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Algorithmic Fairness

Persistent disparity

Denial rates for conventional mortgages fell across all demographic groups in 2019 but remained
comparatively higher for Black and Hispanic borrowers
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Algorithmic Fairness

Decision Tree for Loan Approval
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Algorithmic Fairness

FIGURE 21
Marijuana Use by Race: Used Marijuana in Past 12 Months (2001-2010)
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FIGURE 10
Arrest Rates for Marijuana Possession by Race (2001-2010)
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Algorithmic Fairness

IGURE 21

Marijuana Use by Race: Used Marijuana in Past 12 Months (2001-2010)

- PredPol

Predict Crime in Real Time™

pondeghst Ve

PredPol provides targeted, real-time crime prediction

Source: National Househeld Survey on Urug Abuse and Health, Z2001-20170

designed for and successfully tested by officers in the field.
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Algorithmic Fairness

Marijuana Use by Race: Used Marijuana in Past 12 Months (2001-2010)

PredPol

Predict Crime in Real Time™

PredPol provides targeted, real-time crime prediction
designed for and successfully tested by officers in the field.
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Group Fairness

Group A Group B



Group Fairness

How do | make this classifier fair?



-

Decisions are made along pipelines...




... With disparities at each stage

* |Inequality of access to opportunities can arise at several stages of such pipelines

* Disparities compose: current opportunities are restricted by previous
disparities/disparities have long-term effect on future opportunities

* Disparities can arise even at very early stages, for ex pre-school level



-

Where to intervene?

Maybe too
late



Where to intervene?

Maybe worth
intervening here
and here too



Where to intervene?

%

May be valuable to intervene at several levels, rather than myopically/at a single one

Questions:
 How do interventions at different stages compose?

* How this informs the optimal design of interventions at several levels of a
pipeline that improve outcomes and reduce disparities across groups?



If you are interested in composed decisions...

 Dwork and llvento: “Fairness under composition”
* Dwork, llvento, Jagadeesan: “Individual Fairness in Pipelines”

* Blum, Stangl, Vakilian: “Multi Stage Screening: Enforcing Fairness and
Maximizing Efficiency in a Pre-Existing Pipeline”

* Etc.



Contribution 1: *stylized* pipeline
intervention model on layered graphs

Starting layer

X X X
X X X
X X X

» Different starting nodes < different starting groups/sub-populations



A stylized pipeline intervention model

Layer 1 Layer k-1
X X X X
X X X X
X X X X

 Subsequent layers: each layer = stage of life, each node = outcome of a given stage
* For example, different educations, etc.



A stylized pipeline intervention model

Final/Reward layer

X X X X R(1)
X X X X R(2)
X X X X R(w)

R(i) = scalar measure of quality of outcome i



A stylized pipeline intervention model

M, (1,1

X LD s X X

X X X »X

. Mi(2,2) . . .
M, ) M, . M, _4

X/:)(/: X/:)(
* Stochastic transitions between layers. M, (i,j) = Pr[node i to node j|layer t -> t+1]

 Can model disparities in access to opportunities. Can give different groups different
probabilistic paths to different reward nodes through the graph




A stylized pipeline intervention model

Intervention model:
 Centralized designer, can intervene at any/several stages
* Intervention = change stochastic transitions between layers

Under constraint:
* Incur cost to change transitions between 2 successive layers
* Maximum budget that can be invested across all layers/transitions



Cost function

e Cost from going from initial transition matrix M,? to transition matrix

M, between layers t and t+1:
c(M¢, M)

* Main assumption:
* Convexity in M; (necessary for optimization)

e Budget constraint:

2 c(M,M,;) <B

t



Contribution 2: DP for near-optimal
Interventions

Dynamic programming algorithms to find how to approximately
optimally:

 Split the budget across different layers

e Use the budget between any two layers to change transitions

What do | mean by optimal here?



