Cactus Varieties of Cubic Forms:
Apolar Local Artinian Gorenstein Rings

[–, J. Jelisiejew, P. Macias Marques, K. Ranestad]

Alessandra Bernardi

Univeristy of Bologna (Italy)

November 13th, 2014

Tensors in Computer Science and Geometry
Simons Institute, Berkeley
Brief

1. Waring rank and Cactus rank
2. Theorem: Dimensions of Cactus varieties for cubic forms
3. Apolarity
4. Local apolar schemes
5. Proof of the Theorem
Waring rank

\[F \in S_d = K[x_0, \ldots, x_n]_d \text{ homog. of deg } d \text{ (char } K \neq 2, 3) \]

Definition

Waring rank: \(\min r \in \mathbb{N} \text{ s.t. } F = L_1^d + \cdots + L_r^d \text{ with } L_i \in S_1 \)

Veronese: \(\nu_d : \mathbb{P}(S_1) \to \mathbb{P}(S_d), [L] \mapsto [L^d] \)

- \(\min r \in \mathbb{N} \text{ s.t. } [F] \in r\text{-th secant space to } \nu_d(\mathbb{P}(S_1)) \)
- The shortest length of a ***smooth*** finite scheme \(\Gamma \subset \mathbb{P}(S_1) \text{ s.t. } [F] \in \langle \nu_d(\Gamma) \rangle, \Gamma = \{[L_1], \ldots, [L_r]\} \)
Cactus rank

Remove “smooth”

Definition

Cactus Rank: \(\min r \in \mathbb{N} \) s.t. \(\exists \) finite (Gor.) scheme \(\Gamma \) of length \(r \) s.t. \([F] \in \langle \nu_d(\Gamma) \rangle \)

\[
\text{Sec}_r(\nu_d(\mathbb{P}(S_1))) = \bigcup_{\Gamma \in \text{Hilb}_r\mathbb{P}(S_1), \Gamma \text{smooth}} \langle \nu_d(\Gamma) \rangle \quad \text{Secant variety to Veronese}
\]

\[
\text{Cactus}_r(\nu_d(\mathbb{P}(S_1))) = \bigcup_{\Gamma \in \text{Hilb}_r\mathbb{P}(S_1)} \langle \nu_d(\Gamma) \rangle \quad \text{Cactus variety}
\]
Cactus rank

Remove “smooth”

Definition

Cactus Rank: \(\min r \in \mathbb{N} \) s.t. \(\exists \) finite (Gor.) scheme \(\Gamma \) of length \(r \)

s.t. \(\langle F \rangle \in \langle \nu_d(\Gamma) \rangle \)

\[
\text{Sec}_r(\nu_d(\mathbb{P}(S_1))) = \bigcup_{\Gamma \in \text{Hilb}_r\mathbb{P}(S_1), \Gamma \text{ smooth}} \langle \nu_d(\Gamma) \rangle
\]

Secant variety to Veronese

\[
\text{Cactus}_r(\nu_d(\mathbb{P}(S_1))) = \bigcup_{\Gamma \in \text{Hilb}_r\mathbb{P}(S_1)} \langle \nu_d(\Gamma) \rangle
\]

Cactus variety
Theorem

We focus on **CUBIC** forms

Theorem

When \(r \leq 17 \), *then*

\[
\dim \text{Cactus}_r(X_3, n) = \dim \text{Sec}_r(X_3, n).
\]

When \(18 \leq r \leq 2n + 2 \), *then* \(\dim \text{Cactus}_r(X_3, n) > \dim \text{Sec}_r(X_3, n) \) *and*

\[
\dim \text{Cactus}_r(X_3, n) =
\begin{cases}
\min \left\{ \frac{1}{48} r^3 - \frac{3}{8} r^2 + rn + \frac{5}{3} r - 2, \left(\frac{n+3}{3} \right) - 1 \right\}, & \text{if } r \geq 18 \text{ even}, \\
\min \left\{ \frac{1}{48} r^3 - \frac{7}{16} r^2 + rn + \frac{119}{48} r - \frac{65}{16}, \left(\frac{n+3}{3} \right) - 1 \right\}, & \text{if } r \geq 18 \text{ odd}.
\end{cases}
\]

[CNJ] : \(r \leq 13 \) Any local scheme is smoothable (=flat limit of smooth)
Theorem

We focus on CUBIC forms

Theorem

When $r \leq 17$, then

$$\dim \text{Cactus}_r(X_3,n) = \dim \text{Sec}_r(X_3,n).$$

When $18 \leq r \leq 2n + 2$, then $\dim \text{Cactus}_r(X_3,n) > \dim \text{Sec}_r(X_3,n)$ and

$$\dim \text{Cactus}_r(X_3,n) = \begin{cases}
 \min \left\{ \frac{1}{48} r^3 - \frac{3}{8} r^2 + rn + \frac{5}{3} r - 2, \left(\frac{n+3}{3}\right) - 1 \right\}, & \text{if } r \geq 18 \text{ even}, \\
 \min \left\{ \frac{1}{48} r^3 - \frac{7}{16} r^2 + rn + \frac{119}{48} r - \frac{65}{16}, \left(\frac{n+3}{3}\right) - 1 \right\}, & \text{if } r \geq 18 \text{ odd}.
\end{cases}$$

[CNJ]: $r \leq 13$ Any local scheme is smoothable (≃flat limit of smooth)
Apolarity

\[S = K[x_0, \ldots, x_n], \quad T = K[y_0, \ldots, y_n] \]

\[y^\alpha(x^{[\beta]}) = \begin{cases} x^{[\beta-\alpha]} & \text{if } \beta \geq \alpha, \\ 0 & \text{otherwise.} \end{cases} \]

\[S_1 \text{ and } T_1 \text{ are dual spaces.} \]

\[T \text{ is naturally the coordinate ring of } \mathbb{P}(S_1). \]

Definition

\[f \in S. \text{ Apolar ideal: } f^\perp = \{ \varphi \in T \mid \varphi(f) = 0 \}. \]

\[\Gamma \subset \mathbb{P}(S_1) \text{ is apolar to } F \in S \text{ if } I_\Gamma \subset F^\perp \subset T. \]

Lemma (Apolarity Lemma)

\[\Gamma \subset \mathbb{P}(S_1) \text{ is apolar to } F \in S_d \text{ iff } [F] \in \langle \nu_d(\Gamma) \rangle \subset \mathbb{P}(S_d). \]
Apolarity

\[S = K[x_0, \ldots, x_n], \quad T = K[y_0, \ldots, y_n] \]

\[
y^\alpha(x^{[\beta]}) = \begin{cases}
x^{[\beta - \alpha]} & \text{if } \beta \geq \alpha, \\
0 & \text{otherwise.}
\end{cases}
\]

\(S_1 \) and \(T_1 \) are dual spaces.

