices $\Gamma_A, \Gamma_B, \Gamma_C$, and a permutation Π such that $\Gamma_A \Gamma_B \Gamma_C = I$, and

$$A' =_{\varepsilon} \Gamma_A \Pi A, \quad B' =_{\varepsilon} \Gamma_B \Pi B, \quad C' =_{\varepsilon} \Gamma_C \Pi C.$$

うして ふゆう ふほう ふほう ふしつ

Remarks

• Conditions only about $k_{\tau}(A), k_{\tau}(B), k_{\tau}(C)$; nothing is needed about A', B', C' (except an upper bound on column lengths)

・ロト ・ 日 ・ モー・ モー・ うへぐ
Remarks

• Conditions only about $k_{\tau}(A), k_{\tau}(B), k_{\tau}(C)$; nothing is needed about A', B', C' (except an upper bound on column lengths)

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

• Implies that no tensor *close* to T has rank < R

Remarks

- Conditions only about $k_{\tau}(A), k_{\tau}(B), k_{\tau}(C)$; nothing is needed about A', B', C' (except an upper bound on column lengths)
- Implies that no tensor *close* to T has rank < R
- Naturally generalizes to higher order tensors (similar to De Lathauwer's extension of Kruskal's theorem)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Remarks

- Conditions only about $k_{\tau}(A), k_{\tau}(B), k_{\tau}(C)$; nothing is needed about A', B', C' (except an upper bound on column lengths)
- Implies that no tensor *close* to T has rank < R
- Naturally generalizes to higher order tensors (similar to De Lathauwer's extension of Kruskal's theorem)

Main difficulty in proof: handling 1/poly(n) noise

(If $\varepsilon' = \varepsilon/\exp(n)$, much easier to show that decompositions are ε -close)

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Suppose A, B, C, A', B', C' are $n \times R$, column lengths $\leq \rho$, and

$$k_{\tau}(A) = k_{\tau}(B) = k_{\tau}(C) = n$$
; $R = 4n/3$.

(I.e., any n columns of A, B, C are well conditioned (thus lin.ind.))

Suppose A, B, C, A', B', C' are $n \times R$, column lengths $\leq \rho$, and

$$k_{\tau}(A) = k_{\tau}(B) = k_{\tau}(C) = n$$
; $R = 4n/3$.

(I.e., any n columns of A, B, C are well conditioned (thus lin.ind.))

- 1. Show that A' is a scaled permutation of A, B' of B, C' of C
- 2. Show that permutations are equal, and scalings multiply to identity

うして ふゆう ふほう ふほう ふしつ

Suppose A, B, C, A', B', C' are $n \times R$, column lengths $\leq \rho$, and

$$k_{\tau}(A) = k_{\tau}(B) = k_{\tau}(C) = n$$
; $R = 4n/3$.

(I.e., any n columns of A, B, C are well conditioned (thus lin.ind.))

- 1. Show that A' is a scaled permutation of A, B' of B, C' of C
- 2. Show that permutations are equal, and scalings multiply to identity

Crux: first part – "permutation lemma"

うして ふゆう ふほう ふほう ふしつ

Sufficient conditions for A, A' having same columns (up to permutation)

(Suppose for now, that no two cols of A' are parallel)^{**}

Sufficient conditions for A, A' having same columns (up to permutation)

(Suppose for now, that no two cols of A' are parallel)^{**}

Key idea. Look at the spaces spanned by subsets of columns of A, A'.

Definition: $\langle A_S \rangle :=$ span of columns indexed by $S \subseteq [R]$

うして ふゆう ふほう ふほう ふしつ

Sufficient conditions for A, A' having same columns (up to permutation)

(Suppose for now, that no two cols of A' are parallel)^{**}

Key idea. Look at the spaces spanned by subsets of columns of A, A'.

Definition: $\langle A_S \rangle$:= span of columns indexed by $S \subseteq [R]$

Informal: Suppose for all S of size (n-1), $\langle A'_S \rangle$ "contains" at least |S| columns of A. Then the same is true for all S.

Sufficient conditions for A, A' having same columns (up to permutation)

(Suppose for now, that no two cols of A' are parallel)^{**}

Key idea. Look at the spaces spanned by subsets of columns of A, A'.

