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Three stories

Today | want to tell you three stories from my life.
That's it. No big deal. Just three stories

Steve Jobs

Often have missing information:
(1) Missing phase (phase retrieval)
(2) Missing and/or corrupted entries in data matrix (robust PCA)

(3) Missing high-frequency spectrum (super-resolution)

Makes signal /data recovery difficult

Convex programming usually (but not always) returns the right answer!




Story # 1: Phase Retrieval

Collaborators: Y. Eldar, X. Li, T. Strohmer, V. Voroninski



X-ray crystallography

Method for determining atomic structure within a crystal
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principle typical setup

10 Nobel Prizes in X-ray crystallography, and counting...



Importance

1

principle Franklin's photograph



Missing phase problem

Detectors only record intensities of diffracted rays
— magnitude measurements only!

Fraunhofer diffraction — intensity of electrical field

2
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Missing phase problem

Detectors only record intensities of diffracted rays
— magnitude measurements only!

Fraunhofer diffraction — intensity of electrical field

2
| (f17f2 ‘/ tl,tz —z27r(f1t1+f2t2) dtidts

Phase retrieval problem (inversion)

How can we recover the phase (or equivalently signal x(t1,t2)) from |Z(f1, f2)|?




About the importance of phase...
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About the importance of phase...
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X-ray imaging: now and then

Réntgen (1895) Dierolf (2010)



Ultrashort X-ray pulses
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Imaging single large protein complexes




Discrete mathematical model

@ Phaseless measurements about zg € C"
bk:|<ak7x0>|2 ke{l,,m}:[m]
@ Phase retrieval is feasibility problem

find x
subject to  |{ak,x)|> =br k€ [m]

@ Solving quadratic equations is NP hard in general
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Discrete mathematical model

@ Phaseless measurements about zg € C"
bk:|<ak7x0>|2 ke{l,,m}:[m]
@ Phase retrieval is feasibility problem

find x
subject to  |{ak,x)|> =br k€ [m]

@ Solving quadratic equations is NP hard in general

Nobel Prize for Hauptman and Karle ('85): make use of very specific prior
knowledge

Standard approach: Gerchberg Saxton (or Fienup) iterative algorithm
@ Sometimes works well

@ Sometimes does not
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PhaseLift

[{an, 2)|* = b

k € [m]



PhaseLift
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Lifting: X = za*
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PhaselLift

[{an, 2)|* = b

Lifting: X = za*

k € [m]

\(ak,x)|2 = Tr(z"arajx) = Tr(agajza™) := Tr(A;X) araj = Ay

Turns quadratic measurements into linear measurements about xz*

Phase retrieval: equivalent formulation

find X

S. t. Tr(AkX) =b, ke [m] <— s. t Tr(AkX) =b, ke [m]

X =0, rank(X) =1

Combinatorially hard

min rank(X)

X >0




PhaselLift

ar, 2)* = b k€ [m]
Lifting: X = za*
l(ag, 2)|* = Tr(z*agatz) = Tr(apajzs®) := Tr(AxX) araj = Ay

Turns quadratic measurements into linear measurements about xz*

PhaselLift: tractable semidefinite relaxation
minimize Tr(X)
subject to Tr(AxX) =br, k€ [m)]
X >0

@ This is a semidefinite program (SDP)

@ Trace is convex proxy for rank




Semidefinite programming (SDP)

@ Special class of convex optimization problems

o Relatively natural extension of linear programming (LP)

o ‘Efficient’ numerical solvers (interior point methods)

LP (std. form): z € R™ SDP (std. form): X € R™*"
minimize (¢, z) minimize (C, X)
subjectto  afz=by k=1,... subject to (A, X) =by, k=1,...
x>0 X>0

Standard inner product: (C, X) = Tr(C*X)



From overdetermined to highly underdetermined

Quadratic equations Lift
minimize Tr(X)
by = [{ak, 2)[? _ . subject to  A(X)=b
k€ [m] b= A(zz™) e

Have we made things worse?

overdetermined (m >n) —  highly underdetermined (m < n?)




This is not really new...

