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Subject: math of tensors <-> physics of entanglement

Aim: talk by a quantum information theorist about
elementary concepts/results and many open questions

1. Classification of multipartite entanglement
- geometry of complex projective spaces
- polynomial invariants as entanglement measures

2. Entanglement and its complexity
- complexity of quantum computation in ferms of tensors
- "coarser” classification of multipartite entanglement



Miyake, Phys. Rev. A 67, 012108 (2003):dual variety, hyperdeterminants
Miyake, Verstraete, Phys. Rev. A 69, 012101 (2004): 2x2x4 case



Stochastic LOCC

Entanglement: quantum correlation, never increasing on average
under Local Operations and Classical Communication(LOCC)
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Bipartite entanglement under SLOCC
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Encounter with tensors
What 1s the SLOCC classification of 2x2x2 (3-qubit) case?

[Gelfand, Kapranov, Zelevinsky Discriminants, Resultants, and
Multidimensional Determinants (1994), Chapter 14, Example 4.5]

[rediscovery in QIS: Diir, Vidal, Cirac, PRA 62, 062314 (2000);
over 1300 citations]

PHYSICAL REVIEW A, VOLUME 62, 062314
Three qubits can be entangled in two inequivalent ways

W. Dur, G. Vidal, and J. I. Cirac
Institut fur Theoretische Physik, Universitat Innsbruck, A-6020 Innsbruck, Austria

(Received 26 May 2000; published 14 November 2000)
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Dual variety
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Hyperdeterminat

Detzij = detllj = 1//001/111 _1/1011/40 deg 2

Det,,,W = ¢0002¢1112 + 1:000121//1102 + l/j01021/J1012 + 1//10021,00112 = 2 000¥ 001 ¥ 110¥111
+ %o 010¥101%111 T ¥ 000?100 011%111 T W00 ¥ 010¥101%110 T ¥001%¥100%011% 110
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® SLOCC invariant
entanglement monotones for genuine multipartite component
C= 2‘Detzij‘ concurrence for 2-qubit pure states

T = 4‘Det222‘11‘ 3-tangle for 3-qubit pure states

® the degree of n-qubit hyperdeterminants grows very rapidly
n 2 3 4 5 6 7 8 9 10

deg. 2 4 24 128 880 6,816 60,032 589,312 6,384,384 ...

® gecncrating function for the entanglement structure
singularities of the hypersurface = degenerate entangled classes



3-qubit (2x2x2) SLOCC classification
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2x2x4 SLOCC classification

® SLOCC orbits are
added outside.

® Duality suggests one
subsystem is too large,
compared to the rest.

2x2%xn (n > 4); 2x2x4

® L.OCC conversions
of distributed 4 qubits.

parties |2 |3 |4

classes |4 |9 |[OO

<oarsek ﬁner>




Entanglement measures in 2x2x4 case
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SLOCC conversions among different classes

unique “maximally

EJ 1000>+01 1>+ 102>+113> entangled” class,

noninvertibl (23%34) lying on the top.
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4-qubit hyperdeterminant
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(Vandermonde determinant)?

® infinitely many SLOCC orbits in generic entanglement
—> segmentation on the top of the partial order

® GHZ and W are not generic (1.e., Det,” W= 0) for n >= 4 qubits




Asymptotic bipartite case

Classification of entanglement when there are infinitely many identical
copies A B

[ TRl ST ¥

\xp+>®M ;(ﬁ \éo>+m \11>)®M \q>+>®N = (\00>+\11>)®N

LOCC i1s reversible when N = ME(W)=M(-AlogA—-(1-A)log(1-A))
Entanglement entropy
(uniqueness of entanglement measures)

embedding into a symmetric subspace (cf. Veronese mapping)



Asymptotic case and MREGS

Classification of multipartite entanglement with infinitely many identical
copies 1s still open.

Minimally Reversibly Entanglement Generating Set (MREGS)?
(|000) +|111))*"
(|001)+]010)+|100)) "

(|00)+|11))*"
?

W)™ -

* Does it exist?
* If so, i1s it made by finite generators?



