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4 questions about testing

Are perfect tests worth e A
WG|T|ng for? WA FUCEOEAR

¢ 7T

2. Is higher accuracy better

for social welfare? tests as products

Why Perfect Tests May Not be Worth Waiting For: Information as a Commodity
(K.D., R. Randhawa, Published at Management Science FastTrack)




4 questions about testing

3. How to use Data and Operations to mitigate
pandemics:
» a case study on border control

4. Can public data be used for effective
mitigation at the bordere
» not for defining travel protocols

Nature (2021)

300 doctors and nurses

200 policemen and firemen
32 labs

~ millions visitors

Kyriakos Mitsotakis, Prime Minister

Nikos Hardalias, Deputy Minister of
Civil Protection

Panagiotis Prezerakos, Secretary
General of Public Health



Problem in hand 0%0 | 100120 MILLION

m direct tourism jobs at risk
(UNWTO)
» Greece conservative approach:
» lockdown of different stringency levels March-May, 2020

: 7 G Pandemic Could Set Tourism
. . .
Tourism 257 GDP Sector Back by $1 Trillion
Global international tourism receipts from 2000-2019
and possible scenarios for 2020

;:

$1,500b
* Economy heavily affected by lockdown
* Small IT sector #9000
. scenarios based on :
* Small manufacturing sector o i | |
$300b jzfiyllifting of travzlnrdes;reigtei;n;ei: "
$Ob2000 2005 2010 2015 2020
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Not really choice on if, choice on how

(6) On 11 June 2020, the Commission adopted a Communication® which recommended to
extend the restriction on non-essential travel into the EU until 30 June 2020, and which sets
out an approach for a gradual lifting of the restriction on non-essential travel into the EU as
of 1 July 2020. All Member States have implemented the further extension until 30 June.

Can be done effectively in a data driven way

(10) Decisions on the possible lifting of the restriction on non-essential travel into the EU should
take into account the epidemiological situation within the EU, i.e. the average number of
COVID-19 cases over the last 14 days and per 100 000 inhabitants.

Not effective advice

EU Council Recommendation on the temporary restriction on non-essential travel
into the EU and the possible lifting of such restriction



Pre-Summer 2020: Travel back in
time...

« No vaccines available

» Testing was scarce

» Rapid tests unreliable

» Especially for asymptomatic infections |7STEps OF
. o HAND WASHING

» PCR testing requires specialized machinery
+ 3-6 month lead time for new machines

» knowledge was limited
* How long after exposure until contagious?
* How long asymptomatic and contagious?




Before we joined (before May 1)

* Random testing at the border (1 in 10-15-open loop)

» Grey-listing (72-hour PCR test required) “as we go” based
on 14-day notification rate.

« Red-listing practically unimplementable with arrivals ~
millions and GDPR constraints.



Eva: System Overview

EVA
uses prior testing results to: P s
d, Yoy

Reinforcement Learning
e optimize testing allocation Pseudonymize

eproduce risk estimates for Aggregated
Central
Database
&

greylisting
it

PLF Form

3

Lab logs
results in
24-48 hours

Passenger tested
at port of entry.

Sample sent to lab
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visitors 24 hour:
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Eva is more than a reinforcement
learnina algorithm!

Reinforcement Learning

EVA
uses prior testing results to:
. e optimize testing allocation |
eproduce risk estimates for
greylisting

K
: ‘ it
Lab logs
results in
Submitted by \ 24-48 hours A

visitors 24 hour:
- prior to ent

Passenger tested
at port of entry. :

Sample sent to lab




Eva is more than a reinforcement

learning algort

L Reinforcement Learning

4

Designing the
Passenger Locator Form

* What information is

epidemiologically relevant?

PLF Form

Submitted by l

visitors 24 hours

TEST

prior to entry

* What private information is too

invasive?

hm!

GDPR Compliance & EU
Support

Digital technologies and data have a valuable role to play in combating the pandemic. Mobile applications could
bolster contact-tracing strategies and support public health authorities in monitoring and containing the spread of the
virus. Artificial intelligence (AI) and robotics can also help monitoring physical distancing in line with data protection
law or facilitating disinfection, especially in places with regular tourism flows. The Commission will deploy through

EVA
uses prior testing results to:
e optimize testing allocation
eproduce risk estimates for

greylisting

&~

Pseudonymized,
Aggregated

-
—_

B!

Central
Database

T

Lab logs
results in
24-48 hours

AR

Passenger tested
at port of entry.
Sample sent to lab

Designing the

-~

* Which labs should serve which
points of entry?
* How transport safely/quickly?

Testing Supply-Chain
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40 Points of Entry (PoE) / 32 Lalbs
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Some PoE and All Labs Omitted for Privacy

How much testing capacity assign to
each PoE?

Which lab(s) should serve which PoEe

Single-shot decision / no recourse
* Model as a mixed-binary optimization

(Some of the) Constraints

+ Cannot exceed alab’s daily processing
capacity

» Lab/PoE must be close enough for
twice-daily trips by logistics teams
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Operations

40 points 300 medical
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Interplay of Operations Research and
Artificial n’relllgence

OR/Modeling

Success of one piece depends on
the design of the other...




Expectations and Goals

Real-time data-driven solution to allocate limited testing resources

« Recommend who to test at the border.
« |[dentify hot-spofts with high confidence to greylist




In an ideal world

* “Classic” multiarm bandit problem
* Estimation: Given current information = 7} (t).
* Allocation:
* Exploitation: chose arm with largest 7;(t).
* Exploration: Maybe exists j, 1;(t)..> 1j(t)..