Relaxation of quadratically constrained QP’s
@ Shor (87) [Lower bounds on nonconvex quadratic optimization problems]
e Goemans and Williamson (95) [MAX-CUT]
@ Ben-Tal and Nemirovskii (01) [Monograph]

Similar approach for array imaging: Chai, Moscoso, Papanicolaou (11)



Exact phase retrieval via SDP

Quadratic equations

b = |{a, z)[* k€ [m] b= A(zz")

Simplest model: aj independently and uniformly sampled on unit sphere
e of C" if z € C" (complex-valued problem)
e of R™ if x € R™ (real-valued problem)
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Quadratic equations

b = [(ag, 2)]* k€ [m] b= A(zx™)

Simplest model: aj independently and uniformly sampled on unit sphere
e of C" if z € C" (complex-valued problem)

e of R™ if x € R™ (real-valued problem)

Theorem (C. and Li ('12); C., Strohmer and Voroninski ('11))

Assume m 2 n. With prob. 1 — O(e="™), for all x € C", only point in feasible set

{X: AX)=b and X =0} isazx”




Exact phase retrieval via SDP

Quadratic equations

b = [(ag, 2)]* k€ [m] b= A(zx™)

Simplest model: aj independently and uniformly sampled on unit sphere
e of C" if z € C" (complex-valued problem)
e of R™ if x € R™ (real-valued problem)

Theorem (C. and Li ('12); C., Strohmer and Voroninski ('11))

Assume m 2 n. With prob. 1 — O(e="™), for all x € C", only point in feasible set

{X: AX)=b and X =0} isazx”

Injectivity if m > 4n — 2 (Balan, Bodmann, Casazza, Edidin '09)



How is this possible?

How can feasible set {X > 0} N {A(X) = b} have a unique point?
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Intersection of [; Z] = 0 with affine space



Correct representation

Rank-1 matrices are on the boundary (extreme rays) of PSD cone



My mental representation

xx*+H %0

T



My mental representation

X

xx*+H %0



My mental representation

xx*+H YO0

\ l'l'*



My mental representation




My mental representation




Extensions to physical setups

xray
sample source

mask = !

diffraction
pattern

Random masking + diffraction

Similar theory: C., Li and Soltanolkotabi ('13)




Numerical results: noiseless recovery

— Original signal — Original signal
Reconstruction|

Reconstruction

9 20 40 60 80 100 120 0 20 40 60 80 100 120

(a) Smooth signal (real part) (b) Random signal (real part)

Figure: Recovery (with reweighting) of n-dimensional complex signal (2n unknowns)
from 4n quadratic measurements (random binary masks)



With noise

b~ |(z,ai)” k€ [m]

Noise aware recovery (SDP)

minimize |A(X) = bllr = >k [Tr(ana; X) — by
subject to X >0

Signal & obtained by extracting first eigenvector (PC) of solution matrix




With noise

b~ |(z,ai)” k€ [m]

Noise aware recovery (SDP)

minimize |A(X) = bllr = >k [Tr(ana; X) — by
subject to X >0

Signal & obtained by extracting first eigenvector (PC) of solution matrix

In same setup as before and for realistic noise models, no method whatsoever can
possibly yield a fundamentally smaller recovery error [C. and Li (2012)]



Numerical results: noisy recovery
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Figure: SNR versus relative MSE on a dB-scale for different numbers of illuminations
with binary masks



Numerical results: noiseless 2D images

E) )

. Courtesy
3 Gaussian masks S. Marchesini (LBL)
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Story #2: Robust Principal Component Analysis

Collaborators: X. Li, Y. Ma, J. Wright



The separation problem (Chandrasekahran et al.)

M=L+S

e M: data matrix (observed)
e L: low-rank (unobserved)

@ S: sparse (unobserved)



The separation problem (Chandrasekahran et al.)

M=L+S

e M: data matrix (observed)
e L: low-rank (unobserved)

@ S: sparse (unobserved)

Problem: can we recover L and S accurately?

Again, missing information




Motivation: robust principal component analysis (RPCA)

PCA sensitive to outliers: breaks down with one (badly) corrupted data point
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Motivation: robust principal component analysis (RPCA)

PCA sensitive to outliers: breaks down with one (badly) corrupted data point
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Robust PCA

@ Data increasingly high dimensional

@ Gross errors frequently occur in many applications

o Image processing e Occlusions

o Web data analysis o Malicious tampering
o Bioinformatics e Sensor failures

o ... o ...

Important to make PCA robust




Gross errors

Movies
N ETFLI X i X X
is the best wa
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Users =
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Observe corrupted entries
}/ij = Lij + Sij (27]) S Qobs

@ L low-rank matrix

@ S entries that have been tampered with (impulsive noise)

Problem

Recover L from missing and corrupted samples




The L+S model

x B 7 X
(Partial) information y = A(M) about 77 x B 7
x 77 x 7
M= L +_S ?7 7 x 7 2
~— ~— :
object low rank  sparse X ? ;Q; ? ?
77 x & 7

e RPCA
data = low-dimensional structure + corruption

@ Dynamic MR
video seq. = static background + sparse innovation

@ Graphical modeling with hidden variables: Chandrasekaran, Sanghavi, Parrilo,
Willsky (09, '11)

marginal inverse covariance of observed variables = low-rank + sparse

D G I JENEEN)



When does separation make sense?
M=L+S

x ok ok *
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Low-rank component cannot be sparse: L =
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When does separation make sense?

