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Graphs (aka Networks)
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Statistics 001

 What do you do with a large collection of
numbers that come from some phenomenon
or a system which you study?

 The most basic answer: Draw a histogram,
look at key parameters — Mean, median,
standard deviation...

* Try to fit to known distributions: Normal,
Poisson, etc. Estimate key parameters. Draw
conclusions on the system at hand.



Graph reading 0.001

* We need a parallel methodology when the input
is a large graph and not a big pile of numbers.

 Two necessary ingredients for this program: Find
out which key parameters should be observed in
a big graph (in this talk we discuss one answer to
this question).

* Develop a battery of generative models of graphs
and methods to recover the appropriate model
from the input graph.



The main focus of this lecture

 How should we “read/understand”
graphs? (Possibly graph is so big that it cannot
even be stored in our computer’s memory.)

* The approach that we discuss here: Sample
small chunks of G (say k vertices at a time) and
consider the resulting distribution on k-vertex
graphs, to which we refer as a local view of G
or the k-profile of G.




How do you do? Some small graphs
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Emerging Field: Network Biology
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Network Biology: The hair ball
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The two major questions

* Which local views are possible? (Local graph
theory). Namely, which distribution on k-vertex
graphs can be obtained as the k-profile of a large
graph?

 How are the global properties of G reflected in
the local view? (Local-to-global theory). Namely,
what large-scale structural conclusions can you
infer about G, based on its local view?
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Are these questions completely new?

Here are several pertinent bodies of knowledge:

» The field of property testing

» Extremal and probabilistic graph theory
» The theory of graph limits

» Flag algebras

> Lots of other material that we do not even
touch, e.g. minor-closed families of graphs
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Are these questions completely new?

Here are several pertinent bodies of knowledge:

» The field of property testing
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Property testing

* We wish to determine whether a huge graph
G=(V,E) has some specified graph property P.

For example:

* Is ? |.e., can it be drawn in the plane
so that no two edges are intersecting?
* |s it ? |.e., can the vertices of G be

colored by 7 colors so that every two adjacent
vertices are colored differently?



We seek a super-fast decision method

 We insist that the computation time is bounded
by a constant- Independent of the size of G,
(which is assumed to be huge).

* Obviously, there are some prices to pay:

A. Our algorithm must be probabilistic, and we must
allow for a chance of error.

B. Moreover, we must allow the algorithm to err on
“borderline” instances of the problem.



What is a “borderline” instance?

* Recall: We want to decide whether graph G
has property P. If the answer is “yes” this is
meant verbatim.

* |f the answer is “no”, we only care about
instances G that are “far from having property
P”. l.e., in order to turn G into a graph with
property P at least of the pairs must be
switched (neighbors €<--—2 non-neighbors).



The notion of an error

Here is what the algorithm looks like:

 Randomly sample a set of vertices S of
constant size. Consider the subgraph of G
induced on S. Your response depends only on
this graph.

 We require a good (but possibly imperfect)
success rate. Namely whatever our answer is,
we must be correct with probability > .



A concrete example — Is G bipartite?

 We call G bipartite if its vertices are split in
two parts, say L and R and all edges connect
an L-vertex to an R-vertex.

* Given access to a huge G we wish to
determine whether or not it’s bipartite.

* Note that a subgraph of a bipartite graph is
also bipartite, hence the following algorithm
suggests itself very naturally.



G bipartite?




An algorithm for testing whether a
huge graph G is bipartite or not

Randomly sample a set S of 1000 vertices in G

Check: Is the subgraph of G induced on S
oipartite or not? (This can be done efficiently)

fitis not bipartite, respond with “G is not
vipartite”. In this case you are surely correct.

f this subgraph is bipartite declare “G is
oipartite”. You are right with probability > %.




The crux of the matter

The last statement is quite a nontrivial theorem.
It says something like:

*If a graph is 0.01-far from being bipartite, then
with probability > 3/4 a randomly chosen set of
1000 vertices will reveal it.

*The mavens among you know that there is some

statement with € and 6 hiding here, but we will
skip such complications



In other words

* Let B and F be two huge graphs. B is Bipartite
and F is 0.01-Far from being bipartite.

* Consider two distributions on 1000-vertex
graphs: The one that comes from local
samples of B vs. the same from F.

 The theorem says that these distributions are
very different. In the B-distribution all 1000-
vertx graph are bipartite, whereas in the F-
distribution at most % are bipartite.



In the language of the present talk

* The (global property) of being bipartite is
reflected locally.

* The easy part: Every subgraph of a bipartite
graph is bipartite as well.