Definition: $\langle A_S \rangle$:= span of columns indexed by $S \subseteq [R]$

うして ふゆう ふほう ふほう ふしつ

Informal: Suppose for all S of size (n-1), $\langle A'_S \rangle$ "contains" at least |S| columns of A. Then the same is true for all S.

(If true for |S| = 1, then every column of A' is parallel to some column of A)

 $a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \dots \approx a'_1 \otimes b'_1 \otimes c'_1 + a'_2 \otimes b'_2 \otimes c'_2 + \dots$

For any w, $\sum_{r=1}^{4n/3} \langle w, a_r \rangle (b_r \otimes c_r) \approx \sum_{r=1}^{4n/3} \langle w, a'_r \rangle (b'_r \otimes c'_r)$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

 $a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \dots \approx a'_1 \otimes b'_1 \otimes c'_1 + a'_2 \otimes b'_2 \otimes c'_2 + \dots$

For any w, $\sum_{r=1}^{4n/3} \langle w, a_r \rangle (b_r \otimes c_r) \approx \sum_{r=1}^{4n/3} \langle w, a'_r \rangle (b'_r \otimes c'_r).$

うして ふゆう ふほう ふほう ふしつ

1. Pick w to be orthogonal to $\langle A'_S \rangle$

 $a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \dots \approx a'_1 \otimes b'_1 \otimes c'_1 + a'_2 \otimes b'_2 \otimes c'_2 + \dots$

For any
$$w$$
, $\sum_{r=1}^{4n/3} \langle w, a_r \rangle (b_r \otimes c_r) \approx \sum_{r=1}^{4n/3} \langle w, a'_r \rangle (b'_r \otimes c'_r).$

- 1. Pick w to be orthogonal to $\langle A'_S \rangle$
- 2. Only n/3 + 1 terms remain on RHS \implies at most this number must remain on LHS! (by Kruskal condition)

うして ふゆう ふほう ふほう ふしつ

 $a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \dots \approx a'_1 \otimes b'_1 \otimes c'_1 + a'_2 \otimes b'_2 \otimes c'_2 + \dots$

For any
$$w$$
, $\sum_{r=1}^{4n/3} \langle w, a_r \rangle (b_r \otimes c_r) \approx \sum_{r=1}^{4n/3} \langle w, a'_r \rangle (b'_r \otimes c'_r).$

- 1. Pick w to be orthogonal to $\langle A'_S \rangle$
- 2. Only n/3 + 1 terms remain on RHS \implies at most this number must remain on LHS! (by Kruskal condition)
- 3. Implies at least (n-1) cols $\{a_r\}$ belong to $\langle A'_S \rangle$

 $a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \dots \approx a'_1 \otimes b'_1 \otimes c'_1 + a'_2 \otimes b'_2 \otimes c'_2 + \dots$

For any
$$w$$
, $\sum_{r=1}^{4n/3} \langle w, a_r \rangle (b_r \otimes c_r) \approx \sum_{r=1}^{4n/3} \langle w, a'_r \rangle (b'_r \otimes c'_r).$

- 1. Pick w to be orthogonal to $\langle A'_S \rangle$
- 2. Only n/3 + 1 terms remain on RHS \implies at most this number must remain on LHS! (by Kruskal condition)
- 3. Implies at least (n-1) cols $\{a_r\}$ belong to $\langle A'_S \rangle$

Show for $|S| = (n - 2), \dots, 1$:

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Show for $|S| = (n - 2), \dots, 1$:

- start with some S of size (n-2)
- define $S_i = S \cup \{i\}$, for various $i \notin S (n/3) + 2$ such..