\(T \) is naturally the coordinate ring of \(\mathbb{P}(S_1) \).

Definition

\(f \in S. \) **Apolar ideal:** \(f^\perp = \{ \varphi \in T \mid \varphi(f) = 0 \} \).

\(\Gamma \subset \mathbb{P}(S_1) \) is apolar to \(F \in S \) if \(I_{\Gamma} \subset F^\perp \subset T \).

Lemma (Apolarity Lemma)

\(\Gamma \subset \mathbb{P}(S_1) \) is apolar to \(F \in S_d \) iff \([F] \in \langle \nu_d(\Gamma) \rangle \subset \mathbb{P}(S_d) \).
Apolarity

\[S = K[x_0, \ldots, x_n], \quad T = K[y_0, \ldots, y_n] \]

\[y^\alpha(x^\beta) = \begin{cases} x^{\beta - \alpha} & \text{if } \beta \geq \alpha, \\ 0 & \text{otherwise}. \end{cases} \]

\(S_1 \) and \(T_1 \) are dual spaces.

\(T \) is naturally the coordinate ring of \(\mathbb{P}(S_1) \).

Definition

\(f \in S. \textbf{ Apolar ideal: } f^\perp = \{ \varphi \in T | \varphi(f) = 0 \}. \)

\(\Gamma \subset \mathbb{P}(S_1) \) is apolar to \(F \in S \) if \(I_\Gamma \subset F^\perp \subset T \).

Lemma (Apolarity Lemma)

\(\Gamma \subset \mathbb{P}(S_1) \) is apolar to \(F \in S_d \) iff \([F] \in \langle \nu_d(\Gamma) \rangle \subset \mathbb{P}(S_d) \).
Apolarity

\[S = K[x_0, \ldots, x_n], \ T = K[y_0, \ldots, y_n] \]

\[y^\alpha(x^\beta) = \begin{cases}
 x^{[\beta - \alpha]} & \text{if } \beta \geq \alpha , \\
 0 & \text{otherwise}.
\end{cases} \]

\(S_1 \) and \(T_1 \) are dual spaces.

\(T \) is naturally the coordinate ring of \(\mathbb{P}(S_1) \).

Definition

\(f \in S. \textbf{Apolar ideal:} \ f^{\perp} = \{ \varphi \in T \mid \varphi(f) = 0 \} \).

\(\Gamma \subset \mathbb{P}(S_1) \) is apolar to \(F \in S \) if \(I_\Gamma \subset F^{\perp} \subset T \).

Lemma (Apolarity Lemma)

\(\Gamma \subset \mathbb{P}(S_1) \) is apolar to \(F \in S_d \) iff \([F] \in \langle \nu_d(\Gamma) \rangle \subset \mathbb{P}(S_d) \).
Apolarity

\[\text{crk}(F) = \min r \in \mathbb{N} \text{ s.t. } \exists \Gamma \in \text{Hilb}_r(\mathbb{P}(S_1)): [F] \in \langle \nu_d(\Gamma) \rangle \]

\[\text{crk}(F) = \min r \in \mathbb{N} \text{ s.t. } \exists \Gamma \in \text{Hilb}_r(\mathbb{P}(S_1)): \Gamma \text{ is apolar to } F \]

\[\text{crk}(F) = \min r \in \mathbb{N} \text{ s.t. } \exists \Gamma \in \text{Hilb}_r(\mathbb{P}(S_1)): l_{\Gamma} \subset F^\perp \]
Local apolar scheme

Properties: $T_f := T/f^\perp$ local Artinian Gorenstein ring ([IK]):

- Local: The image of T_1 in T_f generates the only max ideal m;
- Artinian: T_f is finitely generated as K-mod;
- Gor: T_f has 1-dim’l socle (the annihilator of the max ideal).

If F is homog. $\Rightarrow T/F^\perp$ graded.
Local apolar scheme

\[F \in S_d \Rightarrow \Gamma \text{ apolar scheme locally Gor. } \Rightarrow \]

\[\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_s, \text{ with } \Gamma_i \text{ local A.G.} \]

\[F = F_1 + \cdots + F_s \text{ s.t. } \Gamma_i \text{ apolar to } F_i \]

More generally: any Local AG scheme \(\Gamma_i \) is the AFFINE apolar scheme of a poly \(g_i \in S \) (unique up to a unit in the ring of diff. operators): for any LAG \(T^0/I \), \(\exists g \in S^0 \text{ s.t. } I = g^\perp \).
Local apolar scheme

\[F \in S_d \Rightarrow \Gamma \text{ apolar scheme locally Gor. } \Rightarrow \]

\[\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_s, \text{ with } \Gamma_i \text{ local A.G.} \]

\[F = F_1 + \cdots + F_s \text{ s.t. } \Gamma_i \text{ apolar to } F_i \]

More generally: any Local AG scheme \(\Gamma_i \) is the AFFINE apolar scheme of a poly \(g_i \in S \) (unique up to a unit in the ring of diff. operators): for any LAG \(T^0/l, \exists g \in S^0 \text{ s.t. } l = g^\perp \).
Proof of the Thm

