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Classification of multipartite entanglement 

Miyake, Phys. Rev. A 67, 012108 (2003):dual variety, hyperdeterminants 
Miyake, Verstraete, Phys. Rev. A 69, 012101 (2004): 2x2x4 case 
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Encounter with tensors 

[rediscovery in QIS: Dür, Vidal, Cirac, PRA 62, 062314 (2000);  
over 1300 citations] 

Three qubits can be entangled in two inequivalent ways
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Invertible local transformations of a multipartite system are used to define equivalence classes in the set of
entangled states. This classification concerns the entanglement properties of a single copy of the state. Accord-
ingly, we say that two states have the same kind of entanglement if both of them can be obtained from the other
by means of local operations and classical communication !LOCC" with nonzero probability. When applied to
pure states of a three-qubit system, this approach reveals the existence of two inequivalent kinds of genuine
tripartite entanglement, for which the Greenberger-Horne-Zeilinger state and a W state appear as remarkable
representatives. In particular, we show that the W state retains maximally bipartite entanglement when any one
of the three qubits is traced out. We generalize our results both to the case of higher-dimensional subsystems
and also to more than three subsystems, for all of which we show that, typically, two randomly chosen pure
states cannot be converted into each other by means of LOCC, not even with a small probability of success.

PACS number!s": 03.67.Hk, 03.65.Bz, 03.65.Ca

I. INTRODUCTION

The understanding of entanglement is at the very heart of
quantum information theory !QIT". In recent years, there has
been an ongoing effort to characterize qualitatively and
quantitatively the entanglement properties of multiparticle
systems. A situation of particular interest in QIT consists of
several parties that are spatially separated from each other
and share a composite system in an entangled state. This
setting requires the parties—which are typically allowed to
communicate through a classical channel—to only act lo-
cally on their subsystems. But even restricted to local opera-
tions assisted with classical communication !LOCC", the
parties can still modify the entanglement properties of the
system and in particular they can try to convert one en-
tangled state into another. This possibility leads to natural
ways of defining equivalence relations in the set of entangled
states—where equivalent states are then said to contain the
same kind of entanglement—as well as establishing hierar-
chies between the resulting classes.
For instance, we could agree in identifying any two states

which can be obtained from each other with certainty by
means of LOCC. Clearly, this criterion is interesting in QIT
because the parties can use these two states indistinguishably
for exactly the same tasks. It is a celebrated result #1$ that,
when applied to many copies of a state, this criterion leads to
identifying all bipartite pure-state entanglement with
that of the Einstein-Podolsky-Rosen !EPR" state
(1/!2)(!00%!!11%) #2$. That is, the entanglement of any
pure state !&%AB is asymptotically equivalent, under deter-
ministic LOCC, to that of the EPR state, the entropy of en-
tanglement E(&AB)—the entropy of the reduced density ma-
trix of either system A or B—quantifying the amount of EPR
entanglement contained asymptotically in !&%AB . In contrast,
recent contributions have shown that in systems shared by
three or more parties, there are several inequivalent forms of
entanglement under asymptotic LOCC #3,4$.
This paper is essentially concerned with the entanglement

properties of a single copy of a state, and thus asymptotic
results do not apply here. For single copies it is known that

two pure states !&% and !'% can be obtained with certainty
from each other by means of LOCC if and only if they are
related by local unitaries !LU" #5,4$. But even in the simplest
bipartite systems, !&% and !'% are typically not related by
LU, and continuous parameters are needed to label all
equivalence classes #6–10$. That is, one has to deal with
infinitely many kinds of entanglement. In this context, an
alternative, simpler classification would be advisable.
One such classification is possible if we just demand that

the conversion of the states is through stochastic local opera-
tions and classical communication !SLOCC" #4$; that is,
through LOCC but without imposing that it has to be
achieved with certainty. In that case, we can establish an
equivalence relation stating that two states !&% and !'% are
equivalent if the parties have a nonvanishing probability of
success when trying to convert !&% into !'%, and also !'%
into !&% #11$. This relation has been termed stochastic
equivalence in Ref. #4$. Their equivalence under SLOCC
indicates that both states are again suited to implement the
same tasks of QIT, although this time the probability of a
successful performance of the task may differ from !'% to
!&%. Notice in addition that since LU are a particular case of
SLOCC, states equivalent under LU are also equivalent un-
der SLOCC, the new classification being a coarse graining of
the previous one.
The main aim of this work is to identify and characterize

all possible kinds of pure-state entanglement of three qubits
under SLOCC. Unentangled states, and also those which are
product in one party while entangled with respect to the re-
maining two, appear as expected, to be trivial cases. More
surprising is the fact that there are two different kinds of
genuine tripartite entanglement. Indeed, we will show that
any !nontrivial" tripartite entangled state can be converted,
by means of SLOCC, into one of two standard forms,
namely either the GHZ state #12$

!GHZ%"!1/!2 "! !000%!!111%) !1"
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or else a second state1

!W!!"1/!3 #" !001!"!010!"!100!), "2#

and that this splits the set of genuinely trifold entangled
states into two sets which are unrelated under LOCC. That
is, we will see that if !$! can be converted into the state
!GHZ! in Eq. "1# and !%! can be converted into the state !W!
in Eq. "2#, then it is not possible to transform, even with only
a very small probability of success, !$! into !%! nor the
other way round.
The previous result is based on the fact that, unlike the

