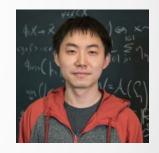
Chasing the Long Tail: What Neural Networks Memorize and Why

Vitaly Feldman Apple*

Chiyuan Zhang Google Research



*Part of the work done while at Google Research and while visiting the Simons Institute, UC Berkeley For state-of-the-art deep learning algorithms on image datasets

- Training set error: 0-5%
- (Typical) test set error: 10-30%

Inception on ImageNet 1000 with random labels:

Training error: **9%**

Test error: 99.9%

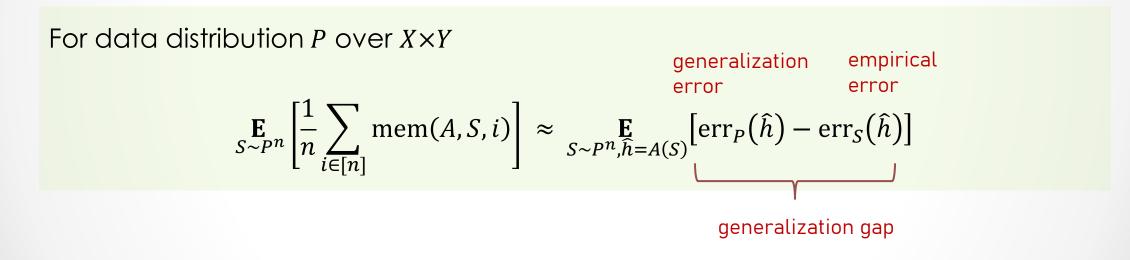
[Zhang, Bengio, Hardt, Recht, Vinyals '17]

Not explained by existing theories

Defining memorization

Def: For dataset $S = ((x_1, y_1), ..., (x_n, y_n)), i \in [n]$ and learning algorithm A let

$$\operatorname{mem}(A, S, i) = \Pr_{\widehat{h} = A(S)} [\widehat{h}(x_i) = y_i] - \Pr_{\widehat{h} = A(S \setminus i)} [\widehat{h}(x_i) = y_i]$$



Why is label memorization ubiquitous? Is it necessary?

Privacy concerns

Black-box membership inference attack with high accuracy [Shokri,Stronati,Song,Shmatikov 17; LongBWBWTGC 18; SalemZFHB 18,...] Reconstruction of sensitive training data from language models [Carlini et al. 20]

Is memorization necessary for achieving optimal error?

Related work

Generalization of interpolating methods

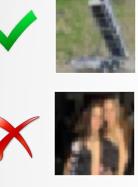
- Interpolation may be "harmless"
- Does not address the "why?" question
- Memorization also happens without interpolation

[Cover,Hart '67; Belkin,Hsu,Mitra '18; Liang,Rakhlin '18; Belkin,Rakhlin,Tsybakov '19; Belkin,Hsu,Xu '19; Bartlett,Long,Lugosi,Tsigler '19; Hastie,Montanari,Rosset,Tibshirani '19; Muthukumar,Vodrahalli,Sahai '19; Mei,Montanari 19; Montanari,Zhong 20;]