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Show for |S| = (n-2), ..., 1:

- start with some S of size (n-2)
- define $S_i = S \cup \{i\}$, for various $i \notin S (n/3) + 2$ such..
- ▶ let T_i be indices of cols of A that lie in $\langle A'_{S_i} \rangle$; $|T_i| \ge (n-1)$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Show for |S| = (n-2), ..., 1:

- start with some S of size (n-2)
- define $S_i = S \cup \{i\}$, for various $i \notin S (n/3) + 2$ such..
- ▶ let T_i be indices of cols of A that lie in $\langle A'_{S_i} \rangle$; $|T_i| \ge (n-1)$

Main idea. Any col in $T_i \cap T_j$ must be contained in $\langle A'_S \rangle$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Show for |S| = (n-2), ..., 1:

- start with some S of size (n-2)
- ▶ define $S_i = S \cup \{i\}$, for various $i \notin S (n/3) + 2$ such..
- ▶ let T_i be indices of cols of A that lie in $\langle A'_{S_i} \rangle$; $|T_i| \ge (n-1)$

Main idea. Any col in $T_i \cap T_j$ must be contained in $\langle A'_S \rangle$

1. Say we have: $a = \sum_{r \in S} \alpha_r a'_r + \alpha_i a'_i = \sum_{r \in S} \beta_r a'_r + \beta_j a'_j$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Show for |S| = (n-2), ..., 1:

- start with some S of size (n-2)
- define $S_i = S \cup \{i\}$, for various $i \notin S (n/3) + 2$ such..
- ▶ let T_i be indices of cols of A that lie in $\langle A'_{S_i} \rangle$; $|T_i| \ge (n-1)$

Main idea. Any col in $T_i \cap T_j$ must be contained in $\langle A'_S \rangle$

1. Say we have: $a = \sum_{r \in S} \alpha_r a'_r + \alpha_i a'_i = \sum_{r \in S} \beta_r a'_r + \beta_j a'_j$ 2. Since a'_i, a'_j are not parallel, this means $\alpha_i = \beta_j = 0$

うして ふゆう ふほう ふほう ふしつ

Show for |S| = (n-2), ..., 1:

- start with some S of size (n-2)
- define $S_i = S \cup \{i\}$, for various $i \notin S (n/3) + 2$ such..
- ▶ let T_i be indices of cols of A that lie in $\langle A'_{S_i} \rangle$; $|T_i| \ge (n-1)$

Main idea. Any col in $T_i \cap T_j$ must be contained in $\langle A'_S \rangle$

Thus if T is the set of cols contained in $\langle A'_S \rangle$, then for any $i, j, T_i \cap T_j = T$

Show for |S| = (n-2), ..., 1:

- start with some S of size (n-2)
- ▶ define $S_i = S \cup \{i\}$, for various $i \notin S (n/3) + 2$ such..
- ▶ let T_i be indices of cols of A that lie in $\langle A'_{S_i} \rangle$; $|T_i| \ge (n-1)$

Main idea. Any col in $T_i \cap T_j$ must be contained in $\langle A'_S \rangle$

Thus if T is the set of cols contained in $\langle A'_S \rangle$, then for any $i, j, T_i \cap T_j = T$ Thus T_i form a sunflower family

(日)、(四)、(日)、(日)、

Thus if T is the set of cols contained in $\langle A'_S \rangle$, then for any $i, j, T_i \cap T_j = T$

Thus T_i form a sunflower family

・ロト ・御ト ・ヨト ・ヨト 三臣

Thus if T is the set of cols contained in $\langle A'_S \rangle$, then for any $i, j, T_i \cap T_j = T$

Thus T_i form a sunflower family

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Claim. Implies that the *core* has size $\geq (n-2)$

Thus if T is the set of cols contained in $\langle A'_S \rangle$, then for any $i, j, T_i \cap T_j = T$

Thus T_i form a sunflower family

Claim. Implies that the core has size $\geq (n-2)$ Proof. Basic counting argument. We know $|T_i| \geq n-1$ for all i.

Thus if T is the set of cols contained in $\langle A'_S \rangle$, then for any $i, j, T_i \cap T_j = T$

Thus T_i form a sunflower family

うして ふゆう ふほう ふほう ふしつ

Claim. Implies that the core has size $\geq (n-2)$ Proof. Basic counting argument. We know $|T_i| \geq n-1$ for all i.

Say |T| = n - 3, then $|T_i \setminus T| \ge 2$ for all *i*.

Thus if T is the set of cols contained in $\langle A'_S \rangle$, then for any $i, j, T_i \cap T_j = T$

Thus T_i form a sunflower family

うして ふゆう ふほう ふほう ふしつ

Claim. Implies that the core has size $\geq (n-2)$ Proof.

