
A Robust Form of Kruskal’s Identifiability
Theorem

Aditya Bhaskara (Google NYC)

Joint work with
Moses Charikar (Princeton University)

Aravindan Vijayaraghavan (NYU → Northwestern)

Background: “understanding” data

Data from various sources:

QUESTION (“simple explanation”): can we think of data as
being generated from a model with a small number of

parameters?

Very successful; e.g. topic models for documents, hidden
markov models for speech, . . .

Background: “understanding” data

Data from various sources:

QUESTION (“simple explanation”): can we think of data as
being generated from a model with a small number of

parameters?

Very successful; e.g. topic models for documents, hidden
markov models for speech, . . .

Topic model for documents

Large collection of documents

Carricature model: each document is about a topic, and each
topic is a distribution over n words;

e.g.

aardvark apple ball lion . . . zebra

sports 0 0.0002 0.005 0.0001 . . .

wildlife 0.0006 0 0.0001 0.005 . . .

Model parameters:

I probability that document is on topic i : wi (sum to 1)

I word probability vector for topic i : pi ∈ Rn

Topic model for documents

Large collection of documents

Carricature model: each document is about a topic, and each
topic is a distribution over n words; e.g.

aardvark apple ball lion . . . zebra

sports 0 0.0002 0.005 0.0001 . . .

wildlife 0.0006 0 0.0001 0.005 . . .

Model parameters:

I probability that document is on topic i : wi (sum to 1)

I word probability vector for topic i : pi ∈ Rn

Topic model for documents

Large collection of documents

Carricature model: each document is about a topic, and each
topic is a distribution over n words; e.g.

aardvark apple ball lion . . . zebra

sports 0 0.0002 0.005 0.0001 . . .

wildlife 0.0006 0 0.0001 0.005 . . .

Model parameters:

I probability that document is on topic i : wi (sum to 1)

I word probability vector for topic i : pi ∈ Rn

Topic model for documents

Generating a document: say r-word document

Topic

w1 w2
wR

word ∼ p2
word ∼ p2

word ∼ p2

r words

ASSUMPTION: picking a document from corpus at random,
randomly sampling r words ≡ picking r word document as

above

Goal: find the {wr, pr}

Topic model for documents

Generating a document: say r-word document

Topic

w1 w2
wR

word ∼ p2
word ∼ p2

word ∼ p2

r words

ASSUMPTION: picking a document from corpus at random,
randomly sampling r words ≡ picking r word document as

above

Goal: find the {wr, pr}

Topic model for documents

Generating a document: say r-word document

Topic

w1 w2
wR

word ∼ p2
word ∼ p2

word ∼ p2

r words

ASSUMPTION: picking a document from corpus at random,
randomly sampling r words ≡ picking r word document as

above

Goal: find the {wr, pr}

What about tensors?

Experiment: Pick three random words from random document

QUESTION: What is

Pr[word1 = i,word2 = j,word3 = k]?

Precisely equal to
∑R

r=1wrpr(i)pr(j)pr(k).

(i, j, k)

=
∑R

r=1wr(pr ⊗ pr ⊗ pr).

∴ Finding parameters ≡ tensor decomposition!

What about tensors?

Experiment: Pick three random words from random document

QUESTION: What is

Pr[word1 = i,word2 = j,word3 = k]?

Precisely equal to
∑R

r=1wrpr(i)pr(j)pr(k).

(i, j, k)

=
∑R

r=1wr(pr ⊗ pr ⊗ pr).

∴ Finding parameters ≡ tensor decomposition!

What about tensors?

Experiment: Pick three random words from random document

QUESTION: What is

Pr[word1 = i,word2 = j,word3 = k]?

Precisely equal to
∑R

r=1wrpr(i)pr(j)pr(k).

(i, j, k)

=
∑R

r=1wr(pr ⊗ pr ⊗ pr).

∴ Finding parameters ≡ tensor decomposition!

Recipe for tensor methods in mixture models

Algebraic statistics literature: [Allman, Mathias, Rhodes 09], ...

1. Estimate a tensor whose decomposition allows reading off
the model parameters

2. Use tensor decomposition

Many applications: mixtures of gaussians, hidden markov
models, communities, crabs, ...

Recipe for tensor methods in mixture models

Algebraic statistics literature: [Allman, Mathias, Rhodes 09], ...

1. Estimate a tensor whose decomposition allows reading off
the model parameters

2. Use tensor decomposition

Many applications: mixtures of gaussians, hidden markov
models, communities, crabs, ...

