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Group Fairness

Group A Group B



Group Fairness

Group A Group B

How do I make this classifier fair?



Decisions are made along pipelines...



… with disparities at each stage

• Inequality of access to opportunities can arise at several stages of such pipelines

• Disparities compose: current opportunities are restricted by previous 
disparities/disparities have long-term effect on future opportunities

• Disparities can arise even at very early stages, for ex pre-school level



Where to intervene?

Maybe too 
late



Where to intervene?

Maybe worth 
intervening here 

and here too



Where to intervene?

May be valuable to intervene at several levels, rather than myopically/at a single one

Questions: 

• How do interventions at different stages compose? 

• How this informs the optimal design of interventions at several levels of a 
pipeline that improve outcomes and reduce disparities across groups?



If you are interested in composed decisions…

• Dwork and Ilvento: “Fairness under composition”

• Dwork, Ilvento, Jagadeesan: “Individual Fairness in Pipelines”

• Blum, Stangl, Vakilian: “Multi Stage Screening: Enforcing Fairness and 
Maximizing Efficiency in a Pre-Existing Pipeline”

• Etc.



Contribution 1: *stylized* pipeline 
intervention model on layered graphs
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Starting layer

• Different starting nodes  different starting groups/sub-populations



A stylized pipeline intervention model
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• Subsequent layers: each layer = stage of life, each node = outcome of a given stage
• For example, different educations, etc.

Layer 1 Layer k-1



A stylized pipeline intervention model
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R(1)

Final/Reward layer

R(i) = scalar measure of quality of outcome i

R(2)

R(w)



A stylized pipeline intervention model
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• Stochastic transitions between layers. 𝑀𝑡(𝑖, 𝑗) = Pr[node i to node j|layer t -> t+1]
• Can model disparities in access to opportunities. Can give different groups different 

probabilistic paths to different reward nodes through the graph

𝑀1(1,1)

𝑀1(2,2)

𝑀1(1,2)

𝑀2𝑀1 𝑀𝑘−1



A stylized pipeline intervention model

Intervention model:

• Centralized designer, can intervene at any/several stages

• Intervention = change stochastic transitions between layers

Under constraint:

• Incur cost to change transitions between 2 successive layers

• Maximum budget that can be invested across all layers/transitions



Cost function

• Cost from going from initial transition matrix 𝑀𝑡
0 to transition matrix 

𝑀𝑡 between layers t and t+1:
𝑐(𝑀𝑡

0, 𝑀𝑡)

• Main assumption:
• Convexity in 𝑀𝑡 (necessary for optimization)

• Budget constraint:

෍

𝑡

𝑐 𝑀𝑡
0, 𝑀𝑡 ≤ 𝐵



Contribution 2: DP for near-optimal 
interventions

Dynamic programming algorithms to find how to approximately 
optimally:

• Split the budget across different layers

• Use the budget between any two layers to change transitions

What do I mean by optimal here?



Goal #1: Max Social Welfare

Weighted (by population size) sum of the utilities 
across the different starting sub-populations

Main caveat:

• Best that can be achieved at the level of the whole population…

• But this says nothing about each sub-population/group

• Potential issue: good outcomes for largest population, but 
ignore minority populations



Goal #2: Maximin Welfare

Maximize the welfare of an agent in the worst-off population

I.e., maximize

min
𝑖
𝑢𝑖(𝑀1, … ,𝑀𝑘−1)

(i = starting sub-population index)



A Dynamic Programming approach for near-
optimal SW
Easy case: only 2 layers, single transition matrix

𝑀1
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D = starting distribution
over sub-populations

R = rewards

𝑅 1

𝑅 2
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𝐷(2)

𝐷(𝑤)



A DP (get it?) approach for near-optimal SW

Easy case: only 2 layers, single transition matrix

Then, max𝑅 𝑀1 𝐷 such that 𝑐 𝑀1
0, 𝑀1 ≤ 𝐵.
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𝐷 1

𝐷(2)

𝐷(𝑤)

𝑅 1

𝑅 2

𝑅 𝑤



A DP approach for near-optimal SW

Easy case: only 2 layers, single transition matrix

Then, max𝑅 𝑀1 𝐷 such that 𝑐 𝑀1
0, 𝑀1 ≤ 𝐵.