* The hard part: In a graph that’s 0.01-far from
being bipartite, less than a % of the 1000-
vertex subgraphs are bipartite.



Something for the experts

* So, is the game over? A beautiful theorem of
N. Alon and A. Shapira determines exactly
which graph properties can be tested this
way. Namely — hereditary graph properties.

e This answer is still far from satisfactory from
the practical point of view, since the proof
relies on the Szemeredi Regularity Lemma
which gives a terrible dependency of 6 on €



Are these questions completely new?

Here are several pertinent bodies of knowledge:

» The field of property testing

» Extremal and pro
» The theory of gra
> Flag algebras

nabilistic graph theory

oh limits

» Other material that we do not go into, e.g.
minor-closed families of graphs
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Extremal graph theory - A parent of
local graph theory

* Avery intuitive thought: A graph with many
edges must contain dense sets of vertices.



Extremal graph theory - A parent of
local graph theory

* Avery intuitive thought: A graph with many
edges must contain dense sets of vertices.

* The first example: Manqtel’s Theorem 1907. A
graph with more than %-edges (i.e., density >
%) must contain a triangle. The bound is tight.



The grandfather of extremal graph
theory

e Turan’s Theorem 1941: A graph with density
>(r-2)/(r-1) must contain a complete graph on
r vertices. The bound is tight.

r “-i

B
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The density of large H-free graphs

* Q: Given a graph H, what is the maximum
density of a large graph that does not contain
a (not necessarily induced) copy of H as a
subgraph.

* A:(r-2)/(r-1), where ris H’'s chromatic
number.

* |n particular, we know the answer quite

accurately, unless H is bipartite (this is the
case r=2 in the above).



One success with a bipartite H —
The case of the 4-cycle

* The largest number of edges in an n-vertex
graph that contains no 4-cycle (whether
induced or not) is %/2




Back to “How to read large graphs ?”

e |n statistics we see a bunch of real numbers
and we wish to say something worthwhile on
the domain from which these numbers came.



Back to “How to read large graphs ?”

e |n statistics we see a bunch of real numbers
and we wish to say something worthwhile on
the domain from which these numbers came.

 We realize that the (“empirical”) distribution
of the given sample resembles a known
distribution (e.g., Normal, Poisson, Gamma...).
We estimate the relevant parameters and try
to associate with the relevant domain.



Library of distributions
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An analog paradigm for graphs

In order to “read” a large graph G, we:

1. Consider models for generating graphs.

2. Find the best fit among these models.

3. Estimate the relevant parameters.

4. Draw conclusions on the source of the data.

We seek to develop the infrastructure that’s
needed to make this methodology work.

33



Probabilistic and generative graph
models
* The oldest such models go back more than 50

years, namely the Erdos-Renyi G(n,p) model of
random graphs.
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The G(n,p) model

 Here nis an integer (which we normally take
to be large — We are interested in the
asymptotic theory) and the parameter 1>p>0.

 We start with n vertices. Independently, for
each pair of vertices xy we put in the edge xy.



G(n,p) theory

* This is the simplest, most basic and most
thoroughly understood theory of random
graphs. Very flexible and easy to investigate.

* [t taught us many previously unexpected
things about large graphs.

 On the other hand it’s very simplistic, and too
restricted for the purpose of modeling large
real-life networks.



Other models of random graphs

 Random d-regular graphs. Every vertex has
exactly d neighbors. “The configuration
model”

B.Bollobas

— Substantially different from G(n,p).
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Other models of random graphs

* Percolation models — Start from a d-dimensional
grid, maintain edges independently with
probability p. Originated in statistical mechanics

 Random graph covers (aka “random lifts”). A
model of graph that combines deterministic with
stochastic ingredients. | ol -




Generative models

* Preferential attachment models: An evolving
graph model. Start with a seed graph. At each
step add a new vertex that becomes a neighbor
of a random subset of the earlier vertices with a
preference towards high-degree vertices.

* Models of growth + mutations. E.g., a random
vertex spawns a clone” that slightly "mutates’
the neighbor set of the original vertex.

)



Back to local graph theory:
Ramsey’s theorem

* “Total chaos is impossible”. This is a
fundamental principle in combinatorics and in
many other mathematical areas.

* |n particular, every large graph must contain a
substantially large homogeneous set, i.e., a
cligue (a subgraph in which every two vertices
are adjacent) or an anti-clique (a set of
vertices with no edges).




Quantitative Ramsey Theorems

In a party of 6 people there are 3 people who
are mutually acquainted or 3 who are
mutually unacquainted.

But this need not be the case in a party of 5.