Recipe for tensor methods in mixture models

Algebraic statistics literature: [Allman, Mathias, Rhodes 09], ...

1. Estimate a tensor whose decomposition allows reading off
the model parameters

2. Use tensor decomposition

Many applications: mixtures of gaussians, hidden markov
models, communities, crabs, ...

Are we done?

Two caveats

Efficiency

We need polynomial time algorithms for decomposition!
Given T =

∑R
r=1 pr ⊗ pr ⊗ pr, can we find {pr}Rr=1?

Robustness
Algorithm needs to work with noisy tensor
In applications, we estimate the tensor from samples. N
samples =⇒ 1/

√
N error per entry, typically.

GOAL: Given, target accuracy ε, and

T =
R∑
r=1

pr ⊗ pr ⊗ pr +N , with ‖N‖ < ε/poly(n),

recover {pr} up to error ε.

Two caveats

Efficiency

We need polynomial time algorithms for decomposition!
Given T =

∑R
r=1 pr ⊗ pr ⊗ pr, can we find {pr}Rr=1?

Robustness
Algorithm needs to work with noisy tensor
In applications, we estimate the tensor from samples. N
samples =⇒ 1/

√
N error per entry, typically.

GOAL: Given, target accuracy ε, and

T =
R∑
r=1

pr ⊗ pr ⊗ pr +N , with ‖N‖ < ε/poly(n),

recover {pr} up to error ε.

Two caveats

Efficiency

We need polynomial time algorithms for decomposition!
Given T =

∑R
r=1 pr ⊗ pr ⊗ pr, can we find {pr}Rr=1?

Robustness
Algorithm needs to work with noisy tensor
In applications, we estimate the tensor from samples. N
samples =⇒ 1/

√
N error per entry, typically.

GOAL: Given, target accuracy ε, and

T =

R∑
r=1

pr ⊗ pr ⊗ pr +N , with ‖N‖ < ε/poly(n),

recover {pr} up to error ε.

A success story: the full rank case

Given T =

R∑
r=1

pr ⊗ pr ⊗ pr +N , ‖N‖ < ε/poly(n)

Define P : matrix (n×R) with columns {pr}.

Theorem
If σR(P) > 1/poly′(n), then can find {pr} up to error ε in polynomial
time.

Discovered many times: [Harshman 72], [Leurgans, et al. 93], [Chang 96], [Anandkumar, et al.
10], [Goyal et al. 13], ...

A success story: the full rank case

Given T =

R∑
r=1

pr ⊗ pr ⊗ pr +N , ‖N‖ < ε/poly(n)

Define P : matrix (n×R) with columns {pr}.

Theorem
If σR(P) > 1/poly′(n), then can find {pr} up to error ε in polynomial
time.

Discovered many times: [Harshman 72], [Leurgans, et al. 93], [Chang 96], [Anandkumar, et al.
10], [Goyal et al. 13], ...

A success story: the full rank case

Given T =

R∑
r=1

pr ⊗ pr ⊗ pr +N , ‖N‖ < ε/poly(n)

Define P : matrix (n×R) with columns {pr}.

Theorem
If σR(P) > 1/poly′(n), then can find {pr} up to error ε in polynomial
time.

Discovered many times: [Harshman 72], [Leurgans, et al. 93], [Chang 96], [Anandkumar, et al.
10], [Goyal et al. 13], ...

Beyond non degeneracy

Question: Can we approximately recover parameters under
weaker conditions? What about the case R > n?

This talk: easier problem of identifiability.

Theorem (Informal theorem.)

If the Kruskal rank condition holds, then it is possible to recover
the decomposition up to error ε.

I Not efficient /; open problem to do it efficiently

I Can be done if the components are nearly orthogonal
[Anandkumar et al. 14]

Beyond non degeneracy

Question: Can we approximately recover parameters under
weaker conditions? What about the case R > n?

This talk: easier problem of identifiability.

Theorem (Informal theorem.)

If the Kruskal rank condition holds, then it is possible to recover
the decomposition up to error ε.

I Not efficient /; open problem to do it efficiently

I Can be done if the components are nearly orthogonal
[Anandkumar et al. 14]

Beyond non degeneracy

Question: Can we approximately recover parameters under
weaker conditions? What about the case R > n?

This talk: easier problem of identifiability.

Theorem (Informal theorem.)

If the Kruskal rank condition holds, then it is possible to recover
the decomposition up to error ε.

I Not efficient /; open problem to do it efficiently

I Can be done if the components are nearly orthogonal
[Anandkumar et al. 14]

Beyond non degeneracy

Question: Can we approximately recover parameters under
weaker conditions? What about the case R > n?