GHZ state, not all entangled states of three qubits can be
expressed as a linear combination of only two product states.
Remarkably enough, the inequivalence under SLOCC of the
states !GHZ! and !W! can alternatively be shown from the
fact that the 3-tangle "residual tangle#, a measure of tripartite
correlations introduced by Coffman et al. &14', does not in-
crease on average under LOCC, as we will prove here.
We will then move to the second main goal of this work,

namely the analysis of the state !W!. It cannot be obtained
from a state !GHZ! by means of LOCC and thus one could
expect, in principle, that it has some interesting, characteris-
tic properties. Recall that in several aspects the GHZ state
can be regarded as the maximally entangled state of three
qubits. However, if one of the three qubits is traced out, the
remaining state is completely unentangled. Thus, the en-
tanglement properties of the state !GHZ! are very fragile
under particle losses. We will prove that, oppositely, the en-
tanglement of !W! is maximally robust under disposal of any
one of the three qubits, in the sense that the remaining re-
duced density matrices2 (AB , (BC , and (AC retain, accord-
ing to several criteria, the greatest possible amount of en-
tanglement, compared to any other state of three qubits,
either pure or mixed.
We will finally analyze entanglement under SLOCC in

more general multipartite systems. We will show that, for
most of these systems, there is typically no chance at all to
transform locally a given state into some other if they are
chosen randomly, because the space of entangled pure states
depends on more parameters than those that can be modified
by acting locally on the subsystems.
The paper is organized as follows. In Sec. II, we charac-

terize mathematically the equivalence relation established by
stochastic conversions under LOCC, and illustrate its perfor-
mance by applying it to the well-known bipartite case. In
Sec. III, we move to consider a system of three qubits, for
which we prove the existence of six classes of states under
SLOCC, including the two genuinely tripartite ones. Section
IV is devoted to studying the endurance of the entanglement
of the state !W! against particle losses. In Sec. V, more gen-
eral multipartite systems are considered. Section VI contains
some conclusions. Finally, Appendices A–C prove, respec-

tively, some needed results related to SLOCC, the monoto-
nicity of the 3-tangle under LOCC, and the fact that !W!
retains optimally bipartite entanglement when one qubit is
traced out.

II. KINDS OF ENTANGLEMENT UNDER
STOCHASTIC LOCC

In this work we define as equivalent the entanglement of
two states !$! and !%! of a multipartite system iff local
protocols exist that allow the parties to convert each of the
two states into the other one with some a priori probability
of success. In this approach, we follow the definition for
stochastic equivalence as given in &4'.3 The underlying mo-
tivation for this definition is that, if the entanglement of !$!
and !%! is equivalent, then the two states can be used to
perform the same tasks, although the probability of a suc-
cessful performance of the task may depend on the state that
is being used.

A. Invertible local operators

Sensible enough, this classification would remain useless
if in practice we would not be able to find out which states
are related by SLOCC. Let us recall that, all in all, no prac-
tical criterion is known so far that determines whether a ge-
neric transformation can be implemented by means of
LOCC. However, we can think of any local protocol as a
series of rounds of operations, where in each round a given
party manipulates locally its subsystem and communicates
classically the result of its operation "if it included a mea-
surement# to the rest of the parties. Subsequent operations
can be made dependent on previous results and the protocol
splits into several branches. This picture is useful because for
our purposes we need only focus on one of these branches.
Suppose that state !$! can be locally converted into state !%!
with nonzero probability. This means that at least one branch
of the protocol does the job. Since we are concerned only
with pure states, we can always characterize mathematically
this branch as an operator which factors out as the tensor
product of a local operator for each party. For instance, in a
three-qubit case we would have that !$! can be locally con-
verted into !%! with some finite probability iff an operator
A!B!C exists such that

!%!!A!B!C!$!, "3#

where operator A contains contributions coming from any
round in which party A acted on its subsystem, and similarly
for operators B and C.4 Carrying on with the three-qubit
example, let us now consider for simplicity that both states

1An experimental realization using photons of such a state was
already proposed in &13'.
2The reduced density matrix (AB of a pure tripartite state !$! is
defined as (AB)trC(!$!*$!).

3Stochastic transformations under LOCC had been previously
analyzed in &15,16'.
4In practice, the constraints A†A , B†B , C†C+1 should be ful-
filled if the invertible operators A ,B ,C are to come from local
POVMs. In this work, we do not normalize them in order to avoid
introducing unimportant constants to the equations. Instead, both
the initial and final states are normalized.
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because the parties can use these two states indistinguishably
for exactly the same tasks. It is a celebrated result #1$ that,
when applied to many copies of a state, this criterion leads to
identifying all bipartite pure-state entanglement with
that of the Einstein-Podolsky-Rosen !EPR" state
(1/!2)(!00%!!11%) #2$. That is, the entanglement of any
pure state !&%AB is asymptotically equivalent, under deter-
ministic LOCC, to that of the EPR state, the entropy of en-
tanglement E(&AB)—the entropy of the reduced density ma-
trix of either system A or B—quantifying the amount of EPR
entanglement contained asymptotically in !&%AB . In contrast,
recent contributions have shown that in systems shared by
three or more parties, there are several inequivalent forms of
entanglement under asymptotic LOCC #3,4$.
This paper is essentially concerned with the entanglement

properties of a single copy of a state, and thus asymptotic
results do not apply here. For single copies it is known that

two pure states !&% and !'% can be obtained with certainty
from each other by means of LOCC if and only if they are
related by local unitaries !LU" #5,4$. But even in the simplest
bipartite systems, !&% and !'% are typically not related by
LU, and continuous parameters are needed to label all
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[Gelfand, Kapranov, Zelevinsky Discriminants,  Resultants, and 
Multidimensional Determinants (1994), Chapter 14, Example 4.5] 