\(F \) defines \(\Gamma \):

\[F \in S_d \Rightarrow \Gamma = \Gamma_1 \cup \cdots \cup \Gamma_s, \text{ with } \Gamma_i \text{ local A.G.} \]

\(\Gamma \) is defined by \(g_i \)'s:

\[\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_s \leftarrow g_1 + \cdots + g_s \text{ s.t. } \Gamma_i \text{ AFFINE apolar to } g_i \]

Plan of the proof of the Theorem:

1. Understand the link between \(F \) and the \(g_i \)'s.
Proof of the Thm

\[F \text{ defines } \Gamma: \]
\[F \in S_d \Rightarrow \Gamma = \Gamma_1 \cup \cdots \cup \Gamma_s, \text{ with } \Gamma_i \text{ local A.G.} \]

\(\Gamma \) is defined by \(g_i \)'s:

\[\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_s \iff g_1 + \cdots + g_s \text{ s.t. } \Gamma_i \text{ AFFINE apolar to } g_i \]

Plan of the proof of the Theorem:

1. Understand the link between \(F \) and the \(g_i \)'s.
Proof of the Thm

1. Understand the link between F and the g_i's.

$$g = g^{(0)} + \cdots + g^{(d)} + g^{d+1} + \cdots + g^{(l)}$$

where $\deg d$ tail of g.

Proposition

$F \in S_d$, $f = F(1, x_1, \ldots, x_n)$. Let Γ be a scheme of minimal length among local schemes supported at $[l] = [1 : 0 : \ldots : 0]$ that are apolar to $F \Rightarrow \Gamma$ is the AFFINE apolar scheme to a poly $g \in K[x_1, \ldots, x_n]$ whose $\deg d$ tail equals f.

So g may be chosen s.t. f is its tail (: Γ is also defined by many g’s that do not have f as a tail)
Proof of the Thm

1. Understand the link between F and the g_i’s.

$$g = \underbrace{g^{(0)} + \cdots + g^{(d)}}_{\text{deg } d \text{ tail of } g} + g^{d+1} + \cdots + g^{(l)}, \deg(g^{(i)}) = i.$$

Proposition

$F \in S_d$, $f = F(1, x_1, \ldots, x_n)$. Let Γ be a scheme of minimal length among local schemes supported at $[l] = [1 : 0 : \ldots : 0]$ that are apolar to $F \Rightarrow \Gamma$ is the AFFINE apolar scheme to a poly $g \in K[x_1, \ldots, x_n]$ whose deg d tail equals f.

So g may be chosen s.t. f is its tail (: Γ is also defined by many g’s that does not have f as a tail)
Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at $[l]$: $Z_{F,l} := V(f^\perp)$

Lemma (Buczyński)

Z local supp at $[l]$ apolar to $F \Rightarrow \exists Z' \subset Z$ apolar to F s.t. $Z' = Z_{G,l}$ for some $G \in S$. Moreover $F = \Psi(G)$ for some $\Psi \in T$.

\Rightarrow we can choose $\Gamma = Z_{G,l}$ for some G s.t. $F = \Psi(G)$.

If $F = \Psi(G)$ then f and $\psi(g)$ have the same deg d tail.

$\text{Diff}(\psi(g)) \subset \text{Diff}(g) \Rightarrow Z_{\psi(g)} \subset \Gamma$.

Γ minimal \Rightarrow suff. to see that $Z_{\psi(g)}$ apolar F.

$(\psi'(\psi(g)) = 0 \Rightarrow \Psi'(\Psi(G)) = 0.)$
Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at $[l]$: $Z_{F,l} := V(f^\perp)$

Lemma (Buczyński)

Z local supp at $[l]$ apolar to $F \Rightarrow \exists Z' \subset Z$ apolar to F s.t. $Z' = Z_{G,l}$ for some $G \in S$. Moreover $F = \Psi(G)$ for some $\Psi \in T$.

\Rightarrow we can choose $\Gamma = Z_{G,l}$ for some G s.t. $F = \Psi(G)$.

If $F = \Psi(G)$ then f and $\psi(g)$ have the same deg d tail.

$Diff(\psi(g)) \subset Diff(g) \Rightarrow Z_{\psi(g)} \subset \Gamma$.

Γ minimal \Rightarrow suff. to see that $Z_{\psi(g)}$ apolar F

$(\psi'(\psi(g)) = 0 \Rightarrow \Psi'(\Psi(G)) = 0.)$
Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at $[l]$: $Z_{F,l} := V(f^\perp)$

Lemma (Buczyński)

Z local supp at $[l]$ apolar to $F \Rightarrow \exists Z' \subset Z$ apolar to F s.t. $Z' = Z_{G,l}$

for some $G \in S$. Moreover $F = \Psi(G)$ for some $\Psi \in T$.

⇒ we can choose $\Gamma = Z_{G,l}$ for some G s.t. $F = \Psi(G)$.

If $F = \Psi(G)$ then f and $\psi(g)$ have the same deg d tail.

$\operatorname{Diff}(\psi(g)) \subset \operatorname{Diff}(g) \Rightarrow Z_{\psi(g)} \subset \Gamma$.

Γ minimal ⇒ suff. to see that $Z_{\psi(g)}$ apolar F

$(\psi'(\psi(g)) = 0 \Rightarrow \Psi'(\Psi(G)) = 0.)$
Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at $[l]$: $Z_{F,l} := V(f^\perp)$

Lemma (Buczyński)

Z local supp at $[l]$ apolar to $F \Rightarrow \exists Z' \subset Z$ apolar to F s.t. $Z' = Z_{G,l}$ for some $G \in S$. Moreover $F = \Psi(G)$ for some $\Psi \in T$.

\Rightarrow we can choose $\Gamma = Z_{G,l}$ for some G s.t. $F = \Psi(G)$.

If $F = \Psi(G)$ then f and $\psi(g)$ have the same deg d tail.

$Diff(\psi(g)) \subset Diff(g) \Rightarrow Z_{\psi(g)} \subset \Gamma$.

