Fairness in Machine Learning: Delayed impact and other desiderata

Lydia T. Liu (Cornell University) Simons Workshop on "Societal Considerations and Applications" | Nov 9, 2022

This talk

- [e.g. Calders et al 2009; Angwin et al 2016; Zafar et al, 2017; Hardt et al, 2016; Chouldechova, 2016; Kleinberg et al, 2017, Liu et al, 2019...]
- 2. Delayed Impact model for characterizing downstream welfare implications of fairness criteria [Liu, Sarah Dean, Esther Rolf, Max Simchowitz, Moritz Hardt, 2018]
- 3. Follow-up work and broader impacts Holstein et al 2019; Fazelpour and Lipton 2020; Lee et al 2021...]

1. Review the problem of "fairness" in machine learning in the context of algorithmic risk scores, and its formalizations as statistical criteria

[e.g. Mouzannar et al 2019; Liu et al 2020; Kannan et al 2019; Arunachaleswaran et al 2020; Dwork et al 2020; Morik et al 2020; Ge et al 2021; Nilforoshan et al 2022; D'Amour et al 2020;

Many consequential decisions in society depend on algorithmic risk scores.

How Flawed Data Aggravates Inequality in Credit

AI offers new tools for calculating credit risk. But it can be tripped up by noisy data, leading to disadvantages for low-income and minority borrowers.

Aug 6, 2021 | Edmund L. Andrews 🎽 🥤 in 🎯

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

determine results in England

Promises

- Avoid arbitrariness of human decisions (e.g. judges affected by extraneous factors [Danziger et al., 2011])
- Better information (e.g. credit scoring led to increased credit access for high risk households [Edelberg 2006])

Problems

- Algorithms can make systematically "biased" assessments
- Algorithmic decision making can still lead to disparate impact (v.s. disparate treatment)

Forms of "algorithmic bias" by group

- **Classification** context. Individual has features X, binary decision D, based on score R(X). True outcome Y. Protected group attribute A.
- e.g. X: credit history, R: credit score, D: loan approval, Y: on-time loan repayment, A: race
- Decision D (or score R) is group-dependent.
 - "Loan approval rate differs by group." $\mathbb{E}[D] \neq \mathbb{E}[D \mid A]$
 - violates Demographic Parity

- 1. Race
- 2. Color
- 3. Religion
- 4. Sex (including pregnancy)

- 5. National origin
- 6. Age (40+)
- 7. Disability
- 8. Genetic information

Forms of "algorithmic bias" by group

- False positive/negative rate of decisions is group-dependent.
 - e.g.

Labeled Higher Risk, But Didn't Re-Offend

Labeled Lower Risk, Yet Did Re-Offend

- $\mathbb{E}[R \mid Y] \neq \mathbb{E}[R \mid Y, A]$
- Scores are not calibrated to probabilities of actual outcomes.

 - Decisions violate predictive value parity $\mathbb{E}[Y \mid D] \neq \mathbb{E}[Y \mid D, A]$. Scores violate calibration, $R \neq \mathbb{E}[Y \mid R, A]$

WHITE	AFRICAN AMERICAN
23.5%	44.9%
47.7%	28.0%

Source: [Angwin et al 2016]

Decisions violate equalized odds (equal TPR and FPR). Scores violate separation,

• e.g. "For the same credit score, one group is more likely to repay than another."

Reasonable disagreement on desiderata

Decisions satisfy predictive value parity

Decisions satisfy equal TPR and **FPR**

- Error-free decisions Y = D
- Equal group base rates, $\mathbb{E}[Y] = \mathbb{E}[Y \mid A]$

[Chouldechova 2016]

Reasonable disagreement on desiderata

Scores minimize population error (Bayes optimal)

under general conditions [Liu et al 2019] Demographic parity

Scores are calibrated by group

Scores satisfy separation

- Error-free decisions Y = D
- Equal group base rates, $\mathbb{E}[Y] = \mathbb{E}[Y \mid A]$

[Chouldechova 2016; Kleinberg et al 2016]

From Algorithmic Bias...to Algorithmic Harm?

Sufficiency

Equal thresholds

Demographic parity

Groups have equal TPR and **FPR**

What are the downstream benefits or harms? [Liu, Dean, Rolf, Simchowitz, Hardt. ICML 2018]

Would repay

Algorithmic fairness equalizes loan approval rates.

Demographic Parity [CKP09]: Same fraction of applicants accepted.

Would repay

CONDITIONAL Algorithmic fairness equalizes foan approval rates.

Equal Opportunity [HPS2018]: Same fraction of repaying applicants accepted

ORANGE GROUP

Would repay

Lending Decisions

Policy: Accept applicants according to DEMOGRAPHIC PARITY.

Would repay

Delayed Impact

Credit scores change with repayment (+) or default (-).

Average outcomes were more harmful for the lower-scoring group.

14

MODEL | SCORES

- - ► e.g. credit score is an integer from 300 to 850
- > Any group of individuals has a particular **distribution** over scores:

$$\mathbb{P}\{R=r\}$$

- > Scores correspond to an individual's success probability (e.g. probability of repaying a loan) once accepted, $\rho(R)$, and are equally **calibrated** for each group.
- > Monotonicity assumption for ρ : Higher scores implies more likely to repay.