What is the SLOCC classification of 2x2x2 (3-qubit) case? 
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3-qubit (2x2x2) SLOCC classification 7
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FIG. 3: The onion-like classification of SLOCC orbits in the 3-qubit case. We utilize a duality between the smallest
closed subvariety X and the largest closed subvariety X∨. The dual variety X∨ (zero hyperdeterminant) and its
singularities constitute SLOCC-invariant closed subvarieties so that they classify the multipartite entangled states
(SLOCC orbits).

A. 3-qubit (format 23) case

The classification of the 3 qubits under SLOCC has been already done in [4, 5]. Surprisingly, Gelfand et al.
considered the same mathematical problem by DetA3 in Example 4.5 of [17]. Our idea is inspired by this
example. We complement the Gelfand et al.’s result, analyzing additionally the singularities of X∨ in details.
The dimensions, representatives, names, and varieties of the orbits are summarized as follows. The basis
vector |i1⟩ ⊗ |i2⟩ ⊗ |i3⟩ is abbreviated to |i1i2i3⟩.

dim 7: |000⟩ + |111⟩, GHZ ∈ M(= CP 7)−X∨.
dim 6: |001⟩ + |010⟩+ |100⟩, W ∈ X∨−X∨

sing = X∨−X∨
cusp.

dim 4: |001⟩ + |010⟩, |001⟩+ |100⟩, |010⟩ + |100⟩, biseparable Bj ∈ X∨
node(j)−X for j = 1, 2, 3.

X∨
node(j) = CP 1

j-th×CP 3 are three closed irreducible components of X∨
sing = X∨

cusp.

dim 3: |000⟩, completely separable S ∈ X =
⋂

j=1,2,3 X∨
node(j) = CP 1×CP 1×CP 1.

G = GL2 × GL2 × GL2 has the onion structure of six orbits on M (see Fig. 3), by excluding the orbit
∅ (= X∨

node(∅)). The dual variety X∨ is given by DetA3 = 0 (cf. Eq. (10)). Its dimension is 7 − 1 = 6.
The outside of X∨ is generic tripartite entangled class of the maximal dimension, whose representative is
GHZ. This suggests that almost any state in the 3 qubits can be locally transformed into GHZ with a finite
probability, and vice versa. Next, we can identify X∨

sing as X∨
cusp, which is the union of three closed irreducible

subvarieties X∨
node(j) for j =1, 2, 3 (cf. [19]). For example, X∨

node(1) means by definition that, in addition to
the condition for X∨ in Sec.2, there exists some nonzero x(1) such that F (A, x)= 0 for any x(2), x(3); i.e., a
set of linear equations

yi2,i3(x
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∂2

∂x(2)
i2

∂x(3)
i3

F (A, x) = 0 for ij = 0, 1 (15)

has a nontrivial solution x(1). This indicates that not only X∨
node(1) ⊂ X∨

cusp, but the ”bipartite” matrix

(
a000 a001 a010 a011

a100 a101 a110 a111

)
(16)

never has the full rank (i.e., six 2×2 minors in Eq.(16) are zero). We can identify X∨
node(1) as the set

CP 1
1st × CP 3, seen in Sec.2, of biseparable states between the 1st party and the rest of the parties. Its

dimension is 1 + 3 = 4. Likewise, X∨
node(j) for j = 2, 3 gives the biseparable class for the 2nd, 3rd party,

respectively. So, the class of X∨−X∨
sing is found to be tripartite entangled states, whose representative is

W. We can intuitively see that, among genuine tripartite entangled states, W is rare, compared to GHZ [4].
Finally, the intersection of X∨

node(j) is the completely separable class S, given by the Segre variety X of
dimension 3. Another intuitive explanation about this procedure is seen in the appendix of [9].

Now we clarify the relationship of six classes by noninvertible local operations. Because noninvertible local
operations cause the decrease in local ranks [20], the partially ordered structure of entangled states in the 3

5

can define X∨
cusp as
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IV. CLASSIFICATION OF MULTIPARTITE
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According to Sec. II and III, we illustrate the classi-
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FIG. 2: The onion-like classification of SLOCC orbits in
the 3-qubit case. We utilize a duality between the smallest
closed subvariety X and the largest closed subvariety X∨.
The dual variety X∨ (zero hyperdeterminant) and its sin-
gularities constitute SLOCC-invariant closed subvarieties, so
that they classify the multipartite entangled states (SLOCC
orbits).

seen in Sec. II A, of biseparable states between the 1st
party and the rest of the parties. Its dimension is
1 + 3 = 4. Likewise, X∨

node(j) for j = 2, 3 gives the
biseparable class for the 2nd or 3rd party, respectively.
So, the class of X∨−X∨

sing is found to be tripartite entan-
gled states, whose representative is W. We can intuitively
see that, among genuine tripartite entangled states, W is
rare, compared to GHZ [5]. Finally, the intersection of
X∨

node(j) is the completely separable class S, given by
the Segre variety X of dimension 3. Another intuitive
explanation about this procedure is seen in Appendix A.