Γ minimal \Rightarrow suff. to see that $Z_{\psi(g)}$ apolar F

$(\psi'(\psi(g)) = 0 \Rightarrow \Psi'(\Psi(G)) = 0.)$
Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at $[l]$: $Z_{F,l} := V(f^\perp)$

Lemma (Buczyński)

Z local supp at $[l]$ apolar to F \Rightarrow $\exists Z' \subset Z$ apolar to F s.t. $Z' = Z_{G,l}$ for some $G \in S$. Moreover $F = \Psi(G)$ for some $\Psi \in T$.

\Rightarrow we can choose $\Gamma = Z_{G,l}$ for some G s.t. $F = \Psi(G)$.

If $F = \Psi(G)$ then f and $\psi(g)$ have the same deg d tail.

$\text{Diff}(\psi(g)) \subset \text{Diff}(g) \Rightarrow Z_{\psi(g)} \subset \Gamma$.

Γ minimal \Rightarrow suff. to see that $Z_{\psi(g)}$ apolar F

$(\psi'(\psi(g)) = 0 \Rightarrow \Psi'(\Psi(G)) = 0.)$
Parameterize the set of poly’s $g \in K[x_1, \ldots x_n]$ whose affine apolar scheme has given length.

Parameterize the family of cubic tails $f \in K[x_1, \ldots, x_n]$ of g’s.

$$C_{r,l} = \bigcup_{\text{supp } Z_l = [l^d], l(Z_l) \leq r} \langle Z_l \rangle$$

$$= \{ [F] \in \mathbb{P}(S_d) | f = g_{\leq d} \text{ for some } g \in S_{loc} \text{ with } \dim \text{Diff}(g) \leq r \}$$

$$W_{r,n} = \bigcup_{l \in S_1} C_{r,l}$$

$$\text{Cactus}_r(\nu_d(\mathbb{P}(S_1))) = \bigcup_{r_1 + \cdots + r_s = r} J(W_{r_1,n}, \ldots, W_{r_s,n})$$
Proof of the Thm

2 Parameterize the set of poly’s $g \in K[x_1, \ldots x_n]$ whose affine apolar scheme has given length. \textit{Proposition} Parameterize the family of cubic tails $f \in K[x_1, \ldots, x_n]$ of g’s.

$$C_{r,l} = \bigcup_{\text{supp}Z_l=[l^d], l(Z_l) \leq r} \langle Z_l \rangle$$

$$= \{ [F] \in \mathbb{P}(S_d) | f = g_{\leq d} \text{ for some } g \in S_{loc} \text{ with } \dim \text{Diff}(g) \leq r \}$$

$$W_{r,n} = \bigcup_{l \in S_1} C_{r,l}$$

$$\text{Cactus}_r(\nu_d(\mathbb{P}(S_1))) = \overline{\bigcup_{r_1 + \cdots + r_s = r} J(W_{r_1,n}, \ldots, W_{r_s,n})}$$
Proof of the Thm

2 Parameterize the set of poly’s $g \in K[x_1, \ldots x_n]$ whose affine apolar scheme has given length. \[\text{Proposition} \iff \text{Parameterize the family of cubic tails } f \in K[x_1, \ldots, x_n] \text{ of } g's.\]

$$C_{r,l} = \bigcup_{\text{supp} Z_l = [l^d], l(Z_l) \leq r} \langle Z_l \rangle$$

$$= \{ [F] \in \mathbb{P}(S_d) | f = g_{\leq d} \text{ for some } g \in S_{loc} \text{ with } \dim \text{Diff}(g) \leq r \}$$

$$W_{r,n} = \bigcup_{l \in S_1} C_{r,l}$$

$$\text{Cactus}_r(\nu_d(\mathbb{P}(S_1))) = \bigcup_{r_1 + \ldots + r_s = r} J(W_{r_1,n}, \ldots, W_{r_s,n})$$
Proof of the Thm

2 Parameterize the set of poly's \(g \in K[x_1, \ldots x_n] \) whose affine apolar scheme has given length. \(\iff \) Parameterize the family of cubic tails \(f \in K[x_1, \ldots, x_n] \) of \(g \)'s.

\[
C_{r,l} = \bigcup_{\text{supp}Z_l = [l^d], l(Z_l) \leq r} \langle Z_l \rangle
\]

\[
= \{ [F] \in \mathbb{P}(S_d) | f = g_{\leq d} \text{ for some } g \in S_{\text{loc}} \text{ with } \dim \text{Diff}(g) \leq r \}
\]

\[
W_{r,n} = \bigcup_{l \in S_1} C_{r,l}
\]

\[
\text{Cactus}_r(\nu_d(\mathbb{P}(S_1))) = \bigcup_{r_1 + \cdots + r_s = r} J(W_{r_1,n}, \ldots, W_{r_s,n})
\]
Proof of the Thm

Plan of the proof of the Theorem:

1. Understand the link between F and the g_i’s.

2. Parameterize the set of poly’s $g \in K[x_1, \ldots x_n]$ whose affine apolar scheme has given length.

 Proposition

 Parameterize the family of cubic tails $f \in K[x_1, \ldots , x_n]$ of g’s.

 Find a discrete invariant for LAG schemes, parameterize the cubic tails of all polynomials that define a scheme with given invariant.

3. Show which invariants have the biggest family of cubic tails.
 (Invariant: Hilbert function with symmetric decomposition)
Proof of the Thm

Plan of the proof of the Theorem:

1. Understand the link between F and the g_i’s.

2. Parameterize the set of poly’s $g \in K[x_1, \ldots, x_n]$ whose affine apolar scheme has given length.

 Proposition

 Parameterize the family of cubic tails $f \in K[x_1, \ldots, x_n]$ of g’s.

 Find a discrete invariant for LAG schemes, parameterize the cubic tails of all polynomials that define a scheme with given invariant.

