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2Tensors of bounded rank

Setting
V1, . . . ,Vp vector spaces over K, dim Vi =: ni
V := V1 ⊗ · · · ⊗ Vp has dimension n1 · · · np.

Each u ∈ V is of the form
∑k

i=1 vi1 ⊗ · · · ⊗ vip.

Definition
The minimal k in any such expression is the rank of u.
The border rank is the minimal k such that u lies in the
Zariski closure of {v ∈ V | rk v ≤ k} (assume K infinite).

Dimension
Tensors of border rank ≤ k form a variety of dimension
≤ k · [1 +

∑p
i=1(ni − 1)], which is� n1 · · · np for small k.



3Low-rank approximation

Setting
Assuming K = R, equip each Vi with a positive definite
inner product (.|.)i. Equip V with the inner product
determined by (u1 ⊗ · · · ⊗ up|v1 ⊗ · · · ⊗ vp) :=

∏
i(ui|vi)i.

Inspiring problem
Given u ∈ V and k ∈ N, find x ∈ V of rank ≤ k that
minimises du(x) := ||u − x||2.

Related problem
For (sufficiently general) u ∈ V, count the critical points
of du on the smooth part of the set {v ∈ V | rk v ≤ k}.

My talk: k = 1.



4Rank-one approximation for matrices

Setting
X := {v1 ⊗ · · · ⊗ vp} \ {0} ⊆ V is the manifold of pure tensors.
Given u ∈ V, we count critical points of du on X.

Note
Count doesn’t change when acting with O(V1) × · · · ×O(Vp).

Case p = 2,n1 ≤ n2 (Eckart-Young Theorem)
∃gi ∈ O(Vi), i = 1, 2 such that (g1 ⊗ g2)u =

∑n1
i=1 ci · ei ⊗ fi

where e1, . . . , en1 orthonormal in V1 and f1, . . . , fn1

orthonormal in V2 and c1 ≥ . . . ≥ cn1 ≥ 0 (singular values).

The critical points are (g−1
1 , g

−1
2 )ci · ei ⊗ fi for i = 1, . . . ,n1;

there are n1 of these.



5Main result: ordinary tensors

Fact
For p ≥ 3 the number of critical points of du on X typically
jumps as u crosses a hypersurface; we compute an average.

Theorem (D-Horobeţ)
Draw u uniformly from the unit sphere in V centered at 0.
Then the expected # of critical points of du equals

(2π)p/2

2n/2

1∏p
i=1 Γ

(
ni
2

)E(|det C|)

where n := n1 + · · · + np and where C is a symmetric random
(n − p) × (n − p)-matrix with certain structural zeroes.



6Main result, continued

Structure of C

C =


w0In1−1 C1,2 · · · C1,p

CT
1,2 w0In2−1 · · · C2,p
...

...
...

CT
1,p CT

2,p · · · w0Inp−1


where Ci j is (ni − 1) × (n j − 1), and where w0 and the entries
of all Ci j are independent and ∼ N(0, 1).

Sanity check: p = 2,n1 = n2 = 2

C =

[
w0 w12
w12 w0

]
, |det C| = |w2

0 − w2
12|, E(|det C|) = 4

π

 get (2π)1

22 · 1 · 4
π = 2, as given by the Eckart-Young theorem.



7Euclidean distance degree

More general problem
Given any real algebraic variety X in a Euclidean space V,
and given u ∈ V, count the critical points of du(x) := ||u − x||2

on the manifold Xreg , i.e., count the x where u − x ⊥ TxX.

Definition (D-H-Ottaviani-Sturmfels-Thomas)
Complexify (.|.) to a symmetric bilinear form on VC. Then
for general u ∈ VC the number of smooth points x ∈ XC with
u− x ⊥ TxXC is a constant called the ED degree of X (or XC).

The average ED degree of X w.r.t. a probability measure on
V is the expected number of critical points of du for random
u ∈ V. This is a real, rather than complex count.



8ED degree for rank-one tensors

Setting
Complexify (.|.) from before to a symmetric bilinear form on
VC = (V1 ⊗ · · · ⊗ Vp)C; XC consists of complex pure tensors.

