Some applications in human behavior modeling (and open questions)

Jerry Zhu

University of Wisconsin-Madison

Simons Institute Workshop on Spectral Algorithms: From Theory to Practice
Oct. 2014
Outline

Human Memory Search

Machine Teaching
Verbal fluency

Say as many animals as you can without repeating in one minute.
Semantic “runs”

1. cow, horse, chicken, pig, elephant, lion, tiger, porcupine, gopher, rat, mouse, duck, goose, horse, bird, pelican, alligator, crocodile, iguana, goose
2. elephant, tiger, dog, cow, horse, sheep, cat, lynx, elk, moose, antelope, deer, tiger, wolverine, bobcat, mink, rabbit, wolf, coyote, fox, cow, zebra
3. cat, dog, horse, chicken, duck, cow, pig, gorilla, giraffe, tiger, lion, ostrich, elephant, squirrel, gopher, rat, mouse, gerbil, hamster, duck, goose
4. cat, dog, sheep, goat, elephant, tiger, dog, deer, lynx, wolf, mountain goat, bear, giraffe, moose, elk, hyena, aardvark, platypus, lion, skunk, wolverine, raccoon
5. dog, cat, leopard, elephant, monkey, sea lion, tiger, leopard, bird, squirrel, deer, antelope, snake, beaver, robin, panda, vulture
6. deer, muskrat, bear, fish, raccoon, zebra, elephant, giraffe, cat, dog, mouse, rat, bird, snake, lizard, lamb, hippopotamus, elephant, skunk, lion, tiger
Memory search

K = 12, obj = 14.1208
Censored random walk

[Abbott, Austerweil, Griffiths 2012]

- \mathcal{V}: n animal word types in English
- P: (dense) $n \times n$ transition matrix
- Censored random walk: observing only the first token of each type $x_1, x_2, \ldots, x_t, \ldots \Rightarrow a_1, \ldots, a_n$
- (star example)
The estimation problem

Given m censored random walks

$D = \left\{ \left(a_1^{(1)}, \ldots, a_n^{(1)} \right), \ldots, \left(a_1^{(m)}, \ldots, a_n^{(m)} \right) \right\}$, estimate P.
Each observed step is an absorbing random walk

(with Kwang-Sung Jun)

- $P(a_{k+1} \mid a_1, \ldots, a_k)$ may contain infinite latent steps
- Instead, model this observed step as an absorbing random walk with absorbing states $\mathcal{V} \setminus \{a_1, \ldots, a_k\}$

- $P \Rightarrow \begin{pmatrix} Q & R \\ 0 & I \end{pmatrix}$
Maximum Likelihood

- Fundamental matrix $N = (I - Q)^{-1}$, N_{ij} is the expected number of visits to j before absorption when starting at i
- $p(a_{k+1} \mid a_1, \ldots, a_k) = \sum_{i=1}^{k} N_{ki}R_{i1}$
- Log likelihood $\sum_{i=1}^{m} \sum_{k=1}^{n} \log p(a_{k+1}^{(i)} \mid a_1^{(i)}, \ldots, a_k^{(i)})$
- Nonconvex, gradient method
Other estimators

- PRW: pretend a_1, \ldots, a_n not censored
- PFirst2: Use only a_1, a_2 in each walk (consistent)
Star graph

x-axis: m, y-axis: $\|\hat{P} - P\|_F^2$
2D Grid

Grid, n=25

Error (Frobenius norm)

The number of lists

PSAC
PRW
PFirst2
Erdös-Rényi with $p = \log(n)/n$
Ring graph

Ring, n=25

Error (Frobenius norm)

The number of lists

PSAC
PRW
PFirst2
Questions

- Consistency?
- Rate?
Outline

Human Memory Search

Machine Teaching
Learning a noiseless 1D threshold classifier

\[x \sim \text{uniform}[0, 1] \]

\[y = \begin{cases}
-1, & x < \theta^* \\
1, & x \geq \theta^*
\end{cases} \]

\[\Theta = \{ \theta : 0 \leq \theta \leq 1 \} \]
Learning a noiseless 1D threshold classifier

\[x \sim \text{uniform}[0, 1] \]

\[y = \begin{cases}
-1, & x < \theta^* \\
1, & x \geq \theta^*
\end{cases} \]

\[\Theta = \{ \theta : 0 \leq \theta \leq 1 \} \]