3. Show which invariants have the biggest family of cubic tails.

 (Invariant: Hilbert function with symmetric decomposition)
Proof of the Thm

Plan of the proof of the Theorem:

1. Understand the link between F and the g_i’s.

2. Parameterize the set of poly’s $g \in K[x_1, \ldots, x_n]$ whose affine apolar scheme has given length.

 Proposition

 Parameterize the family of cubic tails $f \in K[x_1, \ldots, x_n]$ of g’s.

 Find a discrete invariant for LAG schemes, parameterize the cubic tails of all polynomials that define a scheme with given invariant.

3. Show which invariants have the biggest family of cubic tails.

 (Invariant: Hilbert function with symmetric decomposition)
Proof of the Thm

2. Parameterize the set of poly’s \(g \in K[x_1, \ldots x_n] \) whose affine apolar scheme has given length.

Find a discrete invariant for local AG schemes, parameterize the cubic tails of all polynomials that define a scheme with given invariant.

\[f \in S, \deg(f) = d, f^\perp \subset T \]

\[T_f := T / f^\perp \overset{\sim}{\to} \text{Diff}(f) = \{ \psi(f) \mid \psi \in T \} \]

\[\psi \mapsto \psi(f) \]
Proof of the Thm

Iarrobino

\(T_f \) is local \(\Rightarrow \) one max ideal \(m \).

- **\(m \)-adic filtration:**
 \[
 T_f = m^0 \supset \cdots \supset m^{d+1} = 0
 \\
 T_f^* = \bigoplus_{i=0}^{d} \frac{m^i}{m^{i+1}}

 \]

- **Łöewy filtration:**
 \[
 T_f = (0 : m^{d+1}) \supset \cdots \supset
 \\
 (0 : m) \supset 0

 \]

Interpr. in terms of partial of \(f \)

- **\(m^i \mapsto \)** Partial of order at least \(i \) of \(f \) (deg \(\leq d - i \))

 (Order of a partial \(f' \) of \(f = \) largest order of \(\psi \in T \) s.t. \(f' = \psi(f) \))

- **\((0 : m^i) \mapsto \)**
 \[
 \text{Diff}(f)_{i-1} = \text{partials of deg at most } i - 1 \text{ of } f

 \]
Proof of the Thm

Order filtration: \(\text{Diff}(f) = \text{Diff}(f)_0 \supseteq \text{Diff}(f)_1 \supseteq \cdots \supseteq \text{Diff}(f)_d \)

Degree filtration: \(\text{Diff}(f) = \text{Diff}(f)_d \supseteq \text{Diff}(f)_{d-1} \supseteq \cdots \supseteq \text{Diff}(f)_0 \)

Different filtrations \(f \) not homog

but

\[
\frac{(0 : m^i)}{(0 : m^{i-1})} \cong \left(\frac{m^{i-1}}{m^i} \right)^\vee
\]

\[
\frac{\text{Diff}(f)_{i+1}}{\text{Diff}(f)_i} \cong \frac{\text{Diff}(f)_{i+1}}{\text{Diff}(f)_i}
\]

and for the double filtration:

\(\text{Diff}(f)_i^a = \) Partials of deg at most \(i \) and order at least \(d - i - a \)

\[
Q_{a,i}^\vee \cong \frac{\text{Diff}(f)_i^a}{\text{Diff}(f)_{i-1}^a + \text{Diff}(f)_{i-1}^{a-1}} \cong \frac{\text{Diff}(f)^i_a}{\text{Diff}(f)_{i-1}^a + \text{Diff}(f)_{i-1}^a}
\]

So the Hf of the two filtrations are dual to each other.
Proof of the Thm

In particular

\[H_f(i) = \dim_K(Diff(f))_i - \dim_K(Diff(f))_{i-1} \]

has symmetric decomposition:

\[H = \sum_{a \geq 0} \Delta_a \]

each \(\Delta_a \) symm. around \((d - a)/2 \), i.e. \(\Delta_a(i) = \Delta_a(d - a - i) \)

where \(\dim(Q^\vee_{a,i}) = \Delta_{f,a}(i) \).

Every partial sum \(\sum_{a=0}^{\alpha} \Delta_{Q_a} \) is the Hf of a \(K \)-alg. generated in deg 1.

(Various restrictions on the possible decompositions (Mgc))
Proof of the Thm

Our goal was to parameterize the set of poly’s $f \in K[x_1, \ldots, x_n]$ with a given length for their subschem Z_f

Example

$f = x_1^3 + x_2^2$, Length(Z_f) = 5:

$$1(f) = f = x_1^3 + x_2^2$$

$$y_1(f) = x_1^2$$
$$y_2(f) = x_2$$

$$y_1^2(f) = x_1$$
$$y_2^2(f) = 1$$

$$y_1^3(f) = 1$$

$H = 1 \ 2 \ 1 \ 1$

$\Delta_0 = 1 \ 1 \ 1 \ 1$

$\Delta_1 = 0 \ 1 \ 0 \ 0$

Next step: Characterize poly’s f with given symm decomp. for H_f.
Our goal was to parameterize the set of poly’s $f \in K[x_1, \ldots, x_n]$ with a given length for their subschem Z_f

Example

$f = x_1^3 + x_2^2$, Length$(Z_f) = 5$:

<table>
<thead>
<tr>
<th>1(f)</th>
<th>$f = x_1^3 + x_2^2$</th>
<th>$H = 1 \ 2 \ 1 \ 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_1(f)$</td>
<td>x_1^2</td>
<td>$y_2(f) = x_2$</td>
</tr>
<tr>
<td>$y_1^2(f)$</td>
<td>x_1</td>
<td>$y_2^2(f) = 1$</td>
</tr>
<tr>
<td>$y_1^3(f) = 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next step: Characterize poly’s f with given symm decomp. for H_f.
Proof of the Thm