M=L+S

Low-rank component cannot be sparse: L =

Sparse component cannot be low rank: S =



Low-rank component cannot be sparse

* ok ok % X ok
ko ok ok ok Xk ok
00 0 0 0 0
L=10 0 0 0 00
0 0 0 0 0 0]

Incoherent condition [C. and Recht ('08)]: column and row spaces not aligned
with coordinate axes (singular vectors are not sparse)



Low-rank component cannot be sparse
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Incoherent condition [C. and Recht ('08)]: column and row spaces not aligned
with coordinate axes (singular vectors are not sparse)



Sparse component cannot be low-rank

1 X2 - Tp—1 Tn ,»?is T2
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Sparsity pattern will be assumed (uniform) random
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Demixing by convex programming

M=L+S5

e L unknown (rank unknown)

@ S unknown (# of entries # 0, locations, magnitudes all unknown)



Demixing by convex programming

M=L+S5

e L unknown (rank unknown)

@ S unknown (# of entries # 0, locations, magnitudes all unknown)

Recovery via SDP

minimize L0+ + A5
subject to L+S=M

See also Chandrasekaran, Sanghavi, Parrilo, Willsky ('09)

@ nuclear norm: ||L[|, =), 03(L) (sum of sing. values)

o (1 norm: |[S|[x = 3_;; |Si;| (sum of abs. values)



Exact recovery via SDP

min ||L][. + AIS]|; s t.

~
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Exact recovery via SDP

M

min ||L][ + AIS|l; s.t. L+S

Theorem

o L isnxn of rank(L) < p.n (logn)~2 and incoherent
@ S isn x n, random sparsity pattern of cardinality at most psn>
Then with probability 1 — O(n='°), SDP with A\ = 1/./n is exact:

L=L 8§=85

Same conclusion for rectangular matrices with A = 1/v/max dim




Exact recovery via SDP

~
+
>
Il
=

min ||L][. + AIS]|; s t.

Theorem
o L isnxn of rank(L) < p.n (logn)~2 and incoherent

@ S isn x n, random sparsity pattern of cardinality at most psn>

Then with probability 1 — O(n='°), SDP with A\ = 1/./n is exact:

L=L 8§=85

Same conclusion for rectangular matrices with A = 1/v/max dim

(x 2 2 & x %
g & x x & &
@ No tuning parameter! x 8 8 x & B
@ Whatever the magnitudes of L and S 2 B x B B x
x & & & & &
& & x x & &



Phase transitions in probability of success
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(c) Matrix Completion

L = XY7T is a product of independent n x 7 i.i.d. N'(0,1/n) matrices



Missing and corrupted

min  [|L]l + AllS]h

st Lij+ 8= Lij+ Sij (i,7) € Qobs
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Missing and corrupted

x & 7 7 x 7

77 % ;9; 77

x 7 ?7oox 77

- 7 & 707 x 77 2
min ]+ XS IR
s. t. Lij aF Sij = Lij = Sij (l,]) € Qobs ? ? tj ;% ? 9

Theorem

@ L as before
@ Qps random set of size 0.1n? (missing frac. is arbitrary)

o Each observed entry corrupted with prob. T < 7

Then with prob. 1 — O(n=1%), PCP with A\ = 1/1/0.1n is exact:

L=1L

Same conclusion for rectangular matrices with A = 1/v/0.1max dim




Background subtraction



With noise
With Li, Ma, Wright & Zhou (’10)

Z stochastic or deterministic perturbation

Yi; = Ly +Sz'j + Zij (Z,j) cN




Story #3: Super-resolution

Collaborator: C. Fernandez-Granda



Limits of resolution

In any optical imaging system, diffraction imposes fundamental limit on resolution

o(t — ) optical system h(t — 1)

The physical phenomenon called diffraction is of the utmost importance in
the theory of optical imaging systems (Joseph Goodman)



Bandlimited imaging systems (Fourier optics)

Jobs(t) = (hx f)(t) h: point spread function (PSF)
fobs(w) = ﬁ(w)f(w) h: transfer function (TF)

Bandlimited system

w|>Q = |ﬁ(w)| =0

Fops(w) = h(w) f(w) — suppresses all high-frequency components




Bandlimited imaging systems (Fourier optics)

