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Background: “understanding” data

Data from various sources:

QUESTION (“simple explanation”): can we think of data as
being generated from a model with a small number of

parameters?

Very successful; e.g. topic models for documents, hidden
markov models for speech, . . .
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Topic model for documents

Large collection of documents

Carricature model: each document is about a topic, and each
topic is a distribution over n words;

e.g.

aardvark apple ball lion . . . zebra

sports 0 0.0002 0.005 0.0001 . . .

wildlife 0.0006 0 0.0001 0.005 . . .

Model parameters:

I probability that document is on topic i : wi (sum to 1)

I word probability vector for topic i : pi ∈ Rn
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Topic model for documents

Generating a document: say r-word document

Topic

w1 w2
wR

word ∼ p2
word ∼ p2

word ∼ p2

r words

ASSUMPTION: picking a document from corpus at random,
randomly sampling r words ≡ picking r word document as

above

Goal: find the {wr, pr}
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What about tensors?

Experiment: Pick three random words from random document

QUESTION: What is

Pr[word1 = i,word2 = j,word3 = k]?

Precisely equal to
∑R

r=1wrpr(i)pr(j)pr(k).

(i, j, k)

=
∑R

r=1wr(pr ⊗ pr ⊗ pr).

∴ Finding parameters ≡ tensor decomposition!



What about tensors?

Experiment: Pick three random words from random document

QUESTION: What is

Pr[word1 = i,word2 = j,word3 = k]?

Precisely equal to
∑R

r=1wrpr(i)pr(j)pr(k).

(i, j, k)

=
∑R

r=1wr(pr ⊗ pr ⊗ pr).

∴ Finding parameters ≡ tensor decomposition!



What about tensors?

Experiment: Pick three random words from random document

QUESTION: What is

Pr[word1 = i,word2 = j,word3 = k]?

Precisely equal to
∑R

r=1wrpr(i)pr(j)pr(k).

(i, j, k)

=
∑R

r=1wr(pr ⊗ pr ⊗ pr).

∴ Finding parameters ≡ tensor decomposition!



Recipe for tensor methods in mixture models

Algebraic statistics literature: [Allman, Mathias, Rhodes 09], ...

1. Estimate a tensor whose decomposition allows reading off
the model parameters

2. Use tensor decomposition

Many applications: mixtures of gaussians, hidden markov
models, communities, crabs, ...
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Are we done?



Two caveats

Efficiency

We need polynomial time algorithms for decomposition!
Given T =

∑R
r=1 pr ⊗ pr ⊗ pr, can we find {pr}Rr=1?

Robustness
Algorithm needs to work with noisy tensor
In applications, we estimate the tensor from samples. N
samples =⇒ 1/

√
N error per entry, typically.

GOAL: Given, target accuracy ε, and

T =
R∑
r=1

pr ⊗ pr ⊗ pr +N , with ‖N‖ < ε/poly(n),

recover {pr} up to error ε.
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A success story: the full rank case

Given T =

R∑
r=1

pr ⊗ pr ⊗ pr +N , ‖N‖ < ε/poly(n)

Define P : matrix (n×R) with columns {pr}.

Theorem
If σR(P ) > 1/poly′(n), then can find {pr} up to error ε in polynomial
time.

Discovered many times: [Harshman 72], [Leurgans, et al. 93], [Chang 96], [Anandkumar, et al.
10], [Goyal et al. 13], ...
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Beyond non degeneracy

Question: Can we approximately recover parameters under
weaker conditions? What about the case R > n?

This talk: easier problem of identifiability.

Theorem (Informal theorem.)

If the Kruskal rank condition holds, then it is possible to recover
the decomposition up to error ε.

I Not efficient /; open problem to do it efficiently

I Can be done if the components are nearly orthogonal
[Anandkumar et al. 14]
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Kruskal’s theorem (1977)

T =

R∑
r=1

ai ⊗ bi ⊗ ci

GOAL: Find conditions under which the decomposition unique.

Kruskal rank
For matrix A(n×R), the rank is the largest integer k(A) s.t.
every k(A) columns of A are linearly independent.

Note: Much stronger than the usual notion of rank; reminiscent of restricted isometry

Theorem (Kruskal)

Suppose T is defined as above, and A,B,C are n×R matrices
with columns ar, br, cr, respectively.
Then a sufficient condition for uniqueness of decomposition is

k(A) + k(B) + k(C) ≥ 2R+ 2
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Our result

T =

R∑
r=1

ai ⊗ bi ⊗ ci +N

GOAL: Find conditions under which decomposition is unique∗.

Robust Kruskal rank
For matrix A(n×R) and parameter τ > 0, the rank is the
largest integer kτ (A) s.t. every n× kτ (A) submatrix has
condition number < τ .

Note: Recall that condition number of B is σmax(B)/σmin(B).

Theorem (Rough)

Let T be as above, and A,B,C be n×R matrices as before.
Then the decomposition is robustly unique if

kτ (A) + kτ (B) + kτ (C) ≥ 2R+ 2



Our result

T =

R∑
r=1

ai ⊗ bi ⊗ ci +N

GOAL: Find conditions under which decomposition is unique∗.

Robust Kruskal rank
For matrix A(n×R) and parameter τ > 0, the rank is the
largest integer kτ (A) s.t. every n× kτ (A) submatrix has
condition number < τ .

Note: Recall that condition number of B is σmax(B)/σmin(B).

Theorem (Rough)

Let T be as above, and A,B,C be n×R matrices as before.
Then the decomposition is robustly unique if

kτ (A) + kτ (B) + kτ (C) ≥ 2R+ 2



Our result

T =

R∑
r=1

ai ⊗ bi ⊗ ci +N

GOAL: Find conditions under which decomposition is unique∗.