This talk: easier problem of identifiability.

Theorem (Informal theorem.)

If the Kruskal rank condition holds, then it is possible to recover
the decomposition up to error ε.

I Not efficient /; open problem to do it efficiently

I Can be done if the components are nearly orthogonal
[Anandkumar et al. 14]

Kruskal’s theorem (1977)

T =

R∑
r=1

ai ⊗ bi ⊗ ci

GOAL: Find conditions under which the decomposition unique.

Kruskal rank
For matrix A(n×R), the rank is the largest integer k(A) s.t.
every k(A) columns of A are linearly independent.

Note: Much stronger than the usual notion of rank; reminiscent of restricted isometry

Theorem (Kruskal)

Suppose T is defined as above, and A,B,C are n×R matrices
with columns ar, br, cr, respectively.
Then a sufficient condition for uniqueness of decomposition is

k(A) + k(B) + k(C) ≥ 2R+ 2

Kruskal’s theorem (1977)

T =

R∑
r=1

ai ⊗ bi ⊗ ci

GOAL: Find conditions under which the decomposition unique.

Kruskal rank
For matrix A(n×R), the rank is the largest integer k(A) s.t.
every k(A) columns of A are linearly independent.

Note: Much stronger than the usual notion of rank; reminiscent of restricted isometry

Theorem (Kruskal)

Suppose T is defined as above, and A,B,C are n×R matrices
with columns ar, br, cr, respectively.
Then a sufficient condition for uniqueness of decomposition is

k(A) + k(B) + k(C) ≥ 2R+ 2

Kruskal’s theorem (1977)

T =

R∑
r=1

ai ⊗ bi ⊗ ci

GOAL: Find conditions under which the decomposition unique.

Kruskal rank
For matrix A(n×R), the rank is the largest integer k(A) s.t.
every k(A) columns of A are linearly independent.

Note: Much stronger than the usual notion of rank; reminiscent of restricted isometry

Theorem (Kruskal)

Suppose T is defined as above, and A,B,C are n×R matrices
with columns ar, br, cr, respectively.
Then a sufficient condition for uniqueness of decomposition is

k(A) + k(B) + k(C) ≥ 2R+ 2

Kruskal’s theorem (1977)

T =

R∑
r=1

ai ⊗ bi ⊗ ci

GOAL: Find conditions under which the decomposition unique.

Kruskal rank
For matrix A(n×R), the rank is the largest integer k(A) s.t.
every k(A) columns of A are linearly independent.

Note: Much stronger than the usual notion of rank; reminiscent of restricted isometry

Theorem (Kruskal)

Suppose T is defined as above, and A,B,C are n×R matrices
with columns ar, br, cr, respectively.
Then a sufficient condition for uniqueness of decomposition is

k(A) + k(B) + k(C) ≥ 2R+ 2

Our result

T =

R∑
r=1

ai ⊗ bi ⊗ ci +N

GOAL: Find conditions under which decomposition is unique∗.

Robust Kruskal rank
For matrix A(n×R) and parameter τ > 0, the rank is the
largest integer kτ (A) s.t. every n× kτ (A) submatrix has
condition number < τ .

Note: Recall that condition number of B is σmax(B)/σmin(B).

Theorem (Rough)

Let T be as above, and A,B,C be n×R matrices as before.
Then the decomposition is robustly unique if

kτ (A) + kτ (B) + kτ (C) ≥ 2R+ 2

Our result

T =

R∑
r=1

ai ⊗ bi ⊗ ci +N

GOAL: Find conditions under which decomposition is unique∗.

Robust Kruskal rank
For matrix A(n×R) and parameter τ > 0, the rank is the
largest integer kτ (A) s.t. every n× kτ (A) submatrix has
condition number < τ .

Note: Recall that condition number of B is σmax(B)/σmin(B).

Theorem (Rough)

Let T be as above, and A,B,C be n×R matrices as before.
Then the decomposition is robustly unique if

kτ (A) + kτ (B) + kτ (C) ≥ 2R+ 2

Our result

T =

R∑
r=1

ai ⊗ bi ⊗ ci +N

GOAL: Find conditions under which decomposition is unique∗.

Robust Kruskal rank
For matrix A(n×R) and parameter τ > 0, the rank is the
largest integer kτ (A) s.t. every n× kτ (A) submatrix has
condition number < τ .

Note: Recall that condition number of B is σmax(B)/σmin(B).

