Counting critical rank-one approximations to tensors

Jan Draisma (j.w.w. Emil Horobeţ)

TU Eindhoven

 V_1, \ldots, V_p vector spaces over K, dim $V_i =: n_i$ $V := V_1 \otimes \cdots \otimes V_p$ has dimension $n_1 \cdots n_p$. Each $u \in V$ is of the form $\sum_{i=1}^k v_{i1} \otimes \cdots \otimes v_{ip}$.

Definition

The minimal *k* in any such expression is the rank of *u*. The border rank is the minimal *k* such that *u* lies in the Zariski closure of $\{v \in V \mid \text{rk } v \leq k\}$ (assume *K* infinite).

Dimension

Tensors of border rank $\leq k$ form a variety of dimension $\leq k \cdot [1 + \sum_{i=1}^{p} (n_i - 1)]$, which is $\ll n_1 \cdots n_p$ for small *k*.

Assuming $K = \mathbb{R}$, equip each V_i with a positive definite inner product $(.|.)_i$. Equip V with the inner product determined by $(u_1 \otimes \cdots \otimes u_p | v_1 \otimes \cdots \otimes v_p) := \prod_i (u_i | v_i)_i$.

Inspiring problem

Given $u \in V$ and $k \in \mathbb{N}$, find $x \in V$ of rank $\leq k$ that minimises $d_u(x) := ||u - x||^2$.

Related problem

For (sufficiently general) $u \in V$, count the critical points of d_u on the smooth part of the set { $v \in V | \operatorname{rk} v \leq k$ }.

My talk: k = 1.

 $X := \{v_1 \otimes \cdots \otimes v_p\} \setminus \{0\} \subseteq V$ is the manifold of **pure tensors**. Given $u \in V$, we count critical points of d_u on X.

Note

Count doesn't change when acting with $O(V_1) \times \cdots \times O(V_p)$.

Case $p = 2, n_1 \le n_2$ (Eckart-Young Theorem) $\exists g_i \in O(V_i), i = 1, 2$ such that $(g_1 \otimes g_2)u = \sum_{i=1}^{n_1} c_i \cdot e_i \otimes f_i$ where e_1, \ldots, e_{n_1} orthonormal in V_1 and f_1, \ldots, f_{n_1} orthonormal in V_2 and $c_1 \ge \ldots \ge c_{n_1} \ge 0$ (singular values).

The critical points are $(g_1^{-1}, g_2^{-1})c_i \cdot e_i \otimes f_i$ for $i = 1, ..., n_1$; there are n_1 of these.

Fact

For $p \ge 3$ the number of critical points of d_u on X typically jumps as *u* crosses a hypersurface; we compute an average.

Theorem (D-Horobeţ)

Draw *u* uniformly from the unit sphere in *V* centered at 0. Then the expected # of critical points of d_u equals

$$\frac{(2\pi)^{p/2}}{2^{n/2}} \frac{1}{\prod_{i=1}^{p} \Gamma\left(\frac{n_i}{2}\right)} \mathbb{E}(|\det C|)$$

where $n := n_1 + \cdots + n_p$ and where *C* is a symmetric random $(n - p) \times (n - p)$ -matrix with certain structural zeroes.

Main result, continued

Structure of C $C = \begin{bmatrix} w_0 I_{n_1-1} & C_{1,2} & \cdots & C_{1,p} \\ C_{1,2}^T & w_0 I_{n_2-1} & \cdots & C_{2,p} \\ \vdots & \vdots & \vdots \\ C_{1,p}^T & C_{2,p}^T & \cdots & w_0 I_{n_p-1} \end{bmatrix}$ where C_{ij} is $(n_i - 1) \times (n_j - 1)$, and where w_0 and the entries of all C_{ij} are independent and $\sim \mathcal{N}(0, 1)$.

Sanity check:
$$p = 2, n_1 = n_2 = 2$$

 $C = \begin{bmatrix} w_0 & w_{12} \\ w_{12} & w_0 \end{bmatrix}, |\det C| = |w_0^2 - w_{12}^2|, \mathbb{E}(|\det C|) = \frac{4}{\pi}$
 $\rightsquigarrow \text{get } \frac{(2\pi)^1}{2^2} \cdot 1 \cdot \frac{4}{\pi} = 2, \text{ as given by the Eckart-Young theorem.}$

More general problem

Given any real algebraic variety *X* in a Euclidean space *V*, and given $u \in V$, count the critical points of $d_u(x) := ||u - x||^2$ on the manifold X_{reg} , i.e., count the *x* where $u - x \perp T_x X$.