In a party of 18 people there are 4 people who
are mutually acquainted or 4 who are
mutually unacquainted.

But this need not be the case in a party of 17.



Ramsey’s Theorem R(3,3)>5

42



Ramsey’s Theorem R(3,3)=6

N2
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Ramsey’s Theorem R(4,4)>17
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Asymptotic Ramsey Theorem

* Every n-vertex graph must contain a
homogenous set of > % log n vertices.

* There are n-vertex graphs with no
homogenous set of 2 log n vertices. In fact a

random G(n, }2) graph has this property.
* The birth of the probabilistic method.



The perspective of graph limits

 We seek an asymptotic theory, i.e., we ask

what happens when the number of vertices of
the graph n — @

°In Math Analysis 101 we learn about limits of
sequences of numbers. But how do we develop
a limit theory for sequences of graphs?




It is well known...

* |f you want a limit theory, all you need is a
notion of distance (' 'a metric”) d(x,y). You
declare that the sequence X1, X2, ---- converges
if all distancesd(x,,, x,,) are arbitrarily small
provided m and n are large enough.
(Remember Cauchy sequences”?)



* So, how do you measure the distance between
two graphs G and H?

* We say that G and H are close if it’s possible to
chop the vertex sets of both G and of H into N
(large integer) equal parts each, so that the
following holds: For every i<j, the density of
the edge set between the i-th and the j-th part
in G and in H are nearly equal.

* In words: There is an N-vertex edge-weighted
graph that approximates well both G and H.



A key theorem on graph limits

 Atheorem of L. Lovasz,
B.Szegedy and co. says that a
sequence of graphs tends to
a limit if and only if the
sequence of their local
profiles tends to a limit.

Thus, local profiles may serve as the graph theoretic

analog of key statistical parameters such as mean,
median, standard deviation etc.
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3-profiles

* This is currently the best studied case, but
even this is still far from being understood.

 There are four possible 3-vertex graphs that
have 0,1,2 and 3 edges.

* We call Po,P1P2,P3 the probability of their
occurrence respectively.



3-profiles

- ® 6—0
P P, P, P

w

=

* Goodman’s inequality: PotPpP3=1/4

* With Huang, Naves, Peled and Sudakov we
proved min(py,p3) <0.269.. The bound is tight.
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Paul Erdos and the Martians
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But even 4-profiles are still completely
mysterious to us

* Let us denote by g and r the probability that a

set of 4 vertices spans a clique resp. an
anticlique. In view of Goodman’s inequality

the following conjecture is natural, and indeed
was made by Erdos:

qg+r = 1/32.

Andrew Thomason refuted this
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A word on flag algebras

e Recall Turan’s theorem for triangles: A graph
with density > 2 must contain a triangle.



A word on flag algebras

e Recall Turan’s theorem for triangles: A graph
with density > 2 must contain a triangle.

* So, e.g., does a graph with density 0.77
necessarily contain many triangles? In words,
how small canP3 be if the density=0.777



A word on flag algebras

* Recall Turan’s theorem for triangles: A graph
with density > 2 must contain a triangle.

* So, e.g., does a graph with density 0.77
necessarily contain many triangles? In words,
how small canP3 be if the density=0.777

* Natural guess: The extreme example for Turan
is a bipartite graph with two equal parts. So,
try a 5-partite graphs with 4 equal and one
smaller parts to achieve right density.



* This was conjectured to be answer, but was
open for many years, until proved correct by
A. Razborov.
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* His main idea: Rather than seek linear
inequalities, find quadratic inequalities.
Specifically, he has a method to show that
certain matrices which capture some of the
local structure of graphs are positive
semidefinite.

* Computer assisted proofs.



That's all folks



What does a typical triangle-free
graph look like?

We already saw the simple observation that a
bipartite graph contains no triangles.

For us, these are "uninteresting” triangle-free
graphs.

What complicates matters is a theorem of

Erdos, Kleitman and Rothschild almost all
triangle-free graphs are bipartite.

So how can we sample interesting” triangle-
free graphs?



The triangle-free graph process

* Tom Bohman managed to analyze this
process, using Wormald’s method of
differential equations.

 He showed that almost surely this process
terminates with a graph that is tight in terms
of Ramsey’s Theorem.



The triangle-free graph process

* Erdos and Renyi have introduced a close
relative of the G(n,p) model, called "the
evolution of random graph”.

* This model starts with n vertices and no
edges. Sequentially at each step a new
random edge is added.

* The triangle-free process does the same,
except that if a prospective new edges closes
a triangle, it’s discarded.



Counting..
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