Theorem (Rough)

Let T be as above, and A,B,C be n×R matrices as before.
Then the decomposition is robustly unique if

kτ (A) + kτ (B) + kτ (C) ≥ 2R+ 2

Our result

T ′

T

rank k-tensors

We show: For any ε > 0, there is an ε′ = ε/poly(n), such that
T =ε′ T

′ implies the decompositions are ε-close, up to a
permutation.

Our result

T =

R∑
r=1

ai ⊗ bi ⊗ ci ; T ′ =

R∑
r=1

a′i ⊗ b′i ⊗ c′i

Theorem (Formal)
Suppose T, T ′ are defined as above, and A,B,C,A′, B′, C ′ are n×R
matrices. Further, suppose for some τ > 0, that

kτ (A) + kτ (B) + kτ (C) ≥ 2R+ 2.

Then for any ε > 0, there is an ε′ = ε/poly(n, τ) such that if
‖T − T ′‖ < ε′, then there exist diagonal matrices ΓA,ΓB ,ΓC , and a
permutation Π such that ΓAΓBΓC = I, and

A′ =ε ΓAΠA, B′ =ε ΓBΠB, C ′ =ε ΓCΠC.

Remarks

I Conditions only about kτ (A), kτ (B), kτ (C); nothing is
needed about A′, B′, C ′ (except an upper bound on column
lengths)

I Implies that no tensor close to T has rank < R

I Naturally generalizes to higher order tensors (similar to De
Lathauwer’s extension of Kruskal’s theorem)

Main difficulty in proof: handling 1/poly(n) noise

(If ε′ = ε/exp(n), much easier to show that decompositions are ε-close)

Remarks

I Conditions only about kτ (A), kτ (B), kτ (C); nothing is
needed about A′, B′, C ′ (except an upper bound on column
lengths)

I Implies that no tensor close to T has rank < R

I Naturally generalizes to higher order tensors (similar to De
Lathauwer’s extension of Kruskal’s theorem)

Main difficulty in proof: handling 1/poly(n) noise

(If ε′ = ε/exp(n), much easier to show that decompositions are ε-close)

Remarks

I Conditions only about kτ (A), kτ (B), kτ (C); nothing is
needed about A′, B′, C ′ (except an upper bound on column
lengths)

I Implies that no tensor close to T has rank < R

I Naturally generalizes to higher order tensors (similar to De
Lathauwer’s extension of Kruskal’s theorem)

Main difficulty in proof: handling 1/poly(n) noise

(If ε′ = ε/exp(n), much easier to show that decompositions are ε-close)

Remarks

I Conditions only about kτ (A), kτ (B), kτ (C); nothing is
needed about A′, B′, C ′ (except an upper bound on column
lengths)

I Implies that no tensor close to T has rank < R

I Naturally generalizes to higher order tensors (similar to De
Lathauwer’s extension of Kruskal’s theorem)

Main difficulty in proof: handling 1/poly(n) noise

(If ε′ = ε/exp(n), much easier to show that decompositions are ε-close)

Proof overview

Suppose A,B,C,A′, B′, C ′ are n×R, column lengths ≤ ρ, and

kτ (A) = kτ (B) = kτ (C) = n ; R = 4n/3.

(I.e., any n columns of A,B,C are well conditioned (thus lin.ind.))

1. Show that A′ is a scaled permutation of A, B′ of B, C ′ of C

2. Show that permutations are equal, and scalings multiply to
identity

Crux: first part – “permutation lemma”

Proof overview

Suppose A,B,C,A′, B′, C ′ are n×R, column lengths ≤ ρ, and

kτ (A) = kτ (B) = kτ (C) = n ; R = 4n/3.

(I.e., any n columns of A,B,C are well conditioned (thus lin.ind.))

1. Show that A′ is a scaled permutation of A, B′ of B, C ′ of C

2. Show that permutations are equal, and scalings multiply to
identity

Crux: first part – “permutation lemma”

Proof overview

Suppose A,B,C,A′, B′, C ′ are n×R, column lengths ≤ ρ, and

kτ (A) = kτ (B) = kτ (C) = n ; R = 4n/3.

(I.e., any n columns of A,B,C are well conditioned (thus lin.ind.))

1. Show that A′ is a scaled permutation of A, B′ of B, C ′ of C

2. Show that permutations are equal, and scalings multiply to
identity

Crux: first part – “permutation lemma”

Permutation lemma

Sufficient conditions for A, A′ having same columns (up to
permutation)

(Suppose for now, that no two cols of A′ are parallel)∗∗

Key idea. Look at the spaces spanned
by subsets of columns of A,A′.