Definition (D-H-Ottaviani-Sturmfels-Thomas) Complexify (.|.) to a symmetric bilinear form on $V_{\mathbb{C}}$. Then for general $u \in V_{\mathbb{C}}$ the number of smooth points $x \in X_{\mathbb{C}}$ with $u - x \perp T_x X_{\mathbb{C}}$ is a constant called the ED degree of X (or $X_{\mathbb{C}}$).

The average ED degree of *X* w.r.t. a probability measure on *V* is the expected number of critical points of d_u for random $u \in V$. This is a real, rather than complex count.

Complexify (.|.) from before to a symmetric bilinear form on $V_{\mathbb{C}} = (V_1 \otimes \cdots \otimes V_p)_{\mathbb{C}}$; $X_{\mathbb{C}}$ consists of complex pure tensors.

Theorem (Friedland-Ottaviani)

EDdegree(X) = coefficient of $s_1^{n_1-1} \cdots s_p^{n_p-1}$ in $\prod_{i=1}^p \frac{\hat{s}_i^{n_i} - s_i^{n_i}}{\hat{s}_i - s_i}$, where $\hat{s}_i = s_1 + \cdots + s_{i-1} + s_{i+1} + \cdots + s_p$.

Sanity check: $p = 2, n_1 \le n_2$ \rightsquigarrow We get the coefficient of $s_1^{n_1-1}s_2^{n_2-1}$ in $\frac{s_2^{n_1}-s_1^{n_1}}{s_2-s_1} \cdot \frac{s_1^{n_2}-s_2^{n_2}}{s_1-s_2} = (s_2^{n_1-1}+\dots+s_1^{n_1-1}) \cdot (s_1^{n_2-1}+\dots+s_2^{n_2-1})$ which equals n_1 as given by the Eckart-Young theorem.

(Average) ED degrees for rank-one tensors

Tensor format	average ED degree (/ \mathbb{R})	ED degree (/ \mathbb{C})
$n_1 \times n_2$	$\min(n_1, n_2)$	$\min(n_1, n_2)$
$2^3 = 2 \times 2 \times 2$	4.287	6
2^{4}	11.06	24
2 ⁵	31.56	120
2 ⁶	98.82	720
27	333.9	5040
2 ⁸	$1.206 \cdot 10^3$	40320
$2 \times 2 \times 3$	5.604	8
$2 \times 2 \times 4$	5.556	8
$2 \times 2 \times 5$	5.536	8
$2 \times 3 \times 3$	8.817	15
$2 \times 3 \times 4$	10.39	18
$2 \times 3 \times 5$	10.28	18
$3 \times 3 \times 3$	16.03	37
$3 \times 3 \times 4$	21.28	55

General setting, \mathbb{R} or \mathbb{C} (D-H-O-S-T) $\mathcal{E}_X := \{(x, u) \mid x \in X_{\text{reg}} \text{ critical for } d_u\} \subseteq X \times V \text{ is called the}$ ED correspondence of *X*.

Observation

 $\pi_1 : \mathcal{E}_X \to X$ is an affine vector bundle $/X_{\text{reg}}$ of rank codimX. $\pi_2 : \mathcal{E}_X \to V$ has fibres whose cardinalities we try to count.

Cones

Assume X is closed under scalar multiplication, so $\mathbb{P}X \subseteq \mathbb{P}V$ is a projective variety. Let $\mathbb{P}\mathcal{E}_X$ be the image of \mathcal{E}_X in $\mathbb{P}X \times V$. Its fibre over $[x] \in \mathbb{P}X$ with $(x|x) \neq 0$ equals $\langle x \rangle + (T_x X)^{\perp}$.

→ the projective ED correspondence $\mathbb{P}\mathcal{E}_X$ is a vector bundle over $\mathbb{P}X_{\text{reg}}$ of rank codimX + 1 away from $Q := \{v \mid (v|v) = 0\}$.

Towards vector bundle methods

 $u \in V$ gives a section of the quotient bundle $(\mathbb{P}X \times V)/\mathbb{P}\mathcal{E}_X$, and the ED degree counts the zeroes of this section (but there may be problems at Q and outside X_{reg}).

Zeroes of a general sections of a vector bundle $\mathcal{E} \to \mathbb{P}X$ of rank dim $\mathbb{P}X$ are counted by the degree of the top Chern class of \mathcal{E} . This class lives in the Chow ring of $\mathbb{P}X$.

So control over the Chow ring of $\mathbb{P}X$ and the behaviour at singular points and at Q can yield the ED degree.

For $X = \{\text{pure tensors}\}, \mathbb{P}X = \text{Seg}(\mathbb{P}^{n_1-1} \times \cdots \times \mathbb{P}^{n_p-1})$. The Chow ring is $\mathbb{Z}[s_1, \dots, s_p]/(s_1^{n_1}, \dots, s_p^{n_p})$.