𝑀1

X

X
.
.
.
.
.
.

X

X

X
.
.
.
.
.
.

X

D = starting distribution R = rewards

Linear in M Convex constraint Convex optimization!

𝐷 1

𝐷(2)

𝐷(𝑤)

𝑅 1

𝑅 2

𝑅 𝑤



A DP approach for near-optimal SW

General case: many layers
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𝐷1

𝐷2

𝐷𝑤

Dynamic programming, backwards, starting from last layer

𝑅 1

𝑅 2

𝑅 𝑤



Start with final layer

• Start at the final transition matrix

• Solve max𝑅 𝑀1
𝑡 𝐷𝑘

such that 𝑐 𝑀1
0, 𝑀1 ≤ 𝐵𝑘
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Start with final layer
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𝐷𝑘 1

𝐷𝑘(2)

𝐷𝑘(𝑤)

• Start at the final transition matrix

• Solve max𝑅 𝑀1
𝑡 𝐷𝑘

such that 𝑐 𝑀1
0, 𝑀1 ≤ 𝐵𝑘

• Difficulty: what is 𝐷𝑘 here?
Depends on early transitions!
Unknown: we solve from the end.

𝑅 1

𝑅 2

𝑅 𝑤



Discretizing 𝐷𝑘
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𝐷𝑘 1

𝐷𝑘(2)

𝐷𝑘(𝑤)

Solution: guess 𝐷𝑘
• How? Try all possible 𝐷𝑘’s on an 𝜖-net

• Size of net ~
1

𝜖

𝑤

➔ Can only deal with constant w

• For each 𝐷𝑘 on the net, solve program

𝑅 1

𝑅 2

𝑅 𝑤



A DP approach to finding near-optimal SW

How to iterate on previous layers t -> t+1

• Same idea, solve program for all 𝐷𝑡’s on
a net
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A DP approach to finding near-optimal SW

How to iterate on previous layers t -> t+1

• Same idea, solve program for all 𝐷𝑡’s on
a net

• How to deal with 𝑅𝑡?

Use solutions of the previous step
Each solution defines a reward vector 
for t-> t+1
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A DP approach to finding near-optimal SW

A quick note on budget:

• Note that we use 𝐵𝑡 at each step t. 
But, OPT budget split across layers is
unknown

• Idea: same approach as for D:
• 1D grid for the budget

• Try all budget possibilities on each
transition
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Guarantees of our algorithm

• Welfare guarantee:
• Net makes us lose 𝑂 𝜖 at each step
• Get a k𝜖 approx. to social welfare if k transitions

• Computational efficiency: 
• Each step requires looking at poly( 1/𝜖 𝑤) possibilities due to discretization. 
• Need w constant (think coarse grouping of outcomes in each stage)
• But need to do this only k times.

• Maximin objective:
• Instead of keeping track of all possible 𝐷𝑡’s at the start of layer t,

keep track of more fine-grained 𝐷𝑡,𝑖 for each starting node i
• Then, use the same approach



Hardness: Super-polynomial dependencies on 
width are unavoidable

• Can be seen via reduction to vertex cover
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Hardness: Super-polynomial dependencies on 
width are unavoidable

• Can be seen via reduction to vertex cover

• Why vertex cover again? 
• We’ll see the reduction in a second…

• But strong hardness results. 