Now we clarify the relationship of six classes by non-
invertible local operations. Because noninvertible local
operations cause the decrease in local ranks [21], the
partially ordered structure of entangled states in the 3
qubits, included in Fig. 4, appears. Two inequivalent
tripartite entangled classes, GHZ and W, have the same
local ranks (2, 2, 2) for each party so that they are not in-
terconvertible by the noninvertible local operations (i.e.,
general LOCC). Two classes hold different physical prop-
erties [5]; the GHZ representative state has the maxi-
mal amount of generic tripartite entanglement measured
by the 3-tangle τ ∝ |DetA3|, while the W representative
state has the maximal amount of (average) 2-partite en-
tanglement distributed over 3 parties (also [22]). Under
LOCC, a state in these two classes can be transformed
into any state in one of the three biseparable classes
Bj (j = 1, 2, 3), where the j-th local rank is 1 and the
others are 2. Three classes Bj never convert into each
other. Likewise, a state in Bj can be locally transformed
into any state in the completely separable class S of local
ranks (1, 1, 1).

This is how the onion-like classification of SLOCC or-
bits reveals that multipartite entangled classes constitute
the partially ordered structure. It indicates significant

6

cusp

node

X

X X∨

X∨

FIG. 2: Two types of singularities of X∨. X∨
node corresponds to the bitangent of X, where both tangencies are of the

first order. X∨
cusp corresponds to the tangent at an inflection point of X, where its tangency is of the second order.

C. Singularities of the hyperdeterminant

We describe the singular locus of the dual variety X∨. The technical details are given in [19]. It is known
that, for the boundary format, the next largest closed subvariety X∨

sing is always an irreducible hypersurface
in X∨; in contrast, for the interior one, X∨

sing has generally two closed irreducible components of codimension
1 in X∨, node X∨

node and cusp X∨
cusp type singularities. The rest of this subsection can be skipped for the

first reading. It is also illustrated for the 3-qubit case in the appendix of [9].
First, X∨

node is the closure of the set of hyperplanes tangent to the Segre variety X at more than one
points (cf. Fig. 2). X∨

node can be composed of closed irreducible subvarieties X∨
node(J) labeled by the subset

J ⊂ {1, . . . , n}, including ∅. Indicating that two solutions x = (x(1), . . . , x(j), . . . , x(n)) of Eq.(7) coincide for
j∈J , the label J distinguishes the pattern in these solutions. In order to rewrite X∨

node(J), let us pick up a

point xo(J) such that its homogeneous coordinates x(j)
ij

= δij ,0 for j∈J and δij ,kj
for j /∈J . It is convenient to

label the positions of 1 in each x(j) by a multi-index [i1, . . . , in]. For example, xo(1) is labeled by [0, k2, . . . , kn]
and xo(1, . . . , n) is just written by xo. When X∨ is the hyperplane tangent to X at xo(J), its ”xo(J)-section”
X∨|xo(J) is given as

X∨|xo(J) =

{
A

∣∣∣∣ all ai′
1
,...,i′n

=0 s.t.
[i′1, . . . , i

′
n] differs from [i1, . . . , in]

of xo(J) in at most one index

}
, (12)

in order that Eqs.(7) have the nontrivial solution xo(J). Then in terms of the hyperplane bitangent to X at
xo and xo(J), we can define X∨

node(J) as

X∨
node(J) = (X∨|xo ∩ X∨|xo(J)) · G, (13)

where G=GLk1+1×· · ·×GLkn+1 acts M on from the right and the bar stands for the closure.
Second, X∨

cusp is the set of hyperplanes having a critical point which is not a simple quadratic singularity

(cf. Fig. 2). Precisely, the quadric part of F (A, x) at xo is a matrix y(j,ij),(j′,ij′ ) =(∂2/∂x(j)
ij

∂x(j′)
ij′

)F (A, xo),

where the pairs (j, ij), (j′, ij′) (1≤ ij ≤kj , 1≤ ij′ ≤kj′ ) are the row, column index respectively. Denoting by
X∨

cusp|xo the variety of the Hessian det y=0 in the xo-section X∨|xo of Eq. (12), we can define X∨
cusp as

X∨
cusp = X∨

cusp|xo · G. (14)

This X∨
cusp is already closed without taking the closure.

IV. CLASSIFICATION OF MULTIPARTITE ENTANGLEMENT

According to Sec.2 and Sec.3, we illustrate the classification of multipartite pure entangled states for typical
cases.



!  SLOCC orbits are  
    added outside. 

!  Duality suggests one 
    subsystem is too large,  
    compared to the rest.  