Subject: math of tensors <-> physics of entanglement

Aim: talk by a quantum information theorist about
elementary concepts/results and many open questions

1. Classification of multipartite entanglement
- geometry of complex projective spaces
- polynomial invariants as entanglement measures

2. Entanglement and its complexity
- complexity of quantum computation in ferms of tensors
- "coarser” classification of multipartite entanglement



Van den Nest, Miyake, Diir, Briegel, Phys. Rev. Lett. 97, 150504 (2006)
Van den Nest, Diir, Miyake, Briegel, New. J. Phys. 9, 204 (2007)



quantum circuit as tensor composition

entanglement can be generated by a quantum circuit

Sequence of controlled interactions: 0)— /
U Initialisation (1 -Pitand 2-bit quantum gates) Read-off

n)—

' ’X0> ﬂ @ C) n .
e Ix,) — 7] 2 coefficients
. ) D N\
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Q »  time

a 1-qubit gate: SU(2) unitary map C?* — C?

a 2-qubit gate: SU(4) unitary map C* ® C? = C? ® C?

changing the quality of entanglement



2-qubit Controlled-Z gate

CZ =[00)(00|+|01)(01|+10)(10| - [11)(11]=[0){0|®@1+|1)(1|® 0
C=1L2;: —o
£)[+) =(0)+[1))]+) Bell state
—=|0)|+)+[D)]=) =10)_]0)_+[1)_[1),

GHZ state
)I+)

1D cluster state
(not GHZ)



Multipartite entanglement as graphs
[ review: Hein et al., quant-ph/0602096]

1. For a graph G, vertices = qubits, edges = Ising-type interaction pattern.
degree 1s the number of edges from a vertex.

G) = CZ"”|+)", where CZ=diag(1,1,1,-1) « 0! ®c'”
(a,b)cedges ‘+> =%(‘0>+‘1>)

2. joint eigenstate of N commuting correlation operators for NV qubits.

K,[G)-[). K =0 @ o
bEN,

3. any stabilizer state can be written as a graph state, up to local unitaries.

2D cluster state GHZ state 7-qubit codeword



Universality of quantum computation

We call measurement-based computation universal, if
Using single-qubit projective measurements and classical
feedforward of measurement outcomes (LOCC),
* it's capable to simulate any unitary gate operation on
a (known) n-qubit input state deterministically

i

‘ z/z> Loce ¢> ‘ measur'ed> —
—— — - -~ v :
N n N-n :
[

[ 2D cluster states {\ C’k>,k = 1,2,...}were shown to be universal ]

,...,

Definition of Universal resoyrce {(without encoding):
A set of states W =?rw1>,rwt> is universal for QC, if

3 z/;k> Loce v ¢> measured>

—_ —_— - ~
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Criterion for universality

Idea: if any significant entanglement feature exhibited by
a set of universal resource states (ex. the 2D cluster states)
IS hot available from another set W, then it cannot be universal

E(¢)) =E(¢')) whenever |¢)= o |¢")
Criterion for universality

A set of states W cannot be universal for MQC if

supy,, £(9)) > sup,, o, E(%))

| sup,, E(¢)) - sup, £(C,) |

® entanglement width: distinguish 1D and 2D cluster states
® geometric measure

® Schmidt measure (logarithm of tensor rank)

® |ocalizable entanglement




Entanglement width

Entanglement-width
maximal entropy of entanglement associated with certain bipartitions

Ewd(‘z//> =min., max _, Ae (

¥))

® non-increasing under LOCC (i.e. fulfills (P1))
® cquivalent to the rank-width in graph theory

2D cluster states show the divergence suchas Ewd(|C,, ) = log,(k +2) -1

Any universal resource must have a diverging entanglement width.