Basic counting argument. We know $|T_i| \ge n - 1$ for all *i*.

Say |T| = n - 3, then $|T_i \setminus T| \ge 2$ for all *i*.

These don't intersect for different i (sunflower!)

Thus if T is the set of cols contained in $\langle A'_S \rangle$, then for any $i, j, T_i \cap T_j = T$

Thus T_i form a sunflower family

うして ふゆう ふほう ふほう ふしつ

Claim. Implies that the core has size $\geq (n-2)$ Proof.

Basic counting argument. We know $|T_i| \ge n-1$ for all i.

Say |T| = n - 3, then $|T_i \setminus T| \ge 2$ for all *i*.

These don't intersect for different i (sunflower!)

Thus the #(cols) of A is $> (n-3) + 2 \times (n/3+2) > (4n/3)$.

Thus if T is the set of cols contained in $\langle A'_S \rangle$, then for any $i, j, T_i \cap T_j = T$

Thus T_i form a sunflower family

Claim. Implies that the core has size $\geq (n-2)$ Proof.

Basic counting argument. We know $|T_i| \ge n-1$ for all *i*.

Say |T| = n - 3, then $|T_i \setminus T| \ge 2$ for all *i*.

These don't intersect for different i (sunflower!)

Thus the #(cols) of A is $> (n-3) + 2 \times (n/3+2) > (4n/3)$.

Making things robust – permutation lemma

Sufficient conditions for A, A' having approximately same columns (up to permutation)

・ロト ・ 日 ・ モー・ モー・ うへぐ

Making things robust – permutation lemma

Sufficient conditions for A, A' having approximately same columns (up to permutation)

Key idea. Look at the spaces spanned by subsets of columns of A, A'.

(日) (四) (日) (日) (日)

Informal: Suppose for all S of size (n-1), $\langle A'_S \rangle$ contains at least |S| columns of A, up to error ε . Then the same is true for all S, with error ε' .

(If true for singletons, then every col of A' is ε' -close to a scaling of a col of A)

Suppose we have claim for |S| = (n-1) with error ε ; then can prove claim for |S| = (n-2) with error only $\varepsilon \cdot n$.

Suppose we have claim for |S| = (n-1) with error ε ; then can prove claim for |S| = (n-2) with error only $\varepsilon \cdot n$.

Continuing this way, we only get the claim for |S|=1 with error $\varepsilon\cdot\exp(n)$ \odot

Means the initial error should have been exponentially small..

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Suppose we have claim for |S| = (n-1) with error ε ; then can prove claim for |S| = (n-2) with error only $\varepsilon \cdot n$.

Continuing this way, we only get the claim for |S|=1 with error $\varepsilon\cdot\exp(n)$ \odot

Means the initial error should have been exponentially small..

The fix

• More combinatorial invariant (different definition of sets T)

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- Stronger sunflower argument
- ▶ Better "base case"

Suppose we have claim for |S| = (n-1) with error ε ; then can prove claim for |S| = (n-2) with error only $\varepsilon \cdot n$.

Continuing this way, we only get the claim for |S|=1 with error $\varepsilon\cdot\exp(n)$ \odot

Means the initial error should have been exponentially small..

The fix

• More combinatorial invariant (different definition of sets T)

- Stronger sunflower argument
- Better "base case"

What about other tensor based algorithms in the case R > n?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What about other tensor based algorithms in the case R > n? (a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et al. 13])

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

What about other tensor based algorithms in the case R > n? (a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et al. 13])

(b) Recent work assuming incoherence [Anandkumar, et al. 14]

ション ふゆ マ キャット しょう くしゃ

What about other tensor based algorithms in the case R > n? (a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et al. 13])

(b) Recent work assuming incoherence [Anandkumar, et al. 14]

Can we show "robust" uniqueness under more algebraic conditions?

うして ふゆう ふほう ふほう ふしつ

What about other tensor based algorithms in the case R > n? (a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et al. 13])

(b) Recent work assuming incoherence [Anandkumar, et al. 14]

Can we show "robust" uniqueness under more algebraic conditions?

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Can we show that a generic $n \times n \times n$ tensor has a "stable" unique decomposition up to rank $n^2/4$?

Thank you!

Questions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