!  LOCC conversions  
    of distributed 4 qubits.  

parties 2 3 4 

classes 4 9 ∞

coarser finer 

( )2 2 4 2 2 4n n× × ≥ × ×;

2x2x4 SLOCC classification 



1,1, 1

, , 0

n

ijk A B C
i j k

i j kψ
−

=

Ψ = ⊗ ⊗∑

By calculating local ranks 1 2 3( , , ) ofr r r tri j iρ ∀ ≠= Ψ Ψ

  !  (2,2,4)  generic class (dim 15) 
!  (2,2,3) 

!  (2,2,2) 

!  (1,2,2), (2,1,2), (2,2,1)  Biseparable 1,2,3 (dim 8,8,6) 

!  (1,1,1)  Separable (dim 5) 

000 010 100 010 100 110 000 010 110 000 100 110

223 001 011 101 011 101 111 001 011 111 001 101 111

002 012 102 012 102 112 002 012 112 002 102 112

Det
ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

Ψ = −
0 dim14
0 dim13

≠"
#
=$

0 ( 3)ijk kψ∀ = ≥Clare�s local operation:  

0 ( 2)ijk kψ∀ = ≥
2 2 2 2 2 2 2 2

222 000 111 001 110 010 101 100 011 000 001 110 111

000 010 101 111 000 100 011 111 001 010 101 110 001 100 011 110

010 100 011 101 000 011 101 110 001 010 100 111

Det 2(

) 4( )

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

Ψ = + + + −

+ + + +

+ + + 0 GHZ (dim11)
0 W (dim10)

≠"
#
=$

Clare�s local operation:  

Entanglement measures in 2x2x4 case 



5 graded partial order  
of  9 entangled classes  

( ) ( )
1 2

00 11 00 11
AC BC

+ ⊗ +

unique �maximally  
entangled� class,  
lying on the top. 
Its representative is  
2 Bell pairs: 

noninvertible  
local operations 

B A 

C 

SLOCC conversions among different classes 



!   infinitely many SLOCC orbits in generic entanglement 
     ! segmentation on the top of  the partial order 

(Vandermonde determinant)2 

( ) ( )
( ) ( )
0000 1111 0011 1100 0000 1111 0011 1100

0101 1010 0110 1001 0101 1010 0110 1001

α β

γ δ

+ + + + + − −

+ + + + + − −

( )( )( )( )( )( )( )22 2 2 2 2 2 2 2 2 2 2 2
2222Det 0α β α γ α δ β γ β δ γ δΨ = − − − − − − ≠

Det2222Ψ = c1
2c2
2c3
2 − 4c0c2

3c3
2 − 4c1

2c2
3c4 − 4c1

3c3
3 −6c0c1

2c3
2c4 +16c0c2

4c4
+18c0c1c2c3

3 +18c1
3c2c3c4 − 27c0

2c3
4 − 27c1

4c4
2 −80c0c1c2

2c3c4 −128c0
2c2
2c4
2

+144c0c1
2c2c4

2 +144c0
2c2c3

2c4 −192c0
2c1c3c4

2 + 256c0
3c4
3

( )
1 2 3 1 2 30 0 1 1

4

4
0 1

1
222(4 )! ! Det

i i i i i ij jj j j x x
x xc ψ ψ−

∂
− ∂ ∂

+= Ψ

deg. 24 

4-qubit generic entangled states:  

!   GHZ and W are not generic (i.e., Det2
n Ψ = 0) for n >= 4 qubits  

4-qubit hyperdeterminant 



Asymptotic bipartite case 
Classification of entanglement when there are infinitely many identical 
copies  

A B 
B A 

LOCC 

Φ+ ⊗N
= 00 + 11( )

⊗N
Ψ+ ⊗M

= λ 00 + 1−λ 11( )
⊗M

N =ME(Ψ) =M (−λ logλ − (1−λ)log(1−λ))LOCC is reversible when 

embedding into a symmetric subspace (cf. Veronese mapping) 

Entanglement entropy 
(uniqueness of entanglement measures) 



Asymptotic case and MREGS 
Classification of multipartite entanglement with infinitely many identical 
copies is still open. 

Minimally Reversibly Entanglement Generating Set (MREGS)?  

Ψ
⊗M

↔

( 000 + 111 )⊗n1

001 + 010 + 100( )
⊗n2

( 00 + 11 )⊗n3

?

$

%

&
&&

'

&
&
&

•  Does it exist? 
•  If so, is it made by finite generators? 



Outline 

1.  Classification of multipartite entanglement  
     - geometry of complex projective spaces 
     - polynomial invariants as entanglement measures 

2. Entanglement and its complexity 
    - complexity of quantum computation in terms of tensors 
    - “coarser” classification of multipartite entanglement  

Aim: talk by a quantum information theorist about 
elementary concepts/results and many open questions 

Subject: math of tensors <-> physics of entanglement   



Entanglement and its complexity 

Van den Nest, Miyake, Dür, Briegel, Phys. Rev. Lett. 97, 150504 (2006) 
Van den Nest, Dür, Miyake, Briegel, New. J. Phys. 9, 204 (2007)   



quantum circuit as tensor composition  
entanglement can be generated by a quantum circuit 

a 1-qubit gate: SU(2) unitary map 

a 2-qubit gate: SU(4) unitary map 

!2 "!2

!2 ⊗!2 "!2 ⊗!2

changing the quality of entanglement 



( )0 1

0 1 0 0 1 1
z x z x

+ + = + +

→ + + − ≡ +

Bell state 
{ }1,2 :C =

( )0 1

0 1 0 0 0 1 1 1
x z x x z x

+ + + = + + +

→ + + + − − ≡ +

GHZ state 
{ }1,2,3 :C =

( )
( ) ( )

0 1

0 1 0 0 0 1 1 1

0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1
zz z x z x x z x

z x z x z x z x z x z x z x z x

σ

+ + + + = + + + +

+

−

→ +

= + +

1D cluster state 
(not GHZ)  

{ }1,2,3,4 :C =

CZ = 00 00 + 01 01 + 10 10 − 11 11 = 0 0 ⊗1+ 1 1 ⊗σ z

2-qubit Controlled-Z gate 



Multipartite entanglement as graphs 

1.  For a graph G, vertices = qubits, edges = Ising-type interaction pattern. 
     degree is the number of edges from a vertex. 