Definition: 〈AS〉 := span of columns
indexed by S ⊆ [R]

S

A

Informal: Suppose for all S of size (n− 1), 〈A′S〉 “contains” at
least |S| columns of A. Then the same is true for all S.

(If true for |S| = 1, then every column of A′ is parallel to some column of A)

Permutation lemma

Sufficient conditions for A, A′ having same columns (up to
permutation)

(Suppose for now, that no two cols of A′ are parallel)∗∗

Key idea. Look at the spaces spanned
by subsets of columns of A,A′.

Definition: 〈AS〉 := span of columns
indexed by S ⊆ [R]

S

A

Informal: Suppose for all S of size (n− 1), 〈A′S〉 “contains” at
least |S| columns of A. Then the same is true for all S.

(If true for |S| = 1, then every column of A′ is parallel to some column of A)

Permutation lemma

Sufficient conditions for A, A′ having same columns (up to
permutation)

(Suppose for now, that no two cols of A′ are parallel)∗∗

Key idea. Look at the spaces spanned
by subsets of columns of A,A′.

Definition: 〈AS〉 := span of columns
indexed by S ⊆ [R]

S

A

Informal: Suppose for all S of size (n− 1), 〈A′S〉 “contains” at
least |S| columns of A. Then the same is true for all S.

(If true for |S| = 1, then every column of A′ is parallel to some column of A)

Permutation lemma

Sufficient conditions for A, A′ having same columns (up to
permutation)

(Suppose for now, that no two cols of A′ are parallel)∗∗

Key idea. Look at the spaces spanned
by subsets of columns of A,A′.

Definition: 〈AS〉 := span of columns
indexed by S ⊆ [R]

S

A

Informal: Suppose for all S of size (n− 1), 〈A′S〉 “contains” at
least |S| columns of A. Then the same is true for all S.

(If true for |S| = 1, then every column of A′ is parallel to some column of A)

Downward induction: base case |S| = (n− 1)

S

A A′

a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + · · · ≈ a′1 ⊗ b′1 ⊗ c′1 + a′2 ⊗ b′2 ⊗ c′2 + . . .

For any w,
∑4n/3
r=1 〈w, ar〉(br ⊗ cr) ≈

∑4n/3
r=1 〈w, a′r〉(b′r ⊗ c′r).

1. Pick w to be orthogonal to 〈A′S〉
2. Only n/3 + 1 terms remain on RHS =⇒ at most this

number must remain on LHS! (by Kruskal condition)

3. Implies at least (n− 1) cols {ar} belong to 〈A′S〉

Downward induction: base case |S| = (n− 1)

S

A A′

a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + · · · ≈ a′1 ⊗ b′1 ⊗ c′1 + a′2 ⊗ b′2 ⊗ c′2 + . . .

For any w,
∑4n/3
r=1 〈w, ar〉(br ⊗ cr) ≈

∑4n/3
r=1 〈w, a′r〉(b′r ⊗ c′r).

1. Pick w to be orthogonal to 〈A′S〉

2. Only n/3 + 1 terms remain on RHS =⇒ at most this
number must remain on LHS! (by Kruskal condition)

3. Implies at least (n− 1) cols {ar} belong to 〈A′S〉

Downward induction: base case |S| = (n− 1)

S

A A′

a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + · · · ≈ a′1 ⊗ b′1 ⊗ c′1 + a′2 ⊗ b′2 ⊗ c′2 + . . .

For any w,
∑4n/3
r=1 〈w, ar〉(br ⊗ cr) ≈

∑4n/3
r=1 〈w, a′r〉(b′r ⊗ c′r).

1. Pick w to be orthogonal to 〈A′S〉
2. Only n/3 + 1 terms remain on RHS =⇒ at most this

number must remain on LHS! (by Kruskal condition)

3. Implies at least (n− 1) cols {ar} belong to 〈A′S〉

Downward induction: base case |S| = (n− 1)

S

A A′

a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + · · · ≈ a′1 ⊗ b′1 ⊗ c′1 + a′2 ⊗ b′2 ⊗ c′2 + . . .

For any w,
∑4n/3
r=1 〈w, ar〉(br ⊗ cr) ≈

∑4n/3
r=1 〈w, a′r〉(b′r ⊗ c′r).