Goal #1: Max Social Welfare

Weighted (by population size) sum of the utilities
across the different starting sub-populations

Main caveat:
* Best that can be achieved at the level of the whole population...
* But this says nothing about each sub-population/group

* Potential issue: good outcomes for largest population, but
ignore minority populations



Goal #2: Maximin Welfare

Maximize the welfare of an agent in the worst-off population

l.e., maximize

minu; (M4, ..., Mj_1)
l

(i = starting sub-population index)



A Dynamic Programming approach for near-
optimal SW

Easy case: only 2 layers, single transition matrix

D(1) X X R(1)
D(2) x R(2)
D = starting distribution M, R = rewards

over sub-populations

D (w);/% R(w)




A DP (get it?) approach for near-optimal SW

Easy case: only 2 layers, single transition matrix
D(1) X X R(1)

D(2) x R(2)

D = starting distribution M, R = rewards

D (w);/% R(w)

Then, max R M; D such that ¢(M{, M;) < B.




A DP approach for near-optimal SW

Easy case: only 2 layers, single transition matrix
D(1) X X R(1)

D(2) x R(2)

D = starting distribution M, R = rewards

D (w);/% R(w)

Then, max R M; D such that C(Mf, Ml) <Bb.

Linear in M Convex constraint = Convex optimization!



A DP approach for near-optimal SW

General case: many layers

D1 X\A X :X/X R(l)

D x X X\‘X x R(2)
: M, : Mj.—1 M, :

Dy, X/x x/x/x R(w)

Dynamic programming, backwards, starting from last layer



Start with final layer

D, (1) X x R(1)
e Start at the final transition matrix /
Dk(Z) X »X R(Z)
* Solve max R M; D, . .

such that c(M{, M; ) < By

. M, .
Dy (w) Y/:X R(w)

AN



Start with final layer

e Start at the final transition matrix

* Solve max R M; D,
such that c(M{, M; ) < By

* Difficulty: what is D;, here?
Depends on early transitions!
Unknown: we solve from the end.

Dy (1) X X R(1)
D (2) x/x R(2)

\

. M, .
Dy (w) Y/:X R(w)



Discretizing Dy,

Solutlo?n: gue”ss Dy, - Dy (1) X/x R(1)
How? Try all possible Dy’s onan e-net . x R(2)

e Size of net ~ (l)w

€

=» Can only deal with constant w
* For each Dj, on the net, solve program

: M, :
Dy (w) x/x R(w)

»




A DP approach to finding near-optimal SW

How to iterate on previous layers t -> t+1

| D.(1) X X R(1)
* Same idea, solve program for all D;’s on D.(2) x/x R,.(2)

a net

. M, .
Dy (w) y/:X Re(w)

\



A DP approach to finding near-optimal SW

How to iterate on previous layers t -> t+1

dea, sol for all Dyson - N
* Same idea, solve program for all D;’s on /
a net Poe t De(2) x x Re(2)

* How to deal with R;?

Use solutions of the previous step
Each solution defines a reward vector
for t-> t+1

My

D (w) X X R (w)



A DP approach to finding near-optimal SW

A quick note on budget:
h B h o X/’X el
Note that we use B; at each step t. D.(2) x < R.(2)

But, OPT budget split across layers is

unknown
M
 |dea: same approach as for D: t

e 1D grid for the budget

* Try all budget possibilities on each
transition Dy (w) X X R¢(w)




Guarantees of our algorithm

* Welfare guarantee:
* Net makes us lose O(¢€) at each step
* Get a ke approx. to social welfare if k transitions

* Computational efficiency:
* Each step requires looking at poly((1/e)") possibilities due to discretization.
* Need w constant (think coarse grouping of outcomes in each stage)
* But need to do this only k times.

* Maximin objective:

* Instead of keeping track of all possible D;’s at the start of layer t,
keep track of more fine-grained D, ; for each starting node i

* Then, use the same approach



Hardness: Super-polynomial dependencies on
width are unavoidable

e Can be seen via reduction to vertex cover
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Hardness: Super-polynomial dependencies on
width are unavoidable

e Can be seen via reduction to vertex cover

 Why vertex cover again?
* We'll see the reduction in a second...
* But strong hardness results.
* Not just NP-complete...