3. any stabilizer state can be written as a graph state, up to local unitaries. 

[ review: Hein et al., quant-ph/0602096] 

2. joint eigenstate of N commuting correlation operators for N qubits.  
( ) ( ),

a

a b
a a x zb N
K G G K σ σ

∈
= = ⊗

( , ) ( ) ( )

( , )

CZ , where CZ= diag(1,1,1, 1)ma b a b
z z

a b edges

G σ σ
∈

= + − ∝ ⊗∏

2D cluster state GHZ state 7-qubit codeword 

( )1
2
0 1+ = +



Definition of Universal resource (without encoding): 
A set of states                              is universal for QC, if 

Using single-qubit projective measurements and classical 
feedforward of measurement outcomes (LOCC), 
•   it’s capable to simulate any unitary gate operation on  
   a (known) n-qubit input state deterministically 
•   it’s capable to produce any corresponding output state 

Universality of quantum computation 

{ }, 1,2,...kC k =2D cluster states                          were shown to be universal 

ψ

N
!

LOCC! →!! φ

n
!

measured

N -n
! "## $##

Ψ = ψ
1
, ψ

2
, ...,{ }

∃ ψ
k

N
!

LOCC" →"" ∀ φ

n
!

measured

N -n
! "## $##



Criterion for universality  

A set of states Ψ cannot be universal for MQC if  

Idea: if any significant entanglement feature exhibited by  
a set of universal resource states (ex. the 2D cluster states) 
is not available from another set Ψ, then it cannot be universal 

LOCC( ) ( ) whenever 'E Eφ φ φ φ"≥ ≥

sup ( ) sup ( )E Eφ ψφ ψ∀ ∈Ψ>

sup ( ) sup ( )k kE E Cφ φ∀ =

! ��entanglement width: distinguish 1D and 2D cluster states 
!   geometric measure 
!   Schmidt measure (logarithm of tensor rank) 
!   localizable entanglement 



Entanglement width 

subcubic 
tree T edge e 

TEwd( )=min max ( )e
T

e T A
Eψ ψ∈

maximal entropy of entanglement associated with certain bipartitions 

! ��non-increasing under LOCC (i.e. fulfills (P1)) 
 

!   equivalent to the rank-width in graph theory 

Any universal resource must have a diverging entanglement width. 

2Ewd( ) log ( 2) 1k kC k× ≥ + −



Criterion by localizable entanglement 

entanglement (as measured by the concurrence) that can be at most 
created between two qubits (a,b) by LOCC 
 

!   non-increasing under LOCC (fulfills (P1)) 
 

!   maximum number NLE of qubits such that  

[ Verstraete et al., PRL 92, 027901 (2004); Gour et al., PRA 72, 042329 (2005) ] 

(a,b)
L ( )E ψ

( , )
L LE( ) 1, ( , )a bE a b Nψ = ∀ ∈

( , )
L

2
LE

( ) 1, ( , )

( )

a b
k k

k k

E C a b

N C k m
×

×

= ∀

= =

Non-universal resource states: 
 

!   all states such that EL < 1 (e.g. W states) 

!    all states such that EL decays with distance (NLE  is bounded  )  

: unbounded 



 
Any set of the graph states whose entanglement-width is 
bounded for the number of qubits N is not a universal resource. 

Non-universal graph states 

complementary to classical simulatibility (note universal QC is 
simply believed not to be classically simulatable efficiently) 

! ��1D cluster states (Ewd = 1, SM=N/2) 
 

!   GHZ (tree) states, fully connected graphs  
 

!   graphs with bounded tree-width or clique-width 
 

• Measurement-based computation on some resource states  
     (e.g. 1D cluster states and GHZ states)  
     [Nielsen 05; Markov & Shi 05; Jozsa 06; Van den Nest et al. 06; …] 

“interaction geometry determines the value as a resource” 



Tensor network as quantum computation 
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SIMULATING QUANTUM COMPUTATION BY CONTRACTING
TENSOR NETWORKS∗

IGOR L. MARKOV† AND YAOYUN SHI†

Abstract. The treewidth of a graph is a useful combinatorial measure of how close the graph is
to a tree. We prove that a quantum circuit with T gates whose underlying graph has a treewidth d can
be simulated deterministically in TO(1) exp[O(d)] time, which, in particular, is polynomial in T if d =
O(log T ). Among many implications, we show efficient simulations for log-depth circuits whose gates
apply to nearby qubits only, a natural constraint satisfied by most physical implementations. We also
show that one-way quantum computation of Raussendorf and Briegel (Phys. Rev. Lett., 86 (2001),
pp. 5188–5191), a universal quantum computation scheme with promising physical implementations,
can be efficiently simulated by a randomized algorithm if its quantum resource is derived from a
small-treewidth graph with a constant maximum degree. (The requirement on the maximum degree
was removed in [I. L. Markov and Y. Shi, preprint:quant-ph/0511069].)