1. Pick w to be orthogonal to 〈A′S〉
2. Only n/3 + 1 terms remain on RHS =⇒ at most this

number must remain on LHS! (by Kruskal condition)

3. Implies at least (n− 1) cols {ar} belong to 〈A′S〉

Downward induction: base case |S| = (n− 1)

S

A A′

a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + · · · ≈ a′1 ⊗ b′1 ⊗ c′1 + a′2 ⊗ b′2 ⊗ c′2 + . . .

For any w,
∑4n/3
r=1 〈w, ar〉(br ⊗ cr) ≈

∑4n/3
r=1 〈w, a′r〉(b′r ⊗ c′r).

1. Pick w to be orthogonal to 〈A′S〉
2. Only n/3 + 1 terms remain on RHS =⇒ at most this

number must remain on LHS! (by Kruskal condition)

3. Implies at least (n− 1) cols {ar} belong to 〈A′S〉

Downward induction

Show for |S| = (n− 2), . . . , 1:

I start with some S of size (n− 2)

I define Si = S ∪ {i}, for various i 6∈ S — (n/3) + 2 such..

I let Ti be indices of cols of A that lie in 〈A′Si〉; |Ti| ≥ (n− 1)

Main idea. Any col in Ti ∩ Tj must be contained in 〈A′S〉
1. Say we have: a =

∑
r∈S αra

′
r + αia

′
i =

∑
r∈S βra

′
r + βja

′
j

2. Since a′i, a
′
j are not parallel, this means αi = βj = 0

Downward induction

Show for |S| = (n− 2), . . . , 1:

I start with some S of size (n− 2)

I define Si = S ∪ {i}, for various i 6∈ S — (n/3) + 2 such..

I let Ti be indices of cols of A that lie in 〈A′Si〉; |Ti| ≥ (n− 1)

Main idea. Any col in Ti ∩ Tj must be contained in 〈A′S〉
1. Say we have: a =

∑
r∈S αra

′
r + αia

′
i =

∑
r∈S βra

′
r + βja

′
j

2. Since a′i, a
′
j are not parallel, this means αi = βj = 0

Downward induction

Show for |S| = (n− 2), . . . , 1:

I start with some S of size (n− 2)

I define Si = S ∪ {i}, for various i 6∈ S — (n/3) + 2 such..

I let Ti be indices of cols of A that lie in 〈A′Si〉; |Ti| ≥ (n− 1)

Main idea. Any col in Ti ∩ Tj must be contained in 〈A′S〉
1. Say we have: a =

∑
r∈S αra

′
r + αia

′
i =

∑
r∈S βra

′
r + βja

′
j

2. Since a′i, a
′
j are not parallel, this means αi = βj = 0

Downward induction

Show for |S| = (n− 2), . . . , 1:

I start with some S of size (n− 2)

I define Si = S ∪ {i}, for various i 6∈ S — (n/3) + 2 such..

I let Ti be indices of cols of A that lie in 〈A′Si〉; |Ti| ≥ (n− 1)

Main idea. Any col in Ti ∩ Tj must be contained in 〈A′S〉

1. Say we have: a =
∑

r∈S αra
′
r + αia

′
i =

∑
r∈S βra

′
r + βja

′
j

2. Since a′i, a
′
j are not parallel, this means αi = βj = 0

Downward induction

Show for |S| = (n− 2), . . . , 1:

I start with some S of size (n− 2)

I define Si = S ∪ {i}, for various i 6∈ S — (n/3) + 2 such..

I let Ti be indices of cols of A that lie in 〈A′Si〉; |Ti| ≥ (n− 1)

Main idea. Any col in Ti ∩ Tj must be contained in 〈A′S〉
1. Say we have: a =

∑
r∈S αra

′
r + αia

′
i =

∑
r∈S βra

′
r + βja

′
j

2. Since a′i, a
′
j are not parallel, this means αi = βj = 0

Downward induction

Show for |S| = (n− 2), . . . , 1:

I start with some S of size (n− 2)

I define Si = S ∪ {i}, for various i 6∈ S — (n/3) + 2 such..

I let Ti be indices of cols of A that lie in 〈A′Si〉; |Ti| ≥ (n− 1)

Main idea. Any col in Ti ∩ Tj must be contained in 〈A′S〉
1. Say we have: a =

∑
r∈S αra

′
r + αia

′
i =

∑
r∈S βra

′
r + βja

′
j

2. Since a′i, a
′
j are not parallel, this means αi = βj = 0

Downward induction

Show for |S| = (n− 2), . . . , 1:

I start with some S of size (n− 2)

I define Si = S ∪ {i}, for various i 6∈ S — (n/3) + 2 such..