A general cubic form $F \in S = \mathbb{C}[y_0, \ldots, y_n]$ with even local cactus rank $2m, m \leq n$ is projectively equivalent to some

$$f_3 + x_0 f_2 + x_0^2 f_1 + x_0^3 f_0$$

where

$$f_3 \in \mathbb{C}[x_1, \ldots, x_{m-1}]_3,$$

$$f_2 \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle,$$

$$f_1 \in \langle x_1, \ldots, x_n \rangle,$$

$$f_0 \in \mathbb{C}.$$

The forms of local cactus rank $2n$ form a family of codimension $\binom{n-1}{2} + 1$ in the space of cubic forms $\mathbb{C}[x_0, \ldots, x_n]_3$.
Proof of the Thm

A general cubic form \(F \in S = \mathbb{C}[y_0, \ldots, y_n] \) with even local cactus rank \(2m, m \leq n \) is projectively equivalent to some

\[
f_3 + x_0 f_2 + x_0^2 f_1 + x_0^3 f_0
\]

where

\[
f_3 \in \mathbb{C}[x_1, \ldots, x_{m-1}]_3,
\]
\[
f_2 \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle,
\]
\[
f_1 \in \langle x_1, \ldots, x_n \rangle,
\]
\[
f_0 \in \mathbb{C}.
\]

The forms of local cactus rank \(2n \) form a family of codimension \(\binom{n-1}{2} + 1 \) in the space of cubic forms \(\mathbb{C}[x_0, \ldots, x_n]_3. \)
Proof of the Thm

A general cubic form $F \in S = \mathbb{C}[y_0, \ldots, y_n]$, with odd local cactus rank $2m + 1$, $m \leq n$ is projectively equivalent to some

$$f_3 + x_m x_1^2 + x_0 f_2 + x_0 x_m^2 + x_0^2 f_1 + x_0^3 f_0$$

where

$$f_3 \in \mathbb{C}[x_1, \ldots, x_{m-1}]_{3},$$

$$f_2 \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle,$$

$$f_1 \in \langle x_1, \ldots, x_n \rangle,$$

$$f_0 \in \mathbb{C}.$$

The forms of local cactus rank $2n + 1$, $n > 3$ form a family of codimension $\binom{n-2}{2} - 1$ in the space of cubic forms $\mathbb{C}[x_0, \ldots, x_n]_3$.
Proof of the Thm

A general cubic form \(F \in S = \mathbb{C}[y_0, \ldots, y_n] \), with odd local cactus rank \(2m + 1 \), \(m \leq n \) is projectively equivalent to some

\[
 f_3 + x_m x_1^2 + x_0 f_2 + x_0 x_m^2 + x_0^2 f_1 + x_0^3 f_0
\]

where

\[
 f_3 \in \mathbb{C}[x_1, \ldots, x_{m-1}]_3,
\]

\[
 f_2 \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle,
\]

\[
 f_1 \in \langle x_1, \ldots, x_n \rangle,
\]

\[
 f_0 \in \mathbb{C}.
\]

The forms of local cactus rank \(2n + 1 \), \(n > 3 \) form a family of codimension \((n-2) - 1\) in the space of cubic forms \(\mathbb{C}[x_0, \ldots, x_n]_3 \).
Proof of the Thm

3. Show which invariants have the biggest family of cubic tails.

\[C_{r,l} = \bigcup_{\text{supp}(Z_l) = \nu_3([l]), l(Z_l) \leq r} \langle Z_l \rangle \iff \text{Parameterize the family of cubic tails } f \in K[x_1, \ldots, x_n] \text{ of } g's: \]

\[V_r(3, n) = \{ f \mid f = g_{\leq 3} \text{ for some } g \in K[x_1, \ldots, x_n], \dim \text{Diff}(g) \leq r \} \]

\[V(3, \Delta, n) = \{ f_{\leq 3} \mid f \in K[x_1, \ldots, x_n], \Delta_f = \Delta \} \]

\[V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

For which Hf and which \(\Delta, \nu(3, \Delta, n) := \dim(V(3, \Delta, n)) \) attains its max given \(r \)?

\[\implies \max(\nu(3, \Delta, n)) = \text{upper bound for } \nu_r(3, n) := \dim(V_r(3, \Delta)) \]
Proof of the Thm

3 Show which invariants have the biggest family of cubic tails.

\[C_r,l = \bigcup_{\text{supp}(Z_l) = \nu_3([l]), l(Z_l) \leq r} \langle Z_l \rangle \iff \text{Parameterize the family of cubic tails } f \in K[x_1, \ldots, x_n] \text{ of } g \text{'s:} \]

\[V_r(3, n) = \{ f \mid f = g_{\leq 3} \text{ for some } g \in K[x_1, \ldots, x_n], \dim \text{Diff}(g) \leq r \} \]

\[V(3, \Delta, n) = \{ f_{\leq 3} \mid f \in K[x_1, \ldots, x_n], \Delta_f = \Delta \} \]

\[V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

For which Hf and which \(\Delta, v(3, \Delta, n) := \dim(V(3, \Delta, n)) \) attains its max given \(r \)?

\[\max(v(3, \Delta, n)) = \text{upper bound for } v_r(3, n) := \dim(V_r(3, \Delta)) \]
Proof of the Thm

3. Show which invariants have the biggest family of cubic tails.

\[C_r,l = \bigcup_{\text{supp}(Z_l) = \nu_3([l]), l(Z_l) \leq r} \langle Z_l \rangle \iff \text{Parameterize the family of cubic tails } f \in K[x_1, \ldots, x_n] \text{ of } g \text{'s:} \]

\[V_r(3, n) = \{ f \mid f = g_{\leq 3} \text{ for some } g \in K[x_1, \ldots, x_n], \dim \text{Diff}(g) \leq r \} \]

\[V(3, \Delta, n) = \{ f_{\leq 3} \mid f \in K[x_1, \ldots, x_n], \Delta_f = \Delta \} \]

\[V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

For which Hf and which \(\Delta, \nu(3, \Delta, n) := \dim(V(3, \Delta, n)) \) attains its max given \(r \)? \(\implies \max(\nu(3, \Delta, n)) = \text{upper bound for } \nu_r(3, n) := \dim(V_r(3, \Delta)) \)
Proof of the Thm