Proof sketch of the Friedland-Ottaviani formula 12

EDdegree(X) = coefficient of $s_1^{n_1-1} \cdots s_p^{n_p-1}$ in $\prod_{i=1}^p \frac{\hat{s}_i^{n_i} - s_i^{n_i}}{\hat{s}_i - s_i}$, where $\hat{s}_i = s_1 + \cdots + s_{i-1} + s_{i+1} + \cdots + s_p$.

Tangent space

 $x = v_1 \otimes \cdots \otimes v_p \rightsquigarrow T_x X = \sum_{j=1}^p v_1 \otimes \cdots \otimes V_j \otimes \cdots \otimes v_p.$

Proof sketch

 $([x], u) \in \mathbb{P}\mathcal{E}_X \Leftrightarrow \exists c \forall_i : u - cx \perp v_1 \otimes \cdots \otimes V_i \otimes \cdots \otimes v_p$ $\Leftrightarrow \exists c \forall_i : u - cx \perp x \text{ and } u \perp v_1 \otimes \cdots \otimes v_i^{\perp} \otimes \cdots \otimes v_p$ $\Leftrightarrow u \perp v_1 \otimes \cdots \otimes v_i^{\perp} \otimes \cdots \otimes v_p \qquad (\text{if } (x|x) \neq 0)$ Define \mathcal{E}_i : bundle on $\mathbb{P}X$ with fibre $(v_1 \otimes \cdots \otimes v_i^{\perp} \otimes \cdots \otimes v_p)^*$ The tensor *u* gives a section of the bundle $\bigoplus_i \mathcal{E}_i$, whose top Chern class has degree = coefficient. \square

Recall (now over \mathbb{R})

 $\pi_1 : \mathcal{E}_X \to X$ is an affine vector bundle $/X_{reg}$ of rank codimX. $\pi_2 : \mathcal{E}_X \to V$ has fibres whose cardinalities we try to count.

Assume that the probability distribution on *V* is given by a density *f*, and that we have a generically one-to-one map φ from $\mathbb{R}^{\dim V}$ to \mathcal{E}_X . Then the average ED degree of *X* equals

$$\int_{V} \# |\pi_{2}^{-1}(u)| \cdot f(u) du = \int_{\mathbb{R}^{\dim V}} |J(\pi_{2} \circ f)(t)| \cdot f(\pi_{2}(\varphi(t))) dt.$$

For rational varieties *X* we can take φ to be birational. If *X* is a cone, we can also work with $\mathbb{P}\mathcal{E}_X$.

Fix a norm-1 vector $e_i \in V_i$ for i = 1, ..., p.

Set $W := (\bigoplus_{i=1}^{p} e_1 \otimes \cdots \otimes e_i^{\perp} \otimes \cdots \otimes e_p)^{\perp} \subseteq V$, the fibre over $[e_1 \otimes \cdots \otimes e_p] \in \mathbb{P}X$ in $\mathbb{P}\mathcal{E}_X$.

Define the birational map $\psi : e_1^{\perp} \times \cdots \times e_p^{\perp} \to \mathbb{P}X$ by $(v_1, \ldots, v_p) \mapsto [(e_1 + v_1) \otimes \cdots \otimes (e_p + v_p)]$. By symmetry, the π_2 -fibre over $\psi(v_1, \ldots, v_p)$ equals gW, where $g \in \prod_i O(V_i)$ is any element such that g_i maps $[e_i]$ into $[e_i + v_i]$.

Choose
$$g_i := \left(I - e_i e_i^T - \frac{v_i}{\|v_i\|} \frac{v_i^T}{\|v_i\|}\right) + \left(\frac{e_i + v_i}{\sqrt{1 + \|v_i\|^2}} e_i^T + \frac{v_i - \|v_i\|^2 e_i}{\|v_i\| \sqrt{1 + \|v_i\|^2}} \frac{v_i^T}{\|v_i\|}\right)$$

and apply double counting to
 $\psi : \prod_i (e_i)^\perp \times W \to \mathbb{P}\mathcal{E}_X, (v_1, \dots, v_p) \mapsto (\varphi(v_1, \dots, v_p), gw).$

Equip $V := \text{Sym}^p \mathbb{R}^n$ with the positive inner product where $(v_1^p | v_2^p) = (v_1 | v_2)^p$ (the Bombieri inner product). Now we approximate $u \in V$ by an element of $X := \{\pm v^p \mid v \in \mathbb{R}^n \setminus \{0\}\}.$

Theorem (D-Horobeţ)