Jobs(t) = (h = f)(t) h: point spread function (PSF)

fobs(w) = h(w)f(w) h: transfer function (TF)

Bandlimited system

w|>Q = |ﬁ(w)| =0

Fops(w) = h(w) f(w) — suppresses all high-frequency components

Example: coherent imaging

h(w) = 1p(w) indicator of pupil element

PSF cross-section (PSF)
Pupil Airy disk



Rayleigh resolution limit

e

Rayleigh resolution distance

VAN

Lord Rayleigh




The super-resolution problem

=

objective data

Retrieve fine scale information from low-pass data

Al < Apflag

Equivalent description: extrapolate spectrum (ill posed)




Random vs. low-frequency sampling

I Al

Random sampling (CS) Low-frequency sampling (SR)

Compressive sensing: spectrum interpolation
Super-resolution: spectrum extrapolation




Super-resolving point sources

Signal of interest is superposition of point sources
@ Celestial bodies in astronomy
@ Line spectra in speech analysis

@ Fluorescent molecules in single-molecule microscopy

Many applications

o Radar @ Astronomy
@ Spectroscopy @ Geophysics
@ Medical imaging ° ...



Single molecule imaging (with WE Moerner's Lab)

Microscope receives light from fluorescent molecules

Problem

Resolution is much coarser than size of individual molecules (low-pass data)

Can we ‘beat’ the diffraction limit and super-resolve those molecules?

Higher molecule density — faster imaging



Mathematical model

@ Signal

T =3 a50r, | . l ‘

ajeC, ;€T Cl0,1] '

e Data y = Fx: n = 2fi, + 1 low-frequency coefficients (Nyquist sampling)

1
y(k) :/ e*ﬁ’rktx(dt) = E aje*i%’”j keZ, |kl < fo
0 -
J

@ Resolution limit: (\,/2 is Rayleigh distance)

]-/flo = >\Io



Mathematical model

@ Signal

T =3 a50r, | . l ‘
ajeC, ;€T Cl0,1] '

e Data y = Fx: n = 2fi, + 1 low-frequency coefficients (Nyquist sampling)

1
y(k) :/ e*ﬁ’rktaﬂ(dt) = E aje*i%’”j keZ, |kl < fo
0 -
J

@ Resolution limit: (\,/2 is Rayleigh distance)

]-/flo = >\Io

Can we resolve the signal beyond this limit? I

Swap time and frequency — spectral estimation




Can you find the spikes?

Low-frequency data about spike train



Can you find the spikes?

ped

Low-frequency data about spike train




Recovery by minimum total-variation

Recovery by cvx prog.

min |||ty subject to F,Z =y

llz|ltv = [ |z(dt)| is continuous analog of ¢; norm

=Y a0, = |allv=>_lal
i i

.1 _ _
min §||y — Fn &7, + A& ||lrv




Recovery by convex programming

1
y(k) = / () (K] < fio
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1
y(k) = / () (K] < fio

Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least

2/flo ::2>\Io

then min TV solution is exact! For real-valued x, a min dist. of 1.87\, suffices
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e Can recover (2\,) ! = fio/2 = n/4 spikes from n low-freq. samples
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Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least
2 /f|0 =) )\Io

then min TV solution is exact! For real-valued x, a min dist. of 1.87\, suffices

@ Infinite precision!
@ Whatever the amplitudes
e Can recover (2X\;0) ™! = fio/2 = n/4 spikes from n low-freq. samples

@ Cannot go below )\,



Recovery by convex programming

1
y(k) = / () (K] < fio

Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least

2/flo ::2)\Io

then min TV solution is exact! For real-valued x, a min dist. of 1.87\, suffices

Infinite precision!

Whatever the amplitudes

°
°
e Can recover (2X\;0) ™! = fio/2 = n/4 spikes from n low-freq. samples
@ Cannot go below )\,

°

Essentially same result in higher dimensions



About separation: sparsity is not enough!

@ CS: sparse signals are ‘away’ from null space of sampling operator
@ Super-res: this is not the case

Signal Spectrum

" ) /l x




About separation: sparsity is not enough!