I let Ti be indices of cols of A that lie in 〈A′Si〉; |Ti| ≥ (n− 1)

Main idea. Any col in Ti ∩ Tj must be contained in 〈A′S〉

Thus if T is the set of cols contained in 〈A′S〉,
then for any i, j, Ti ∩ Tj = T

Thus Ti form a sunflower family

Downward induction

Show for |S| = (n− 2), . . . , 1:

I start with some S of size (n− 2)

I define Si = S ∪ {i}, for various i 6∈ S — (n/3) + 2 such..

I let Ti be indices of cols of A that lie in 〈A′Si〉; |Ti| ≥ (n− 1)

Main idea. Any col in Ti ∩ Tj must be contained in 〈A′S〉

Thus if T is the set of cols contained in 〈A′S〉,
then for any i, j, Ti ∩ Tj = T
Thus Ti form a sunflower family

Downward induction

Thus if T is the set of cols contained in 〈A′S〉,
then for any i, j, Ti ∩ Tj = T

Thus Ti form a sunflower family

Claim. Implies that the core has size ≥ (n− 2)

Proof.
Basic counting argument. We know |Ti| ≥ n− 1 for all i.

Say |T | = n− 3, then |Ti \ T | ≥ 2 for all i.

These don’t intersect for different i (sunflower!)

Thus the #(cols) of A is > (n− 3) + 2× (n/3 + 2) > (4n/3)..

Downward induction

Thus if T is the set of cols contained in 〈A′S〉,
then for any i, j, Ti ∩ Tj = T

Thus Ti form a sunflower family

Claim. Implies that the core has size ≥ (n− 2)

Proof.
Basic counting argument. We know |Ti| ≥ n− 1 for all i.

Say |T | = n− 3, then |Ti \ T | ≥ 2 for all i.

These don’t intersect for different i (sunflower!)

Thus the #(cols) of A is > (n− 3) + 2× (n/3 + 2) > (4n/3)..

Downward induction

Thus if T is the set of cols contained in 〈A′S〉,
then for any i, j, Ti ∩ Tj = T

Thus Ti form a sunflower family

Claim. Implies that the core has size ≥ (n− 2)

Proof.
Basic counting argument. We know |Ti| ≥ n− 1 for all i.

Say |T | = n− 3, then |Ti \ T | ≥ 2 for all i.

These don’t intersect for different i (sunflower!)

Thus the #(cols) of A is > (n− 3) + 2× (n/3 + 2) > (4n/3)..

Downward induction

Thus if T is the set of cols contained in 〈A′S〉,
then for any i, j, Ti ∩ Tj = T

Thus Ti form a sunflower family

Claim. Implies that the core has size ≥ (n− 2)

Proof.
Basic counting argument. We know |Ti| ≥ n− 1 for all i.

Say |T | = n− 3, then |Ti \ T | ≥ 2 for all i.

These don’t intersect for different i (sunflower!)

Thus the #(cols) of A is > (n− 3) + 2× (n/3 + 2) > (4n/3)..

Downward induction

Thus if T is the set of cols contained in 〈A′S〉,
then for any i, j, Ti ∩ Tj = T

Thus Ti form a sunflower family

Claim. Implies that the core has size ≥ (n− 2)

Proof.
Basic counting argument. We know |Ti| ≥ n− 1 for all i.

Say |T | = n− 3, then |Ti \ T | ≥ 2 for all i.

These don’t intersect for different i (sunflower!)

Thus the #(cols) of A is > (n− 3) + 2× (n/3 + 2) > (4n/3)..

Downward induction

Thus if T is the set of cols contained in 〈A′S〉,
then for any i, j, Ti ∩ Tj = T

Thus Ti form a sunflower family

Claim. Implies that the core has size ≥ (n− 2)

Proof.
Basic counting argument. We know |Ti| ≥ n− 1 for all i.

Say |T | = n− 3, then |Ti \ T | ≥ 2 for all i.

These don’t intersect for different i (sunflower!)

Thus the #(cols) of A is > (n− 3) + 2× (n/3 + 2) > (4n/3)..

Downward induction

Thus if T is the set of cols contained in 〈A′S〉,
then for any i, j, Ti ∩ Tj = T

Thus Ti form a sunflower family

Claim. Implies that the core has size ≥ (n− 2)

Proof.
Basic counting argument. We know |Ti| ≥ n− 1 for all i.

Say |T | = n− 3, then |Ti \ T | ≥ 2 for all i.

These don’t intersect for different i (sunflower!)