 \blacktriangleright A score R(X) is a scalar random variable that is a function of an individual's features X

MODEL | INSTITUTION CHOOSES ACCEPTANCE RATE

- maximize their expected **utility**:

> When there are multiple groups, thresholds can be group-dependent.

► Institution accepts individuals by choosing an acceptance threshold score T to

 $\mathbb{E}[\text{utility}|T] = \mathbb{E}[\text{reward from repayments}|T] - \mathbb{E}[\text{loss from defaults}|T]$

Threshold *T* corresponds to **acceptance rate \beta** for the group.

MODEL | DELAYED IMPACT ON GROUPS

Scores of accepted individuals change depending on their success.

$$R_{\text{new}} = \begin{cases} R_{\text{old}} + R_{\text{old}} + R_{\text{old}} \end{cases}$$

> The average change in score of each group is the delayed impact:

- c_+ if repaid
- if defaulted С_

- $\Delta \mu = \mathbb{E}[R_{\text{new}} R_{\text{old}}]$

Outcome curve

Delayed impact is a concave function of acceptance rate β under mild assumptions.

Characterization of β under fairness constraint

- Assume two groups, A and B, with score quantile functions Q_A , Q_B , and population proportions g_A, g_B .
- The institution's expected utility as a function of score is u(r).
- Theorem 1 (Informal). Under Demographic Parity, the acceptance rate β is completely determined by Q_A, Q_B, g_A, g_B , and u:

are completely determined by Q_A, Q_B, g_A, g_B, u , and ρ .

 $g_A u(Q_A(\beta)) + g_B(Q_B(\beta)) = 0$

• Theorem 2 (Informal). Under Equal Opportunity, the acceptance rates β_A, β_B

FAIRNESS CONSTRAINTS DO NOT GUARANTEE LONG-TERM WELFARE.

Corollary 1 [All outcome regimes are possible]

relative harm, or active harm.

unconstrained utility maximization never causes active harm.

- Equal opportunity and demographic parity may cause relative improvement,

CHOICE OF FAIRNESS CRITERIA MATTERS.

Corollary 2

Demographic parity (DP) may cause **active** or relative harm by over-acceptance; equal opportunity (EO) does not.

Corollary 3

Equal opportunity (EO) may cause relative harm by under-acceptance; demographic parity never under-accepts

CALIBRATION ERRORS FOR ONE GROUP

Suppose the bank systematically underestimates the repayment ability of the disadvantaged group

- orange group
 0.8 probability of repaying loan
 - ► assigned credit score of **700**
 - blue group
 - ► 0.8 probability of repaying loan
 - but assigned credit score of 600 (underestimated)

UNDERESTIMATION CAUSES UNDERACCEPTANCE

- underestimated than when their scores reflect true probability of repayment.
- equal opportunity*.
- ► Example: If there's calibration error, demographic parity yields more favorable delayed impact by promoting a higher acceptance rate.

*under an additional condition (true TPR dominates estimated TPR).

Corollary 4: Acceptance rate for group is lower if their scores are systematically

> This holds for unconstrained utility maximization, demographic parity, as well as

ESTIMATING DELAYED IMPACT WITH FICO CREDIT SCORES

- > 300,000+ TransUnion TransRisk scores from 2003
- Use data labeled by race to
 estimate group score
 distributions, repayment
 probabilities, and proportion.
- Plug in bank's profit/loss ratio, e.g. +1:-4, and the impact of repayment/default on credit score, e.g. +75/-150

と

bank utility

Outcome Curves

Selected related work and impact

Growing research area: Long Term Dynamics and Societal Impact of Algorithmic Decisions

- Feedback loops and populations [Ensign et al 2017*; Hashimoto et al 2018*; Mouzannar et al 2019; Liu et al 2020]
- Fairness in pipelines [Hu and Chen 2017*; Kannan et al 2019; Arunachaleswaran et al 2020; Dwork et al 2020]
- Fairness in recommendation systems [Morik et al 2020; Ge et al 2021]
- Delayed Impact of Causal Fairness notions [Nilforoshan et al 2022]
- **Practical Impact:** Simulation toolkits for anticipating real world impact of ML systems •
 - ML Fairness Gym [D'Amour et al 2020], Importance for industry practitioners [Holstein et al 2019]
 - Fairkit-learn [Johnson et al 2020]
- **Broader impact on AI ethics and normative discourse**
 - Non-ideal theory of algorithmic fairness, broader assessments [Fazelpour and Lipton 2020; Lee et al 2021]

* prior or contemporaneous work

"Delayed Impact" in Practice

PROPOSED EXTENDED ML LIFE CYCLE

Improving downstream outcomes of ML and algorithmic decision making in consequential domains

Improving downstream "Delayed Impact" in Practice outcomes of ML and algorithmic decision making in consequential domains

PROPOSED EXTENDED ML LIFE CYCLE

"Reimagining the Machine Learning Life Cycle to Improve Educational Outcomes of Students" L. T. L., Serena Wang, Tolani Britton, Rediet Abebe. PNAS (forthcoming). 2022.

Thank you!

lydiatliu.com | lydiatliu (at) cornell (dot) edu