Theorem (Friedland-Ottaviani)
EDdegree(X) = coefficient of sn1−1

1 · · · snp−1
p in

∏p
i=1

ŝni
i −sni

i
ŝi−si

,
where ŝi = s1 + · · · + si−1 + si+1 + · · · + sp.

Sanity check: p = 2,n1 ≤ n2

 We get the coefficient of sn1−1
1 sn2−1

2 in
sn1

2 −sn1
1

s2−s1
·

sn2
1 −sn2

2
s1−s2

= (sn1−1
2 + · · · + sn1−1

1 ) · (sn2−1
1 + · · · + sn2−1

2 )
which equals n1 as given by the Eckart-Young theorem.



9(Average) ED degrees for rank-one tensors

Tensor format average ED degree (/R) ED degree (/C)
n1 × n2 min(n1,n2) min(n1,n2)
23 = 2 × 2 × 2 4.287 6
24 11.06 24
25 31.56 120
26 98.82 720
27 333.9 5040
28 1.206 · 103 40320
2 × 2 × 3 5.604 8
2 × 2 × 4 5.556 8
2 × 2 × 5 5.536 8
2 × 3 × 3 8.817 15
2 × 3 × 4 10.39 18
2 × 3 × 5 10.28 18
3 × 3 × 3 16.03 37
3 × 3 × 4 21.28 55



10The ED correspondence

General setting, R or C (D-H-O-S-T)
EX := {(x,u) | x ∈ Xreg critical for du} ⊆ X × V is called the
ED correspondence of X.

Observation
π1 : EX → X is an affine vector bundle /Xreg of rank codimX.
π2 : EX → V has fibres whose cardinalities we try to count.

Cones
Assume X is closed under scalar multiplication, so PX ⊆ PV
is a projective variety. Let PEX be the image of EX in PX×V.
Its fibre over [x] ∈ PX with (x|x) , 0 equals 〈x〉 + (TxX)⊥.

 the projective ED correspondence PEX is a vector bundle
over PXreg of rank codimX + 1 away from Q := {v | (v|v) = 0}.



11Towards vector bundle methods

u ∈ V gives a section of the quotient bundle (PX × V)/PEX,
and the ED degree counts the zeroes of this section (but
there may be problems at Q and outside Xreg).

Zeroes of a general sections of a vector bundle E → PX of
rank dimPX are counted by the degree of the top Chern
class of E. This class lives in the Chow ring of PX.

So control over the Chow ring of PX and the behaviour at
singular points and at Q can yield the ED degree.

For X = {pure tensors}, PX = Seg(Pn1−1
× · · · × Pnp−1). The

Chow ring is Z[s1, . . . , sp]/(sn1
1 , . . . , s

np
p ).



12Proof sketch of the Friedland-Ottaviani formula

EDdegree(X) = coefficient of sn1−1
1 · · · snp−1

p in
∏p

i=1
ŝni

i −sni
i

ŝi−si
,

where ŝi = s1 + · · · + si−1 + si+1 + · · · + sp.

Tangent space
x = v1 ⊗ · · · ⊗ vp  TxX =

∑p
j=1 v1 ⊗ · · · ⊗ V j ⊗ · · · ⊗ vp.

Proof sketch
([x],u) ∈ PEX ⇔ ∃c∀i : u − cx ⊥ v1 ⊗ · · · ⊗ Vi ⊗ · · · ⊗ vp
⇔ ∃c∀i : u − cx ⊥ x and u ⊥ v1 ⊗ · · · ⊗ v⊥i ⊗ · · · ⊗ vp
⇔ u ⊥ v1 ⊗ · · · ⊗ v⊥i ⊗ · · · ⊗ vp (if (x|x) , 0)
Define Ei : bundle on PX with fibre (v1 ⊗ · · · ⊗ v⊥i ⊗ · · · ⊗ vp)∗

The tensor u gives a section of the bundle
⊕

i Ei, whose top
Chern class has degree = coefficient. �



13Average ED degrees by double counting

Recall (now over R)
π1 : EX → X is an affine vector bundle /Xreg of rank codimX.
π2 : EX → V has fibres whose cardinalities we try to count.