Thus the #(cols) of A is > (n− 3) + 2× (n/3 + 2) > (4n/3)..

Making things robust – permutation lemma

Sufficient conditions for A, A′ having approximately same
columns (up to permutation)

Key idea. Look at the spaces spanned
by subsets of columns of A,A′.

S

A

Informal: Suppose for all S of size (n− 1), 〈A′S〉 contains at
least |S| columns of A, up to error ε. Then the same is true for
all S, with error ε′.

(If true for singletons, then every col of A′ is ε′-close to a scaling of a col of A)

Making things robust – permutation lemma

Sufficient conditions for A, A′ having approximately same
columns (up to permutation)

Key idea. Look at the spaces spanned
by subsets of columns of A,A′.

S

A

Informal: Suppose for all S of size (n− 1), 〈A′S〉 contains at
least |S| columns of A, up to error ε. Then the same is true for
all S, with error ε′.

(If true for singletons, then every col of A′ is ε′-close to a scaling of a col of A)

Issue with inductive proof

Suppose we have claim for |S| = (n− 1) with error ε; then can
prove claim for |S| = (n− 2) with error only ε · n.

Continuing this way, we only get the claim for |S| = 1 with
error ε · exp(n) /

Means the initial error should have been exponentially small..

The fix

I More combinatorial invariant (different definition of sets T)

I Stronger sunflower argument

I Better “base case”

Issue with inductive proof

Suppose we have claim for |S| = (n− 1) with error ε; then can
prove claim for |S| = (n− 2) with error only ε · n.

Continuing this way, we only get the claim for |S| = 1 with
error ε · exp(n) /

Means the initial error should have been exponentially small..

The fix

I More combinatorial invariant (different definition of sets T)

I Stronger sunflower argument

I Better “base case”

Issue with inductive proof

Suppose we have claim for |S| = (n− 1) with error ε; then can
prove claim for |S| = (n− 2) with error only ε · n.

Continuing this way, we only get the claim for |S| = 1 with
error ε · exp(n) /

Means the initial error should have been exponentially small..

The fix

I More combinatorial invariant (different definition of sets T)

I Stronger sunflower argument

I Better “base case”

Issue with inductive proof

Suppose we have claim for |S| = (n− 1) with error ε; then can
prove claim for |S| = (n− 2) with error only ε · n.

Continuing this way, we only get the claim for |S| = 1 with
error ε · exp(n) /

Means the initial error should have been exponentially small..

The fix

I More combinatorial invariant (different definition of sets T)

I Stronger sunflower argument

I Better “base case”

Directions

Are there polynomial time algorithms under Kruskal’s
conditions?

What about other tensor based algorithms in the case R > n?

(a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et
al. 13])
(b) Recent work assuming incoherence [Anandkumar, et al. 14]

Can we show “robust” uniqueness under more algebraic
conditions?

Can we show that a generic n× n× n tensor has a “stable”
unique decomposition up to rank n2/4?

Directions

Are there polynomial time algorithms under Kruskal’s
conditions?

What about other tensor based algorithms in the case R > n?
(a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et
al. 13])

(b) Recent work assuming incoherence [Anandkumar, et al. 14]

Can we show “robust” uniqueness under more algebraic
conditions?

Can we show that a generic n× n× n tensor has a “stable”
unique decomposition up to rank n2/4?

Directions

Are there polynomial time algorithms under Kruskal’s
conditions?

What about other tensor based algorithms in the case R > n?
(a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et
al. 13])
(b) Recent work assuming incoherence [Anandkumar, et al. 14]

Can we show “robust” uniqueness under more algebraic
conditions?

Can we show that a generic n× n× n tensor has a “stable”
unique decomposition up to rank n2/4?

Directions

Are there polynomial time algorithms under Kruskal’s
conditions?

What about other tensor based algorithms in the case R > n?
(a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et
al. 13])
(b) Recent work assuming incoherence [Anandkumar, et al. 14]

Can we show “robust” uniqueness under more algebraic
conditions?

Can we show that a generic n× n× n tensor has a “stable”
unique decomposition up to rank n2/4?

Directions

Are there polynomial time algorithms under Kruskal’s
conditions?

What about other tensor based algorithms in the case R > n?
(a) Higher order tensors: [Cardoso 92], next talk (also [Goyal et
al. 13])
(b) Recent work assuming incoherence [Anandkumar, et al. 14]

Can we show “robust” uniqueness under more algebraic
conditions?

Can we show that a generic n× n× n tensor has a “stable”
unique decomposition up to rank n2/4?

Thank you!

Questions?