Key words. quantum computation, computational complexity, treewidth, tensor network, clas-
sical simulation, one-way quantum computation

AMS subject classifications. 81P68, 68Q05, 68Q10, 05C83, 68R10

DOI. 10.1137/050644756

1. Introduction. The recent interest in quantum circuits is motivated by several
complementary considerations. Quantum information processing is rapidly becoming
a reality as it allows the manipulation matter on an unprecedented scale. Such ma-
nipulations may create particular entangled states or implement specific quantum
evolutions—they find uses in atomic clocks, ultra-precise metrology, high-resolution
lithography, optical communication, etc. On the other hand, engineers traditionally
simulate new designs before implementing them. Such simulation may identify subtle
design flaws and save both costs and effort. It typically uses well-understood host
hardware, e.g., one can simulate a quantum circuit on a commonly-used conventional
computer.

More ambitiously, quantum circuits compete with conventional computing and
communication. Quantum-mechanical effects may potentially lead to computational
speed-ups, more secure or more efficient communication, better keeping of secrets,
etc. To this end, one seeks new circuits and algorithms with revolutionary behav-
ior as in Shor’s work on number-factoring, or provable limits on possible behaviors.
While proving abstract limitations on the success of unknown algorithms appears
more difficult, a common line of reasoning for such results is based on simulation.
For example, if the behavior of a quantum circuit can be faithfully simulated on a
conventional computer, then the possible speed-up achieved by the quantum circuit
is limited by the cost of simulation. Thus, aside from sanity-checking new designs
for quantum information-processing hardware, more efficient simulation can lead to
sharper bounds on all possible algorithms.

∗Received by the editors November 10, 2005; accepted for publication (in revised form) November
27, 2007; published electronically June 25, 2008.

http://www.siam.org/journals/sicomp/38-3/64475.html
†Department of Electrical Engineering and Computer Science, University of Michigan, 2260 Hay-

ward Street, Ann Arbor, MI 48109-2121 (imarkov@eecs.umich.edu, shiyy@eecs.umich.edu). The first
author’s research was supported in part by NSF 0208959, the DARPA QuIST program, and the Air
Force Research Laboratory. The second author’s research was supported in part by NSF 0323555,
0347078, and 0622033.

963

D
ow

nl
oa

de
d 

11
/0

9/
14

 to
 6

4.
10

6.
62

.4
5.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. COMPUT. c⃝ 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 7, pp. 3089–3121

QUANTUM COMPUTATION AND THE EVALUATION OF TENSOR
NETWORKS∗

ITAI ARAD† AND ZEPH LANDAU†

Abstract. We present a quantum algorithm that additively approximates the value of a tensor
network to a certain scale. When combined with existing results, this provides a complete problem
for quantum computation. The result is a simple new way of looking at quantum computation in
which unitary gates are replaced by tensors and time is replaced by the order in which the tensor
network is “swallowed.” We use this result to derive new quantum algorithms that approximate the
partition function of a variety of classical statistical mechanical models, including the Potts model.

Key words. tensor networks, quantum algorithms, statistical mechanical models

AMS subject classification. 68Q12

DOI. 10.1137/080739379

1. Introduction. The discovery by Peter Shor in 1994 of a quantum algorithm
for factoring n digit numbers in poly(n) steps stimulated a large amount of interest
in the power of quantum computation [Sho97]. Since then, the search for quantum
algorithms that provide exponential speedup over the best known classical algorithms
has yielded a number of results: algorithms for a number of group and number theo-
retic problems that, like Shor’s algorithm, use the quantum Fourier transform as the
essential ingredient (e.g., [Wat01, Kup03, vDHI03, Hal07]); an algorithm for an oracle
graph problem that uses the notion of a quantum random walk [CCD+03]; and re-
cently, algorithms for approximating combinatorial and topological quantities such as
the Jones polynomial and the Tutte polynomial [FKW02, FKLW02, AJL06, AAEL07].
These last algorithms related to the Jones and Tutte polynomials are fundamentally
different from the previous algorithms. The work presented here began as a study of
the core features of these algorithms.

This work presents a simple new way of looking at quantum computation. The
consequences are (a) new quantum algorithms, (b) the casting of the aforementioned
Jones polynomial and Tutte polynomial results in a new light, and (c) a new geometric
view of quantum computation that will hopefully lead to more new algorithms.

The fundamental object for this new view is a tensor network which we now
briefly describe (a precise description of tensor networks is given in section 2). A
tensor network T (G,M) is a graph G, a finite set of colors that can be used to label
the edges ofG, along with a finite array of dataMv ∈ M assigned to each vertex v ∈ V
of the graph. This finite set of data Mv is of the following form: for each possible
coloring of the edges incident to the vertex v, the vertex is assigned a complex number.
Thus for a given coloring l of all the edges of the graph, each vertex has an assigned
value—we denote the product of these values by cl. The value of a tensor network
T (G,M) is defined to be the sum of cl over all possible labelings l of G.