Hard atypical examples

CIFAR-10 truck class

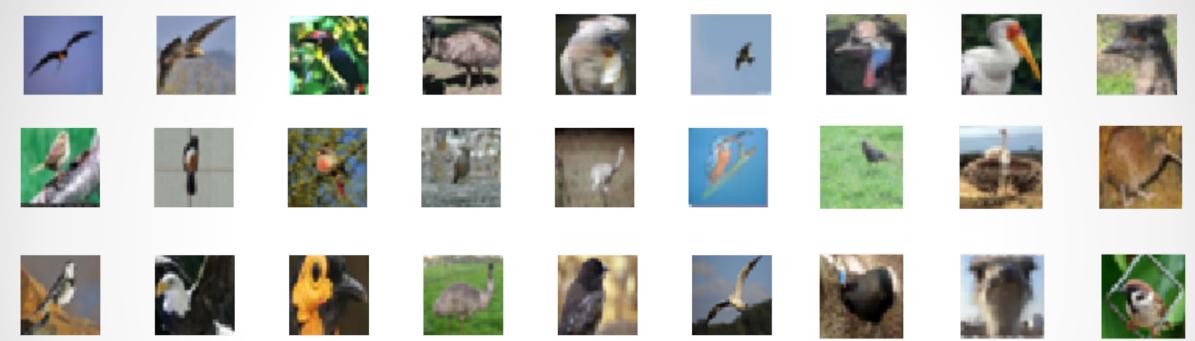
training set



test set

Subpopulations

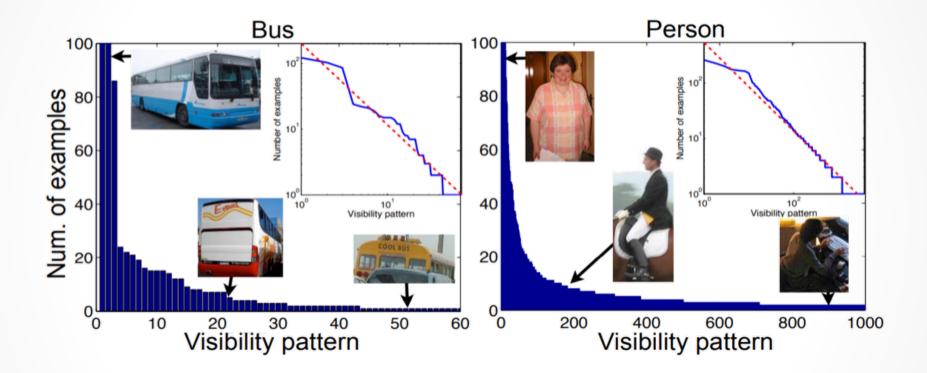
CIFAR-10 birds



Examples from low $\left(\approx \frac{1}{n}\right)$ frequency subpopulations may be hard to distinguish from mislabeled ones and outliers

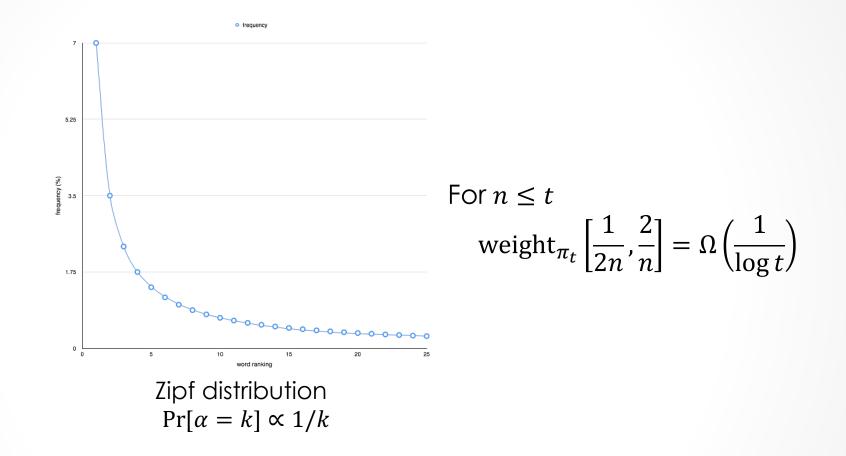
Long-tailed data

Additional annotations



[Zhu, Anguelov, Ramanan '14]

The tail rears its head



Long-tail: $\Theta\left(\frac{1}{n}\right)$ frequencies can make up a **significant fraction** of the whole population

Basic model

- Discrete domain X of size t and set of labels Y
- Learning problem: meta-distribution Φ over data distributions on $X \times Y$
- Goal: minimize expected generalization error of algorithm A

$$\overline{\operatorname{err}}_{n}(\Phi, A) \coloneqq \underset{P \sim \Phi, S \sim P^{n}, \widehat{h} = A(S)}{\operatorname{E}}\left[\operatorname{err}_{P}(\widehat{h})\right]$$

- Prior over frequencies $\pi = (\pi_1, ..., \pi_t)$
- For each $x \in X$, pick randomly and independently a frequency p_x from π and normalize

$$D(x) = \frac{p_x}{\sum_{x' \in X} p_{x'}}$$

- Arbitrary distribution F over functions $X \rightarrow Y$
- $\Phi(\pi, F)$: pick $D \sim \pi^t$ and $f \sim F$. Define P as (x, f(x)) for $x \sim D$