Assume that the probability distribution on V is given by a
density f , and that we have a generically one-to-one map ϕ
from Rdim V to EX. Then the average ED degree of X equals∫

V
#|π−1

2 (u)| · f (u)du =

∫
Rdim V

|J(π2 ◦ f )(t)| · f (π2(ϕ(t)))dt.

For rational varieties X we can take ϕ to be birational. If X
is a cone, we can also work with PEX.



14Proof sketch of the D-Horobeţ formula

Fix a norm-1 vector ei ∈ Vi for i = 1, . . . , p.

Set W := (
⊕p

i=1 e1 ⊗ · · · ⊗ e⊥i ⊗ · · · ⊗ ep)⊥ ⊆ V, the fibre over
[e1 ⊗ · · · ⊗ ep] ∈ PX in PEX.

Define the birational map ψ : e⊥1 × · · · × e⊥p → PX by
(v1, . . . , vp) 7→ [(e1 + v1) ⊗ · · · ⊗ (ep + vp)]. By symmetry, the
π2-fibre over ψ(v1, . . . , vp) equals gW, where g ∈

∏
i O(Vi) is

any element such that gi maps [ei] into [ei + vi].

Choose gi :=
(
I − eieT

i −
vi
||vi ||

vT
i
||vi ||

)
+

(
ei+vi√
1+||vi ||2

eT
i + vi−||vi ||

2ei

||vi ||
√

1+||vi ||2

vT
i
||vi ||

)
and apply double counting to
ψ :

∏
i(ei)⊥ ×W → PEX, (v1, . . . , vp) 7→ (ϕ(v1, . . . , vp), gw). �



15Further result: symmetric tensors

Setting
Equip V := SympRn with the positive inner product where
(vp

1|v
p
2) = (v1|v2)p (the Bombieri inner product). Now we

approximate u ∈ V by an element of X := {±vp
| v ∈ Rn

\ {0}}.

Theorem (D-Horobeţ)
Draw u from the uniform distribution on the unit sphere in
V centered at 0. Then E(#critical points of du on X) equals

1
2(n2+3n−2)/4

∏n
i=1 Γ(i/2)

∫
λ2≤...≤λn

∞∫
−∞

(∏n
i=2 |
√

pw0 −
√

p − 1λi|
)
·(∏

i< j(λ j − λi)
)

e−w2
0/2−

∑n
i=2 λ

2
i /4dw0dλ2 · · ·dλn



16ED degrees for symmetric rank-1 tensors

ED degrees (right) and average ED degrees (left)

p\n 1 2 3 4 1 2 3 4
1 1 1 1 1 1 1 1 1
2 1 2 3 4 1 2 3 4
3 1

√
7 1 + 4 · 2

7 ·
√

7 · 2 9.3951. . . 1 3 7 15
4 1

√
10 1 + 4 · 3

10 ·
√

10 · 3 16.254. . . 1 4 13 40
5 1

√
13 1 + 4 · 4

13 ·
√

13 · 4 24.300. . . 1 5 21 85
6 1

√
16 1 + 4 · 5

16 ·
√

16 · 5 33.374. . . 1 6 31 156
7 1

√
19 1 + 4 · 6

19 ·
√

19 · 6 43.370. . . 1 7 43 259
8 1

√
22 1 + 4 · 7

22 ·
√

22 · 7 54.21. . . 1 8 57 400

Theorem (Cartwright-Sturmfels)
The ED degree of X ⊆ SpV is 1 + (p − 1) + · · · + (p − 1)n−1.



17Further remarks and problems

• Relation to singular vector tuples and eigenvectors. (Lim)
• Other inner products on V?
• Closed form expression for the average ED degree for sym case?
•What is the expected number of local minima of du?
• Describe hypersurface where |π−1

2 (u)| jumps (the ED discriminant).
• Find all typical values of |π−1

2 (u)| (over R).
•Give a geometric proof for “stabilisation” when np − 1 ≥

∑p−1
i=1 (ni − 1).

• Can knowledge of (average) ED degrees be used in algorithms?
• How about rank two?
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