Proposition

\[r \geq 7, \quad v(3, \Delta, n) \text{ attains its max for} \]

\[
\begin{align*}
\Delta = (1, m - 1, m - 1, 1), & \quad r = 2m, \\
\Delta = (1, 1, 1, 1, 1), (0, m - 2, m - 2, 0), & \quad r = 2m + 1
\end{align*}
\]

and

\[v(3, \Delta, n) = \begin{cases}
M_e := \binom{m+2}{3} + 2m(n - m) + 3m - n - 1, & r = 2m, \\
M_o := \binom{m+2}{3} + 2m(n - m) + 3m - 2, & r = 2m + 1.
\end{cases} \]
Proof of the Thm

\[\text{Cactus}_r(X_3, n) = \bigcup J(W_{r_1,n}, \ldots, W_{r_s,n}) \]

\[W_{r,n} = \bigcup_{l \in S_1} C_{r,l} \] Local cactus variety

\[C_{r,l} = V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

max(\(v(3, \Delta, n) \)) \(\Rightarrow \) upper bound for \(v_r(3, n) \), i.e. for \(\dim(C_{r,l}) \)

The largest component of \(W_{2m,n} \) is the union as \(l \) varies, of projective varieties whose affine cones are isomorphic to \(V_{2m}(3, n) \), so a parameterization of \(W_{2m,n} \) has dimension \(v_{2m}(3, n) - 1 + n \).

Similarly, the largest component of \(W_{2m+1,n} \) is the union as \(l \) varies, of varieties isomorphic to \(V_{2m+1}(3, n) \), so a parameterization of \(W_{2m+1,n} \) has dimension \(v_{2m+1}(3, n) + n \).

BUT parameterization may not be generically finite, the formulas are upper bounds for the dimension of these varieties.
Proof of the Thm

\[\text{Cactus}_r(X_3,n) = \bigcup_{r_1+\ldots+r_s} J(W_{r_1,n}, \ldots, W_{r_s,n}) \]

\[W_{r,n} = \bigcup_{l \in S_1} C_{r,l} \text{ Local cactus variety} \]

\[C_{r,l} = V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

\[\max(v(3, \Delta, n)) \Rightarrow \text{upper bound for } v_r(3, n), \text{ i.e. for } \dim(C_{r,l}) \]

The largest component of \(W_{2m,n} \) is the union as \(l \) varies, of projective varieties whose affine cones are isomorphic to \(V_{2m}(3, n) \), so a parameterization of \(W_{2m,n} \) has dimension \(v_{2m}(3, n) - 1 + n \).

Similarly, the largest component of \(W_{2m+1,n} \) is the union as \(l \) varies, of varieties isomorphic to \(V_{2m+1}(3, n) \), so a parameterization of \(W_{2m+1,n} \) has dimension \(v_{2m+1}(3, n) + n \).

BUT parameterization may not be generically finite, the formulas are upper bounds for the dimension of these varieties.
Proof of the Thm

\[Cactus_r(X_3, n) = \bigcup_{r_1 + \ldots + r_s} J(W_{r_1, n}, \ldots, W_{r_s, n}) \]

\[W_{r, n} = \bigcup_{l \in S_1} C_{r, l} \text{ Local cactus variety} \]

\[C_{r, l} = V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

\[\max(v(3, \Delta, n)) \Rightarrow \text{upper bound for } v_r(3, n), \text{ i.e. for } \dim(C_{r, l}) \]

The largest component of \(W_{2m, n} \) is the union as \(l \) varies, of projective varieties whose affine cones are isomorphic to \(V_{2m}(3, n) \), so a parameterization of \(W_{2m, n} \) has dimension \(v_{2m}(3, n) - 1 + n \).

Similarly, the largest component of \(W_{2m+1, n} \) is the union as \(l \) varies, of varieties isomorphic to \(V_{2m+1}(3, n) \), so a parameterization of \(W_{2m+1, n} \) has dimension \(v_{2m+1}(3, n) + n \).

BUT parameterization may not be generically finite, the formulas are upper bounds for the dimension of these varieties.
Proof of the Thm

\[\text{Cactus}_r(X_3, n) = \bigcup_{r_1 + \ldots + r_s = r} J(W_{r_1, n}, \ldots, W_{r_s, n}) \]

\[W_{r, n} = \bigcup_{l \in S_1} C_{r, l} \quad \text{Local cactus variety} \]

\[C_{r, l} = V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

\[\max(v(3, \Delta, n)) \Rightarrow \text{upper bound for } v_r(3, n), \text{ i.e. for } \dim(C_{r, l}) \]

The largest component of \(W_{2m, n} \) is the union as \(l \) varies, of projective varieties whose affine cones are isomorphic to \(V_{2m}(3, n) \), so a parameterization of \(W_{2m, n} \) has dimension \(v_{2m}(3, n) - 1 + n \).

Similarly, the largest component of \(W_{2m+1, n} \) is the union as \(l \) varies, of varieties isomorphic to \(V_{2m+1}(3, n) \), so a parameterization of \(W_{2m+1, n} \) has dimension \(v_{2m+1}(3, n) + n \).

BUT parameterization may not be generically finite, the formulas are upper bounds for the dimension of these varieties.
Proof of the Thm

\[\text{Cactus}_r(X_3,n) = \bigcup_{r_1+\ldots+r_s} J(W_{r_1,n}, \ldots, W_{r_s,n}) \]

\[W_{r,n} = \bigcup_{l \in S_1} C_{r,l}, \ \text{Local cactus variety} \]

\[C_{r,l} = V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

\[\max(v(3, \Delta, n)) \Rightarrow \text{upper bound for } v_r(3, n), \ i.e. \ for \ \dim(C_{r,l}) \]

The largest component of \(W_{2m,n} \) is the union as \(l \) varies, of projective varieties whose affine cones are isomorphic to \(V_{2m}(3, n) \), so a parameterization of \(W_{2m,n} \) has dimension \(v_{2m}(3, n) - 1 + n \).