Benefits of fitting

Thm: For every algorithm *A*: $\mathbf{E}_{P \sim \Phi(\pi, F), S \sim P^n, \hat{h} = A(S)} \left[\operatorname{err}_P(\hat{h}) \right] \ge \operatorname{opt}_n(\pi, F) + \boldsymbol{\tau} \cdot \mathbf{E}_{P \sim \Phi(\pi, F), S \sim P^n, \hat{h} = A(S)} \left[\operatorname{errn}_S(\hat{h}, 1) \right]$ $\tau \coloneqq \frac{\mathbf{E}}{\mathbf{E}} \left[\alpha^2 (1 - \alpha)^{n-1} \right]$ $\tau \coloneqq \frac{\mathbf{E}}{\mathbf{E}} \left[\alpha (1 - \alpha)^{n-1} \right]$ $\min \overline{\operatorname{err}}_n(\Phi(\pi,F),A)$ Number of examples occurring For all $\pi, n, \quad \tau = \Omega\left(\frac{\operatorname{weight}_{\pi}\left[\frac{1}{2n'n}\right]}{\pi}\right)$ once in S but not fit by \hat{h} For Zipf and $n \leq t$, $\tau = \Omega\left(\frac{1}{n \log t}\right)$

F can be arbitrarily complex Extends to label noise

Fitting and memorization

Def: For dataset $S = ((x_1, y_1), ..., (x_n, y_n)), i \in [n]$ and learning algorithm A let

$$\operatorname{mem}(A, S, i) = \Pr_{\widehat{h} = A(S)} [\widehat{h}(x_i) = y_i] - \Pr_{\widehat{h} = A(S \setminus i)} [\widehat{h}(x_i) = y_i]$$

For sufficiently complex F: for many $i \in [n]$ $\Pr_{\hat{h}=A(S \setminus i)} [\hat{h}(x_i) = y_i] \ll 1$

Thus need to be memorized to fit

Empirical validation

Def: For dataset $S = ((x_1, y_1), ..., (x_n, y_n)), i \in [n]$ and learning algorithm A let

$$\operatorname{mem}(A, S, i) = \Pr_{\widehat{h} = A(S)} [\widehat{h}(x_i) = y_i] - \Pr_{\widehat{h} = A(S \setminus i)} [\widehat{h}(x_i) = y_i]$$

Requires training $\Omega(n)$ models. Computationally infeasible!

Def: For $m \le n$, let T be a random subset of S of size m that includes i

$$\operatorname{mem}_{m}(A, S, i) = \operatorname{\mathbf{E}}_{T} \left[\operatorname{\mathbf{Pr}}_{\widehat{h} = A(T)} [\widehat{h}(x_{i}) = y_{i}] - \operatorname{\mathbf{Pr}}_{\widehat{h} = A(T \setminus i)} [\widehat{h}(x_{i}) = y_{i}] \right]$$

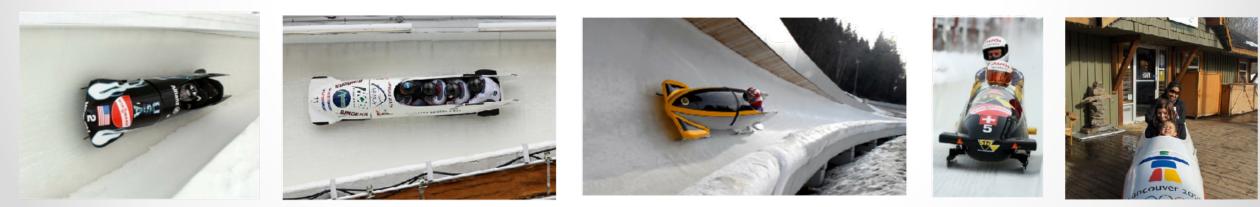
Closely-related and requires training O(1) models! Use m = 0.7n

Examples of memorization estimates

High memorization estimate

ImageNet: **bobsled** class

Low memorization estimate



Influence of memorized examples

Def: For dataset $S = ((x_1, y_1), ..., (x_n, y_n)), i \in [n]$ and testing example (x, y)

$$\inf(A, S, i, (x, y)) = \Pr_{\widehat{h} = A(S)} [\widehat{h}(x) = y] - \Pr_{\widehat{h} = A(S \setminus i)} [\widehat{h}(x) = y]$$

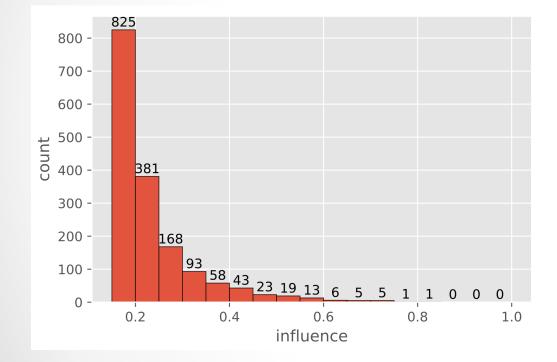
Same trick!