Robust Kruskal rank
For matrix A(n×R) and parameter τ > 0, the rank is the
largest integer kτ (A) s.t. every n× kτ (A) submatrix has
condition number < τ .

Note: Recall that condition number of B is σmax(B)/σmin(B).

Theorem (Rough)

Let T be as above, and A,B,C be n×R matrices as before.
Then the decomposition is robustly unique if

kτ (A) + kτ (B) + kτ (C) ≥ 2R+ 2



Our result

T ′

T

rank k-tensors

We show: For any ε > 0, there is an ε′ = ε/poly(n), such that
T =ε′ T

′ implies the decompositions are ε-close, up to a
permutation.



Our result

T =

R∑
r=1

ai ⊗ bi ⊗ ci ; T ′ =

R∑
r=1

a′i ⊗ b′i ⊗ c′i

Theorem (Formal)
Suppose T, T ′ are defined as above, and A,B,C,A′, B′, C ′ are n×R
matrices. Further, suppose for some τ > 0, that

kτ (A) + kτ (B) + kτ (C) ≥ 2R+ 2.

Then for any ε > 0, there is an ε′ = ε/poly(n, τ) such that if
‖T − T ′‖ < ε′, then there exist diagonal matrices ΓA,ΓB ,ΓC , and a
permutation Π such that ΓAΓBΓC = I, and

A′ =ε ΓAΠA, B′ =ε ΓBΠB, C ′ =ε ΓCΠC.



Remarks

I Conditions only about kτ (A), kτ (B), kτ (C); nothing is
needed about A′, B′, C ′ (except an upper bound on column
lengths)

I Implies that no tensor close to T has rank < R

I Naturally generalizes to higher order tensors (similar to De
Lathauwer’s extension of Kruskal’s theorem)

Main difficulty in proof: handling 1/poly(n) noise

(If ε′ = ε/exp(n), much easier to show that decompositions are ε-close)
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Proof overview

Suppose A,B,C,A′, B′, C ′ are n×R, column lengths ≤ ρ, and

kτ (A) = kτ (B) = kτ (C) = n ; R = 4n/3.

(I.e., any n columns of A,B,C are well conditioned (thus lin.ind.))

1. Show that A′ is a scaled permutation of A, B′ of B, C ′ of C

2. Show that permutations are equal, and scalings multiply to
identity

Crux: first part – “permutation lemma”
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Permutation lemma

Sufficient conditions for A, A′ having same columns (up to
permutation)

(Suppose for now, that no two cols of A′ are parallel)∗∗

Key idea. Look at the spaces spanned
by subsets of columns of A,A′.

Definition: 〈AS〉 := span of columns
indexed by S ⊆ [R]

S

A

Informal: Suppose for all S of size (n− 1), 〈A′S〉 “contains” at
least |S| columns of A. Then the same is true for all S.

(If true for |S| = 1, then every column of A′ is parallel to some column of A)
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Downward induction: base case |S| = (n− 1)

S

A A′

a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + · · · ≈ a′1 ⊗ b′1 ⊗ c′1 + a′2 ⊗ b′2 ⊗ c′2 + . . .

For any w,
∑4n/3
r=1 〈w, ar〉(br ⊗ cr) ≈

∑4n/3
r=1 〈w, a′r〉(b′r ⊗ c′r).

1. Pick w to be orthogonal to 〈A′S〉
2. Only n/3 + 1 terms remain on RHS =⇒ at most this

number must remain on LHS! (by Kruskal condition)

3. Implies at least (n− 1) cols {ar} belong to 〈A′S〉
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Downward induction

Show for |S| = (n− 2), . . . , 1:

I start with some S of size (n− 2)

I define Si = S ∪ {i}, for various i 6∈ S — (n/3) + 2 such..

I let Ti be indices of cols of A that lie in 〈A′Si〉; |Ti| ≥ (n− 1)

Main idea. Any col in Ti ∩ Tj must be contained in 〈A′S〉
1. Say we have: a =

∑
r∈S αra

′
r + αia

′
i =

∑
r∈S βra

′
r + βja

′
j

2. Since a′i, a
′
j are not parallel, this means αi = βj = 0
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Say |T | = n− 3, then |Ti \ T | ≥ 2 for all i.

These don’t intersect for different i (sunflower!)

Thus the #(cols) of A is > (n− 3) + 2× (n/3 + 2) > (4n/3)..
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Making things robust – permutation lemma

Sufficient conditions for A, A′ having approximately same
columns (up to permutation)

Key idea. Look at the spaces spanned
by subsets of columns of A,A′.

S

A

Informal: Suppose for all S of size (n− 1), 〈A′S〉 contains at
least |S| columns of A, up to error ε. Then the same is true for
all S, with error ε′.

(If true for singletons, then every col of A′ is ε′-close to a scaling of a col of A)
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Issue with inductive proof

Suppose we have claim for |S| = (n− 1) with error ε; then can
prove claim for |S| = (n− 2) with error only ε · n.

Continuing this way, we only get the claim for |S| = 1 with
error ε · exp(n) /

Means the initial error should have been exponentially small..

The fix

I More combinatorial invariant (different definition of sets T )

I Stronger sunflower argument

I Better “base case”
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Directions

Are there polynomial time algorithms under Kruskal’s
conditions?

What about other tensor based algorithms in the case R > n?

(a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et
al. 13])
(b) Recent work assuming incoherence [Anandkumar, et al. 14]

Can we show “robust” uniqueness under more algebraic
conditions?

Can we show that a generic n× n× n tensor has a “stable”
unique decomposition up to rank n2/4?
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Thank you!

Questions?