• Not just NP-complete… 

• … but also cannot be approximated to a constant factor < 1.3606
[Dinur – Safra 2005]



Hardness: Super-polynomial dependencies on 
width are unavoidable

Take graph G on which we want to solve vertex cover. For each edge 
(u,v) *in the vertex cover graph*, build:



Hardness: Super-polynomial dependencies on 
width are unavoidable

Idea: most efficient way to get minimax ➔ pick path going to 1 for 
*each* (u,v) to get welfare, but use as few paths as possible
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Hardness: Super-polynomial dependencies on 
width are unavoidable

Idea: most efficient way to get minimax ➔ pick path going to 1 for 
*each* (u,v) to get welfare, but use as few paths as possible

(v,w)



Hardness: Super-polynomial dependencies on 
width are unavoidable

Idea: most efficient way to get minimax ➔ pick path going to 1 for 
*each* (u,v) to get welfare, but use as few paths as possible

• But, picking a path 
= picking a
vertex in og graph

• Using as few paths
as possible
 using as few
vertices as possible
in og graph

(v,w)



Contribution 3: Price of fairness

𝑃𝑓 =
𝑂𝑃𝑇 𝑆𝑊

𝑆𝑊 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑖𝑛 𝑠𝑜𝑙

• Simple case: linear cost 1 for changing transition by 1

• Result: *tight* bounds
• 𝑃𝑓 = 𝑤 for very very small B

• 𝑃𝑓 = 𝑤/𝐵 for intermediate B

• 𝑃𝑓 = 1 for large B 
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• Simple case: linear cost 1 for changing transition by 1

• Result: *tight* bounds
• 𝑃𝑓 = 𝑤 for small B (corner case)

• 𝑃𝑓 = 𝑤/𝐵 for intermediate B

• 𝑃𝑓 = 1 for large B 



Contribution 3: Price of fairness

𝑃𝑓 =
𝑂𝑃𝑇 𝑆𝑊

𝑆𝑊 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑖𝑛 𝑠𝑜𝑙

• Simple case: linear cost 1 for changing transition by 1

• Result: *tight* bounds
• 𝑃𝑓 = 𝑤 for small B

• 𝑃𝑓 = 𝑤/𝐵 for intermediate B

• 𝑃𝑓 = 1 for large B “trivial – the proof is left to the reader as an exercise”



Contribution 3: Price of fairness

𝑃𝑓 =
𝑂𝑃𝑇 𝑆𝑊

𝑆𝑊 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑖𝑛 𝑠𝑜𝑙

• Simple case: linear cost 1 for changing transition by 1

• Result: *tight* bounds
• 𝑃𝑓 = 𝑤 for small B

• 𝑷𝒇 = 𝒘/𝑩 for intermediate B

• 𝑃𝑓 = 1 for large B



Price of fairness: some intuition
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Price of fairness: some intuition
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Price of fairness: some intuition
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Price of fairness: some intuition
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Price of fairness: some intuition
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reward

+
𝐵

𝑤

• No matter what the starting node is, reach R(1) 
with proba at least B/w
➔ the minmax welfare is at least 

𝐵

𝑤
× 𝑅 1

• The max welfare is at most 𝑅 1

➔ Price of fairness at most 
𝐵

𝑤



Remarks and future directions

Still a first step/stylized model; in practice, important future directions:
• Different populations may face different transitions even if on the same node 

in the graph

• Transitions may not be stochastic, but involve strategic elements; agents make 
choices

• Acyclic model, does not take feedback loops into account

• Simplified/1D reward model + everyone wants the same outcomes

• What happens if non-centralized designer/different entities intervene at 
different stages?

• Etc.



Population-specific transitions

Solution:
• Just duplicate nodes. For each outcome of a layer, there is a corresponding 

(outcome, starting population) node

• Can correlate effect of interventions across same outcome, different starting 
populations through cost function. 

• E.g., if modify transition for starting population 1, can modify transition for pop 
2 by some amount for free.

How does this affect the graph and algorithms?
• Quadratic blow-up w.r.t width

• 𝑤→𝑤2



Remarks and future directions

Still a first step/stylized model; in practice, important future directions:
• Different populations may face different transitions even if on the same node 

in the graph

• Transitions may not be stochastic, but involve strategic elements; agents make 
choices

• Acyclic model, does not take feedback loops into account

• Simplified/1D reward model + everyone wants the same outcomes

• What happens if non-centralized designer/different entities intervene at 
different stages?

• What if we try to estimate transitions/effect of interventions from real data?

• Etc.
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