Def: For $m \le n$, let T be a random subset of S of size m that includes i

$$\operatorname{nfl}_{m}(A, S, i, (x, y)) = \operatorname{\mathbf{E}}_{T} \left[\operatorname{\mathbf{Pr}}_{\widehat{h} = A(T)} [\widehat{h}(x) = y] - \operatorname{\mathbf{Pr}}_{\widehat{h} = A(T \setminus i)} [\widehat{h}(x) = y] \right]$$

High-influence pairs

Many memorized training examples each of which significantly influences the accuracy on just one test example



Affects \approx 3% of the ImageNet test set

Examples of high-influence

ImageNet

	train	test		train	test
	0.288	0.243		0.690	0.211
ashcan			kangaroo	0.518	0.186
dumbbell	0.395	0.211	bridge	0.607	0.171
	0.978	0.159	caterpillar	1.000	0.159
jersey	0.581	0.150	otter	K	
crane			bottle	0.985	0.150

CIFAR-100

Implications: differential privacy

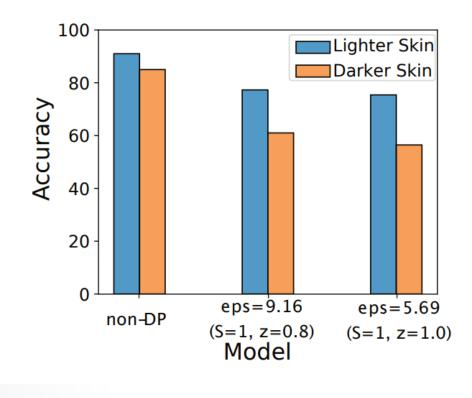
Def: For dataset $S = ((x_1, y_1), ..., (x_n, y_n)), i \in [n]$ and learning algorithm A let

$$\operatorname{mem}(A, S, i) = \Pr_{\widehat{h} = A(S)} \left[\widehat{h}(x_i) = y_i \right] - \Pr_{\widehat{h} = A(S \setminus i)} \left[\widehat{h}(x_i) = y_i \right]$$

For an (ϵ, δ) -DP algorithm A: $\Pr_{\hat{h}=A(S)} [\hat{h}(x_i) = y_i] \le e^{\epsilon} \cdot \Pr_{\hat{h}=A(S \setminus i)} [\hat{h}(x_i) = y_i] + \delta$

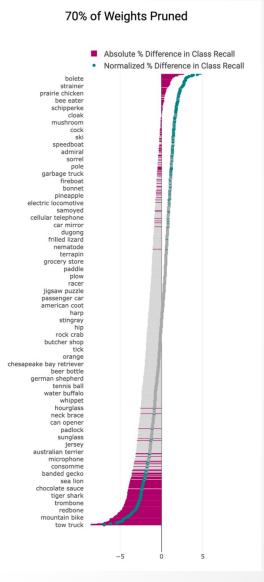
$$\operatorname{mem}(A, S, i) \le (e^{\epsilon} - 1) \cdot \Pr_{\widehat{h} = A(S \setminus i)} [\widehat{h}(x_i) = y_i] + \delta$$

Implications: disparate effects



[Bagdarasyan, Shmatikov 19]

Cost of non-memorization depends on subgroup size, subpopulation structure, relative hardness of the problem



Conclusions

- Label memorization is necessary for optimal generalization on long-tailed data distributions
 - Not algorithm-specific
 - Can be modelled theoretically
 - Implications of limiting memorization: effect on the accuracy depends on subgroup frequency and other properties

Additional materials

- **Theory:** STOC 2020, <u>https://arxiv.org/abs/1906.05271</u>
- Experiments: NeurIPS 2020, https://arxiv.org/abs/2008.03703
- Results/additional examples: https://pluskid.github.io/influence-memorization/
- Follow-up: memorization of data points
 - o with Gavin Brown, Mark Bun, Adam Smith and Kunal Talwar
 - o STOC 2021: <u>https://arxiv.org/abs/2012.06421</u>

Future work

- Faithful models of learning
- Applications of estimators