Draw *u* from the uniform distribution on the unit sphere in *V* centered at 0. Then $\mathbb{E}(\text{#critical points of } d_u \text{ on } X)$ equals

$$\frac{1}{2^{(n^2+3n-2)/4}\prod_{i=1}^{n}\Gamma(i/2)}\int_{\lambda_2\leq\ldots\leq\lambda_n}\int_{-\infty}^{\infty}\left(\prod_{i=2}^{n}|\sqrt{p}w_0-\sqrt{p-1}\lambda_i|\right)\cdot\left(\prod_{i< j}(\lambda_j-\lambda_i)\right)e^{-w_0^2/2-\sum_{i=2}^{n}\lambda_i^2/4}dw_0d\lambda_2\cdots d\lambda_n$$

ED degrees (right) and average ED degrees (left)

$p \setminus n$	1	2	3	4	1	2	3	4
1	1	1	1	1	1	1	1	1
2	1	2	3	4	1	2	3	4
3	1	$\sqrt{7}$	$1 + 4 \cdot \frac{2}{7} \cdot \sqrt{7 \cdot 2}$	9.3951	1	3	7	15
4	1	$\sqrt{10}$	$1 + 4 \cdot \frac{3}{10} \cdot \sqrt{10 \cdot 3}$	16.254	1	4	13	40
5	1	$\sqrt{13}$	$1 + 4 \cdot \frac{4}{13} \cdot \sqrt{13 \cdot 4}$	24.300	1	5	21	85
6	1	$\sqrt{16}$	$1 + 4 \cdot \frac{5}{16} \cdot \sqrt{16 \cdot 5}$	33.374	1	6	31	156
7	1	$\sqrt{19}$	$1 + 4 \cdot \frac{6}{19} \cdot \sqrt{19 \cdot 6}$	43.370	1	7	43	259
8	1	$\sqrt{22}$	$1 + 4 \cdot \frac{7}{22} \cdot \sqrt{22 \cdot 7}$	54.21	1	8	57	400

Theorem (Cartwright-Sturmfels) The ED degree of $X \subseteq S^p V$ is $1 + (p - 1) + \dots + (p - 1)^{n-1}$.

Further remarks and problems

- Relation to singular vector tuples and eigenvectors. (Lim)
- Other inner products on *V*?
- Closed form expression for the average ED degree for sym case?
- What is the expected number of local minima of d_u ?
- Describe hypersurface where $|\pi_2^{-1}(u)|$ jumps (the ED discriminant).
- Find all typical values of $|\pi_2^{-1}(u)|$ (over \mathbb{R}).
- Give a geometric proof for "stabilisation" when $n_p 1 \ge \sum_{i=1}^{p-1} (n_i 1)$.
- Can knowledge of (average) ED degrees be used in algorithms?
- How about rank two?

Further remarks and problems

- Relation to singular vector tuples and eigenvectors. (Lim)
- Other inner products on *V*?
- Closed form expression for the average ED degree for sym case?
- What is the expected number of local minima of d_u ?
- Describe hypersurface where $|\pi_2^{-1}(u)|$ jumps (the ED discriminant).
- Find all typical values of $|\pi_2^{-1}(u)|$ (over \mathbb{R}).
- Give a geometric proof for "stabilisation" when $n_p 1 \ge \sum_{i=1}^{p-1} (n_i 1)$.
- Can knowledge of (average) ED degrees be used in algorithms?
- How about rank two?

References

- Jan Draisma and Emil Horobeţ: *The average number of critical rank-one approximations to a tensor*, arxiv:1408.3507
- JD, EH, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R. Thomas: *The Euclidean distance degree of an algebraic variety*, Found. Comput. Math., to appear, arxiv:1309.0049

Further remarks and problems

- Relation to singular vector tuples and eigenvectors. (Lim)
- Other inner products on *V*?
- Closed form expression for the average ED degree for sym case?
- What is the expected number of local minima of d_u ?
- Describe hypersurface where $|\pi_2^{-1}(u)|$ jumps (the ED discriminant).
- Find all typical values of $|\pi_2^{-1}(u)|$ (over \mathbb{R}).
- Give a geometric proof for "stabilisation" when $n_p 1 \ge \sum_{i=1}^{p-1} (n_i 1)$.
- Can knowledge of (average) ED degrees be used in algorithms?
- How about rank two?

References

- Jan Draisma and Emil Horobeţ: *The average number of critical rank-one approximations to a tensor*, arxiv:1408.3507
- JD, EH, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R. Thomas: *The Euclidean distance degree of an algebraic variety*, Found. Comput. Math., to appear, arxiv:1309.0049 Thank you!