The notion of a tensor network geometrically captures many fundamental linear
algebra concepts such as inner product, matrix multiplication, the trace of a matrix,

∗Received by the editors October 30, 2008; accepted for publication (in revised form) March 9,
2010; published electronically June 24, 2010.

http://www.siam.org/journals/sicomp/39-7/73937.html
†Department of Electrical Engineering and Computer Sciences, University of California at Berke-

ley, Berkeley, CA 94720 (arad.itai@gmail.com, zeph.landau@gmail.com)
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degree = 3 degree = 4 degree = 6 

    
graph states by 2D regular tilings are universal resources. 

minimum possible degree for 
uniform lattices to be universal 

hexagonal lattice square lattice 
(2D cluster state) triangular lattice 

Examples of universal resources 

More by other tensor network states  
[Gross, Eisert PRL 98, 220503 (2007); Gross et.al., PRA 76, 052315 
(2008)] 



Tensor network states 6

FIG. 5. (Color online) Homogeneous tensor network states
for the ground state in an infinite lattice in D = 1 spacial
dimensions. (i) A homogeneous MPS is characterized by a
single tensor that is repeated infinitely many times through-
out the tensor network. (ii) A homogeneous scale invariant
MERA is characterized by two tensors, a disentangler and
an isometry, repeated throughout the tensor network, which
consists of infinitely many layers.

ing we consider generic properties of homogeneous MPS,
PEPS and MERA with a finite bond dimension χ. We
consider states of an infinite lattice L, see Fig. 5, and
focus mostly on the asymptotic behaviour of such proper-
ties, namely in the decay of correlations at large distances
and scaling of entanglement entropy for large blocks of
sites.

IV. CORRELATIONS AND GEODESICS

The asymptotic decay of correlations has long been
known to be exponential in an MPS1–3 and polynomial
in the scale invariant MERA16,18,19. In this section we
point out that such behaviour is dictated by the struc-
ture of geodesics in the geometry attached to each of
these tensor network states. For an MPS, the later is a
rather straightfoward statement; for the MERA, it was
first noted by Swingle92.

A. Geodesics within a tensor network

Given a tensor network state for the state |Ψ⟩ of a lat-
tice L, and two sites of L at positions x1 and x2, we can
define a notion of distance between these two sites within
the tensor network as follows. First we notice that the
two sites are connected by paths within the tensor net-
work, where each path consists of a list of tensors and
links/indices connecting the tensors. To any such path,
we then associate a length, as given by the number of ten-
sors (or links) in the path. Then the distance D(x1, x2)

FIG. 6. (Color online) (i) Two sites x1 and x2 of the lat-
tice L are connected through several paths within the tensor
network. The geodesic corresponds to the shortest of such
paths, where the length of a path is measured e.g. by the
number of tensors in the path. In the example, the shortest
path between sites x1 and x2 contains 6 tensors, and therefore
the length of the geodesic is D(x1, x2) = 6. Eq. 13 relates
the length of geodesics with the assymptotic decay of corre-
lations in the tensor network (assuming that correlations are
predominantly carried by the tensors in the geodesic). (ii)
Region ΩA of the tensor network that contains (the indices
corresponding to) region A of the lattice L. The boundary
∂ΩA of region ΩA consists of the set of indices connecting
ΩA with the rest of the tensor network. The number n(A)
of such indices is interpreted as measure of the size |∂ΩA| of
the boundary ∂ΩA. In the example, n(A) = |∂ΩA| = 3. An
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lattice L is given in terms of n(A), Eq. 20.
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path connecting them, see Fig. 6(i).
Let C(x1, x2) denote a correlation function between

positions x1 and x2. It turns out that for both the
MPS and the scale invariant MERA, the decay of correla-
tions can be expressed in terms of the distance D(x1, x2)
within the tensor network,

C(x1, x2) ≈ e−αD(x1,x2), (13)

for some positive constant α. This expression assumes
that the correlations between the two sites are mostly
carried through the tensors/links in the geodesic path
connecting them. It originates in the fact that for both
the MPS (D = 1 dimensions) and the scale invariant
MERA (in any dimensions), the correlator C(x1, x2) can
be obtained by evaluating an expression with the (ap-
proximate) form

C(x1, x2) ≈ v⃗†L · (T )D(x1,x2) · v⃗R, (14)

that is, a scalar product involving two vectors v⃗L and
v⃗R and the D(x1, x2)-th power of some transfer matrix
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FIG. 5. (Color online) Homogeneous tensor network states
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MERA is characterized by two tensors, a disentangler and
an isometry, repeated throughout the tensor network, which
consists of infinitely many layers.
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FIG. 6. (Color online) (i) Two sites x1 and x2 of the lat-
tice L are connected through several paths within the tensor
network. The geodesic corresponds to the shortest of such
paths, where the length of a path is measured e.g. by the
number of tensors in the path. In the example, the shortest
path between sites x1 and x2 contains 6 tensors, and therefore
the length of the geodesic is D(x1, x2) = 6. Eq. 13 relates
the length of geodesics with the assymptotic decay of corre-
lations in the tensor network (assuming that correlations are
predominantly carried by the tensors in the geodesic). (ii)
Region ΩA of the tensor network that contains (the indices
corresponding to) region A of the lattice L. The boundary
∂ΩA of region ΩA consists of the set of indices connecting
ΩA with the rest of the tensor network. The number n(A)
of such indices is interpreted as measure of the size |∂ΩA| of
the boundary ∂ΩA. In the example, n(A) = |∂ΩA| = 3. An
upper bound to the entanglement entropy of a region A of the
lattice L is given in terms of n(A), Eq. 20.
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1.  Classification of multipartite entanglement  
     - “complete” characterization and “monogamy” constraints 
       (cf. two previous talks) 
     - asymptotic case: minimally generating set 

2. Entanglement and its complexity 
    - necessary and sufficient condition for graph states 
      to be universal 
    - classes of tensor networks which are efficiently  
      computable 

Aim: talk by a quantum information theorist about 
elementary concepts/results and many open questions 

Subject: math of tensors <-> physics of entanglement   
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