Similarly, the largest component of \(W_{2m+1,n} \) is the union as \(l \) varies, of varieties isomorphic to \(V_{2m+1}(3, n) \), so a parameterization of \(W_{2m+1,n} \) has dimension \(v_{2m+1}(3, n) + n \).

BUT parameterization may not be generically finite, the formulas are upper bounds for the dimension of these varieties.
Proof of the Thm

\[\text{Cactus}_r(X_3,n) = \bigcup_{r_1+\ldots+r_s} J(W_{r_1,n}, \ldots, W_{r_s,n}) \]

\[W_{r,n} = \bigcup_{l \in S_1} C_{r,l} \text{ Local cactus variety} \]

\[C_{r,l} = V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

\[\max(v(3, \Delta, n)) \Rightarrow \text{upper bound for } v_r(3, n), \text{ i.e. for } \dim(C_{r,l}) \]

The largest component of \(W_{2m,n} \) is the union as \(l \) varies, of projective varieties whose affine cones are isomorphic to \(V_{2m}(3, n) \), so a parameterization of \(W_{2m,n} \) has dimension \(v_{2m}(3, n) - 1 + n \).

Similarly, the largest component of \(W_{2m+1,n} \) is the union as \(l \) varies, of varieties isomorphic to \(V_{2m+1}(3, n) \), so a parameterization of \(W_{2m+1,n} \) has dimension \(v_{2m+1}(3, n) + n \).

BUT parameterization may not be generically finite, the formulas are upper bounds for the dimension of these varieties.
Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings

J. Jelisiejew, P. Macias Marques, K. Ranestad

Alessandra Bernardi

Proof of the Thm

\[Cactus_r(X_3, n) = \bigcup_{r_1 + \ldots + r_s \leq r} J(W_{r_1, n}, \ldots, W_{r_s, n}) \]

\[W_{r, n} = \bigcup_{l \in S_1} C_{r, l} \] Local cactus variety

\[C_{r, l} = V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n) \]

\[\max(v(3, \Delta, n)) \Rightarrow \text{upper bound for } v_r(3, n), \text{ i.e. for } \dim(C_{r, l}) \]

The largest component of \(W_{2m, n} \) is the union as \(l \) varies, of projective varieties whose affine cones are isomorphic to \(V_{2m}(3, n) \), so a parameterization of \(W_{2m, n} \) has dimension \(v_{2m}(3, n) - 1 + n \).

Similarly, the largest component of \(W_{2m+1, n} \) is the union as \(l \) varies, of varieties isomorphic to \(V_{2m+1}(3, n) \), so a parameterization of \(W_{2m+1, n} \) has dimension \(v_{2m+1}(3, n) + n \).

BUT parameterization may not be generically finite, the formulas are upper bounds for the dimension of these varieties.
Proof of the Thm

\[
Cactus_r(X_3, n) = \bigcup_{r_1 + \ldots + r_s} J(W_{r_1, n}, \ldots, W_{r_s, n})
\]

\[
W_{r, n} = \bigcup_{l \in S_1} C_{r, l} \text{ Local cactus variety}
\]

\[
C_{r, l} = V_r(3, n) = \bigcup_{l(\Delta) \leq r} V(3, \Delta, n)
\]

\[
\max(v(3, \Delta, n)) \Rightarrow \text{upper bound for } v_r(3, n), \text{ i.e. for } \dim(C_{r, l})
\]

The largest component of \(W_{2m, n} \) is the union as \(l \) varies, of projective varieties whose affine cones are isomorphic to \(V_{2m}(3, n) \), so a parameterization of \(W_{2m, n} \) has dimension \(v_{2m}(3, n) - 1 + n \).

Similarly, the largest component of \(W_{2m+1, n} \) is the union as \(l \) varies, of varieties isomorphic to \(V_{2m+1}(3, n) \), so a parameterization of \(W_{2m+1, n} \) has dimension \(v_{2m+1}(3, n) + n \).

BUT parameterization may not be generically finite, the formulas are upper bounds for the dimension of these varieties.
Proof of the Thm

We have equality if we show that the parameterization is generically one to one.

When b is even, for a general $[F] \in W_{b,n}$ there is a unique l such that $Z_{F,l}$ has length b.

When b is odd, and there is a unique l such that $f = \pi_l(F)$ is the tail of a quartic polynomial g_l whose apolar scheme Z_{g_l} has length b.

So $\dim(\text{Cactus}_r(X_3,n)) = \dim W_{r,n}$.
Proof of the Thm

We have equality if we show that the parameterization is generically one to one.

When b is even, for a general $[F] \in \mathcal{W}_{b,n}$ there is a unique l such that $Z_{F,l}$ has length b.

When b is odd, and there is a unique l such that $f = \pi_l(F)$ is the tail of a quartic polynomial g_l whose apolar scheme Z_{g_l} has length b.

So $\dim(\text{Cactus}_r(X_3,n)) = \dim \mathcal{W}_{r,n}$.
Proof of the Thm

We have equality if we show that the parameterization is generically one to one.

When b is even, for a general $[F] \in \mathcal{W}_{b,n}$ there is a unique l such that $Z_{F,l}$ has length b.

When b is odd, and there is a unique l such that $f = \pi_l(F)$ is the tail of a quartic polynomial g_l whose apolar scheme Z_{g_l} has length b.

So $\dim(\text{Cactus}_r(X_3,n)) = \dim \mathcal{W}_{r,n}$.
Proof of the Thm

We have equality if we show that the parameterization is generically one to one.

When b is even, for a general $[F] \in \mathcal{W}_{b,n}$ there is a unique l such that $Z_{F,l}$ has length b.

When b is odd, and there is a unique l such that $f = \pi_l(F)$ is the tail of a quartic polynomial g_l whose apolar scheme Z_{g_l} has length b.

So \(\dim(\text{Cactus}_r(X_3,n)) = \dim \mathcal{W}_{r,n} \).
THANKS!