Passive learning:

1. given training data \(D = (x_1, y_1) \ldots (x_n, y_n) \overset{iid}{\sim} p(x, y) \)

2. finds \(\hat{\theta} \) consistent with \(D \)
Learning a noiseless 1D threshold classifier

\[x \sim \text{uniform}[0, 1] \]

\[y = \begin{cases}
-1, & x < \theta^* \\
1, & x \geq \theta^*
\end{cases} \]

\[\Theta = \{ \theta : 0 \leq \theta \leq 1 \} \]

Passive learning:

1. given training data \(D = (x_1, y_1) \ldots (x_n, y_n) \overset{iid}{\sim} p(x, y) \)
2. finds \(\hat{\theta} \) consistent with \(D \)

Risk \(|\hat{\theta} - \theta^*| = O(n^{-1}) \)
Active learning (sequential experimental design)

Binary search

\[\theta^* \]

\[| \hat{\theta} - \theta^* | = O(2^{-n}) \]
Active learning (sequential experimental design)

Binary search

Risk $|\hat{\theta} - \theta^*| = O(2^{-n})$
Machine teaching

What is the minimum training set a helpful teacher can construct?
What is the minimum training set a helpful teacher can construct?

\[\text{Risk } |\hat{\theta} - \theta^*| = \epsilon, \forall \epsilon > 0 \]
Comparing the three

passive learning "waits" \[\theta^*\]
\[O(1/n)\]

active learning "explores" \[\theta^*\]
\[O(1/2^n)\]

teaching "guides"

The teacher knows \(\theta^*\) and the learning algorithm.
Example 2: Teaching a Gaussian distribution

Given a training set $x_1 \ldots x_n \in \mathbb{R}^d$, let the learning algorithm be

$$
\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$

$$
\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^\top
$$

How to teach $\mathcal{N}(\mu^*, \Sigma^*)$ to the learner quickly?
Example 2: Teaching a Gaussian distribution

Given a training set $x_1 \ldots x_n \in \mathbb{R}^d$, let the learning algorithm be

$$
\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \\
\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^\top
$$

How to teach $N(\mu^*, \Sigma^*)$ to the learner quickly?

non-iid, $n = d + 1$
The objective is the teaching dimension [Goldman, Kearns 1995] of θ^* with respect to A, Θ.

$$\min_{D \in \mathcal{D}} |D|$$

s.t. $A(D) = \theta^*$
Example 3: Works on Humans

Human categorization on 1D stimuli [Patil, Z, Kopeć, Love 2014]

<table>
<thead>
<tr>
<th>human training set</th>
<th>human test accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>machine teaching</td>
<td>72.5%</td>
</tr>
<tr>
<td>iid</td>
<td>69.8%</td>
</tr>
</tbody>
</table>

(statistically significant)
New task: teaching humans how to label a graph

Given:
 ▶ a graph \(G = (V, E) \)
 ▶ target labels \(y^* : V \mapsto \{-1, 1\} \)
 ▶ a label-completion cognitive model \(A \) (graph diffusion algorithm) such as:
 ▶ mincut
 ▶ harmonic function [Z, Gharahmani, Lafferty 2003]
 ▶ local global consistency [Zhou et al. 2004]
 ▶ ...

Find the smallest seed set:

\[
\min_{S \subseteq V} |S| \\
\text{s.t. } A(y^*(S)) = y^*
\]

(inverse problem of semi-supervised learning)
Example: $A = \text{local-global consistency}$ [Zhou et al. 2004]

$$F = (1 - \alpha)(I - \alpha D^{-1/2} W D^{-1/2})^{-1} y^*(S)$$

$$y = \text{sgn} \left(F \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \right)$$
$|A^{-1}(y^*)|$ is large

Turns out 4649 out of $2^{16} = 65536$ training sets S lead to the target label completion
Optimal seed set 1: $|S'| = 3$
Optimal seed set 2: $|S'| = 3$
Questions

- How does $|S|$ relate to (spectral) properties of G?
- How to solve for S?