@ CS: sparse signals are ‘away’ from null space of sampling operator
@ Super-res: this is not the case

Signal Spectrum




Analysis via prolate spheroidal functions

A

David Slepian

If distance between spikes less than A,/2 (Rayleigh), problem hopelessly ill posed J




Formulation as a finite-dimensional problem

Primal problem Dual problem
min ||z|tvs. t. Fpz =y max Re(y,c) s. t. [|[F el <1
@ Infinite-dimensional variable z @ Finite-dimensional variable c
o Finitely many constraints @ Infinitely many constraints

(Fro)(t) = Z cpet?mr

|k < fio



Formulation as a finite-dimensional problem

Primal problem Dual problem
min ||z|tvs. t. Fpz =y max Re(y,c) s. t. [|[F el <1
@ Infinite-dimensional variable z @ Finite-dimensional variable c
o Finitely many constraints @ Infinitely many constraints
(Fro)(t) = Z cpet?mr

|k < fio

Semidefinite representability

|(Fe)(t)| <1 forall t €[0,1] equivalent to
(1) there is @ Hermitian s. t.

(2) Q) =1

(3) sums along superdiagonals vanish: Z;:lj Qiitrj=0for1<j<n-1




SDP formulation

Dual as an SDP

maximize Re(y, c) subject to [g ﬂ =0

Z?;{Qi,i-i-j:(sj 0<j<n—-1

Dual solution c: coeffs. of low-pass trig. polynomial Y, cxe®™ interpolating the
sign of the primal solution




SDP formulation

Dual as an SDP

c 1

maximize Re(y,c)  subject to [Q c} =0
S Qiirs=06; 0<j<n-—1

Dual solution c: coeffs. of low-pass trig. polynomial Y, cxe®™ interpolating the
sign of the primal solution

To recover spike locations
(1) Solve dual

(2) Check when polynomial takes
on magnitude 1




With noise

y = Fn,x + noise

o Also an SDP
@ Theory: C. and Fernandez Granda ('12)



Noisy example

SNR: 14 dB

— Measurements\

i /\A/\/\MMA A/\/\AMA

it VV\/VVVW\/UVVVV




Noisy example

SNR: 14 dB

— Measurements
— Low-res signal

A l\/\ A/\ i\/\/\

WAAAAA

W vvvv \/\/

AR




Noisy example

SNR: 14 dB

N /\M/‘\/\/\M A/\/I\AMA

-




Noisy example

Average localization error: 6.54 x 10~4

—e@ High-res Signal
- - Estimate

X

*

x




Summary

@ Three important problems with missing data

o Phase retrieval
e Matrix completion/RPCA
e Super-resolution

@ Three simple and model-free recovery procedures via convex programming

@ Three near-perfect solutions



Apologies: things | have not talked about

@ Algorithms
@ Applications

@ Avalanche of related works



A small sample of papers | have greatly enjoyed

@ Phase retrieval

o Netrapalli, Jain, Sanghavi, Phase retrieval using alternating minimization ('13)

o Waldspurger, d’Aspremont, Mallat, Phase recovery, MaxCut and complex
semidefinite programming ('12)

@ Robust PCA

e Gross, Recovering low-rank matrices from few coefficients in any basis ('09)

o Chandrasekaran, Parrilo and Willsky, Latent variable graphical model selection
via convex optimization ('11)

o Hsu, Kakade and Zhang, Robust matrix decomposition with outliers ('11)

@ Super-resolution

o Kahane, Analyse et synthése harmoniques ('11)

e Slepian, Prolate spheroidal wave functions, Fourier analysis, and uncertainty.
V - The discrete case ('78)



General SDP formulation

Nuclear norm and spectral norms are dual: || X|. = val(P)

. maximize
maximize (U, X)

(P) subject to  ||U]| <1 < subject to



General SDP formulation

Nuclear norm and spectral norms are dual: || X|. = val(P)

maximize (U, X)
I U

u* I

maximize (U, X)
(P) subject to  ||U]| <1 < subject to [

Duality: || X||. = val(D)

minimize S(Tr(Wh) + Tr(Wa))

W, X
—
X Wg] =0

(D) subject to [
Optimization variables: W, € R™"*™ W, € R"2*"2

Nuclear norm heuristics: Fazel (2002), Hindi, Boyd & Fazel (2001)



The super-resolution factor

@ Have data at resolution \j, @ Wish resolution Ap;

Super-resolution factor

)\Io
RF = —
> Ahi




The super-resolution factor (SRF): frequency viewpoint

V chf

@ Observe spectrum up to fi,
o Wish to extrapolate up to fi;

Super-resolution factor

SRF = It

Jio




With noise

Fnx = f01 e~ 2Tk 2(dt)
k| < fio

y = Fpx + noise




With noise

Fnx = fol e~ 27kt 1(dt)
k| < fio

y = Fnx + noise




With noise

Fnx = fol e 12kt p(dt)

= F,x + noise
g k] < fio

Modulus of continuity studies for super-resolution: Donoho ('92)