Criterion by localizable entanglement

Localizable entanglement £ (|y))
[ Verstraete et al., PRL 92, 027901 (2004); Gour et al., PRA 72, 042329 (2005) ]

entanglement (as measured by the concurrence) that can be at most
created between two qubits (a,b) by LOCC

® non-increasing under LOCC (fulfills (P1))
® maximum number N, ; of qubits such that E*” (‘I/J >) =1, V(a,b)EN,,

2D cluster states show the properties such as
E“"(] ckxk§> =1, Y(a,b)
N, ¢ (‘ C .. >) =k’=m  :unbounded

Non-universal resource states:

® all states such that £, <1 (e.g. W states)
® all states such that £, decays with distance (Vg 1s bounded )




Non-universal graph states

Theorem 1:
Any set of the graph states whose entanglement-width is
bounded for the number of qubits Nis not a universal resource.

“interaction geometry determines the value as a resource”
® 1D cluster states (Ewd = 1, SM=N/2) s+ —o—o—+—

® GHZ (tree) states, fully connected graphs
® graphs with bounded tree-width or clique-width

complementary to classical simulatibility (note universal QC is
simply believed not to be classically simulatable efficiently)

*Measurement-based computation on some resource states
(e.g. 1D cluster states and GHZ states)
[Nielsen 05; Markov & Shi 05; Jozsa 06; Van den Nest et al. 06; ...]



Tensor network as quantum computation

SIAM J. COMPUT.
Vol. 38, No. 3, pp. 963981

(© 2008 Society for Industrial and Applied Mathematics

SIMULATING QUANTUM COMPUTATION BY CONTRACTING
TENSOR NETWORKS*

IGOR L. MARKOVT AND YAOYUN SHIf

Abstract. The treewidth of a graph is a useful combinatorial measure of how close the graph is
to a tree. We prove that a quantum circuit with T" gates whose underlying graph has a treewidth d can
be simulated deterministically in 7€) exp[O(d)] time, which, in particular, is polynomial in T if d =
O(logT).

SIAM J. COMPUT. (© 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 7, pp. 3089-3121

QUANTUM COMPUTATION AND THE EVALUATION OF TENSOR
NETWORKS*

ITAI ARAD? AND ZEPH LANDAUT

Abstract. We present a quantum algorithm that additively approximates the value of a tensor
network to a certain scale. When combined with existing results, this provides a complete problem
for quantum computation. The result is a simple new way of looking at quantum computation in
which unitary gates are replaced by tensors and time is replaced by the order in which the tensor
network is “swallowed.” We use this result to derive new quantum algorithms that approximate the
partition function of a variety of classical statistical mechanical models, including the Potts model.



Examples of universal resources

Theorem?: . |
graph states by 2D regular tilings are universal resources.

square lattice

triangular lattic
(2D cluster state) angaiar fatrice

e

degree = 3 degree = 4 degree = 6

hexagonal lattice

minimum possible degree for
uniform lattices to be universal

More by other tensor network states
[Gross, Eisert PRL 98, 220503 (2007); Gross et.al., PRA 76, 052315
(2008)]



Tensor network states

Workshops | Spring 2014

Tensor Networks and Simulations
Apr. 21— Apr. 24, 2014

Program: Quantum Hamiltonian Complexity

Add to Calendar

View schedule & video » View abstracts »

Organizers:
Ignacio Cirac (Max Planck Institute, Garching), Frank Verstraete (University of Vienna).

This workshop will focus on tensor network (MPS, PEPS, MERA) based simulations of strongly correlated quantum
many body systems, relation to area laws, quantum spin glasses, as well as related work in mathematics, quantum
chemistry and quantum information theory.



Complexity of entanglement

Universal resources are necessarily macroscopic entanglement!

entropic ,

entanglement widt i maximum size of
’ unit localizable

entanglement

Schmidt-rank > /
width

universal resource families

N) =
classically O(lOg(N ))

efficiently
simulatable

geometric

measure
Schmidt measure (logarithm of tensor rank)



Summary: open questions

Subject: math of tensors <-> physics of entanglement

Aim: talk by a quantum information theorist about
elementary concepts/results and many open questions

1. Classification of multipartite entanglement
- "complete” characterization and "monogamy” constraints
(cf. two previous talks)
- asymptotic case: minimally generating set

2. Entanglement and its complexity
- necessary and sufficient condition for graph states
to be universal
- classes of tensor networks which are efficiently
computable