* ... but also cannot be approximated to a constant factor < 1.3606
[Dinur — Safra 2005]



Hardness: Super-polynomial dependencies on
width are unavoidable

Take graph G on which we want to solve vertex cover. For each edge
(u,v) *in the vertex cover graph*, build:
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Hardness: Super-polynomial dependencies on
width are unavoidable

ldea: most efficient way to get minimax =2 pick path going to 1 for
*each™ (u,v) to get welfare, but use as few paths as possible
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Hardness: Super-polynomial dependencies on
width are unavoidable

ldea: most efficient way to get minimax =2 pick path going to 1 for
*each™ (u,v) to get welfare, but use as few paths as possible
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Hardness: Super-polynomial dependencies on
width are unavoidable

ldea: most efficient way to get minimax = pick path going to 1 for
*each™ (u,v) to get welfare, but use as few paths as possible
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Hardness: Super-polynomial dependencies on
width are unavoidable

ldea: most efficient way to get minimax =2 pick path going to 1 for
*each™ (u,v) to get welfare, but use as few paths as possible

* But, picking a path
= picking a
vertex in og graph ~

e Using as few paths
as possible

< using as few
vertices as possible
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Contribution 3: Price of fairness

B OPT SW
~ SW of maximin sol

Pr

e Simple case: linear cost 1 for changing transition by 1

* Result: *tight* bounds
* Pr = w for very very small B
* Pr = w/B for intermediate B
* Pr = 1forlarge B



Contribution 3: Price of fairness

B OPT SW
~ SW of maximin sol

Pr

e Simple case: linear cost 1 for changing transition by 1

* Result: *tight* bounds
*Pr=w-fersmat-B (corner case)
* Pr = w/B for intermediate B
* Pr = 1forlarge B



Contribution 3: Price of fairness

B OPT SW
~ SW of maximin sol

Pr

e Simple case: linear cost 1 for changing transition by 1
* Result: *tight* bounds
Pr=w-forsmallB

* Pr = w/B for intermediate B

»P-=T1HertargeB “trivial — the proof is left to the reader as an exercise”



Contribution 3: Price of fairness

B OPT SW
~ SW of maximin sol

Pr

e Simple case: linear cost 1 for changing transition by 1
* Result: *tight* bounds
Pr=w-forsmallB

* Py = w/B for intermediate B

~Pr=TlHerlargeB



Price of fairness: some intuition




Price of fairness: some intuition

X X X X/’X R(1)
X X X X x R(2)

| | . M, .
X X X x/x R(w)

>




Price of fairness: some intuition

Highest

X X X X/’X R(1)
X X X X x R(2)

| | . M, .
X X X x/x R(w)
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Price of fairness: some intuition

Highest

»

X X X X R(1)
X X X X//x R(2)

X X X X X R(w)




Price of fairness: some intuition

B
+— Highest
w

X X X X R(1)
X X X X//x R(2)

»

X X X X X R(w)




Price of fairness: some intuition

* No matter what the starting node is, reach R(1)

with proba at least B/w B bt
=» the minmax welfare is at least X w R(1) refvard
B
— X R(1 //’)<
=X R(1) X x R(2)
* The max welfare is at most R(1) : k

: . B
=» Price of fairness at most ”

X X R(w)



Remarks and future directions

Still a first step/stylized model; in practice, important future directions:

e Different populations may face different transitions even if on the same node
in the graph



Population-specific transitions

Solution:

* Just duplicate nodes. For each outcome of a layer, there is a corresponding
(outcome, starting population) node

e Can correlate effect of interventions across same outcome, different starting
populations through cost function.

* E.g., if modify transition for starting population 1, can modify transition for pop
2 by some amount for free.

How does this affect the graph and algorithms?

* Quadratic blow-up w.r.t width
e w > w?



Remarks and future directions

Still a first step/stylized model; in practice, important future directions:

- Ajlaala Avala Aala aa Aanya Alaala a Aala - ala Aala Aava aava AvaAavYTara
- AN VRN AT U w LAV LA W LA W v w LA -’/ L/

* Transitions may not be stochastic, but involve strategic elements; agents make
choices

* Acyclic model, does not take feedback loops into account
* Simplified/1D reward model + everyone wants the same outcomes

* What happens if non-centralized designer/different entities intervene at
different stages?

* What if we try to estimate transitions/effect of interventions from real data?
* Etc.
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