E Popular Solutions:

e  Upper Confidence Bounds (regret-order-optimal)
Thomson Sampling (regret-order-optimal)
e Gittins Index (optimal but hard to calculate)

ES DE



Our setting

» Types: countries (for now) k € {1,..,K}
- Each passenger if tested X, ~B(R; (1))
* True positivity of k-type, R, (t) unknown (very) non-stationary process

« Decision: N, (t) number of arms to “pull” from each arm

« Goal: max XE¥X_ ETTx(O}: ~ Bin(R;(t), Ni.(t))

Fancy expression for
“more tests to high-risk types”




Combinatorial Constraints

 llied Ny (t) = Ny (t)

* Ni(t) = Xe Nie ()

» Unfortunately:

¢ Zk Nie(t) < B, (budget)

P U P U
oo oo OO OO O OO
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|-

* Nio(t) < Dy (t) (arrivals)



Estimation Challenges

|. Imbalanced data: ~1/1000 test positive
* How to distinguish 0.7% (risky) vs. 0.1% (safe) arms?
* Empirical Bayes approach -> fit common prior -> posterior update

Il. High-dimensional features: origin city/country/gender etc..

 Lasso Regression to identify risky subtypes

No technical details




Empirical Bayes approach

Natural split in groups:
* White-listed
« Grey-listed
* Black-listed*

For each group common prior - B(a, )

Nailve estimators: P, /(P + Ny)

Fit (a, B) = moment matching

D (t): posterior based on Py, Ny,

*Defined at the European Union level

0.00012 =

0.00008 -

0.00004 -

Excess MSE

0.00000 =

0

100 200 300 400 500
Prior Strength (0. + B)



Arm Granularity

* 1000s of regions: cannot allocate 100s of tests to each region
* high variance

* ~100 countries: miss out on city-specific risk
» high bias

« Most locations at country-level but isolate very risky cities

» Use LASSO reg?re,ssion to identify a sparse subset of cities that
r

are particularly risky beyond condifioning on country (Bastani &
Bayati ‘15)



Feature Selection

« Segment many cities from a country to a small # of arms

2.2
2 LASSO
1.9
Cy1,Cy, ..., Cy G4, G,
Formally:  y; =X, 6.1(c = c)P? + 3,8, 1(f = f) + €.

Back to estimation




Estimation Step

i | __I‘IHHMHHHIHI HHﬂmmmmlﬂﬂmﬂ Mttt




Allocation Challenges

Nonstationary dynamics:
« Discard old data (Luo et al. 2018, Zhao et al. 2020)
« Exponential smoothing (Besbes et al. 2014)

Batched decision-making + Delayed feedback:

« decide who to test at the start of each day. 7500 tests at once, 1-3

days to get result.
« Optimistic Gittins Index
« Certainty-Equivalent Pseudo Updates

"Combinatorial” Constraints:
« Dynamic matching of indexes to ports.

No technical details




Too forward-looking?

NO

* Change ~ 1-2 weeks (Non stationarity)

* Results delayed ~ 1-3 days
* “One Step Ahead”

The optimistic Gittins index (Gutin & Farias 2016) with is
+
2=ERG] +7-E[A-R)"|

Intuition: Bayesian value if we play this arm for one step and then play optimally
thereafter

Bonus: simple fixed point equation for Beta distributions



Optimistic Gittins Index

« Step 1: Compute A; foreach arm i
 Step 2: Pull arm

v
" = argmax 4;
l

« Step 3: Update prior y; based on observed reward R;



Within a Batch
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« NOo new information
between pulls

» Over-explore one
arm while we are
waiting for testing
results (2 days)



Certainty Equivalent Update

« NOo new information
between pulls

e but can “simulate”
evolution

pdf

» Over-explore one
arm while we are
waiting for testing

0 . results (2 days)




Within a Batch

M
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’ no update

A3
Ay
/12 I
DE T us

« NOo new information
between pulls

» Over-explore one
arm while we are
waiting for testing
results (2 days)



Within a Batch

Certainty-
equivalent update

» Allocates estimated
# of tests required to
resolve uncertainty
for arms with high
variance

« Remaining tests
allocatedto arms
with high mean
rewar

« Can simulate fests in
“pipeline”

Back to allocation




Combinatorial Constraints
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Algorithm

e INnputs:
* passenger manifest at each port,
» port-specific testing constraints,
* historical testing results for each arm
« certainty equivalent updates for any pending tests

0.06 5319 1 (500)
2 0.07 2 2170 3 (50)
3 0.01 1 8562 3 (50)



Algorithm

e INnputs:
* passenger manifest at each port,
» port-specific testing constraints,
* historical testing results for each arm
« certainty equivalent updates for any pending tests

0.06 5319 1 (500) —
2 0.07 2 2170 3 (50)

3 0.01 1 8562 3(50)



Algorithm

e INnputs:
* passenger manifest at each port,
» port-specific testing constraints,
* historical testing results for each arm
« certainty equivalent updates for any pending tests

1 2 5349 14500y

0.06
2 0.07 0.05 2 2170 3 (50)
3 0.01 1 8562 3 (50)



Algorithm

e INnputs:
* passenger manifest at each port,
» port-specific testing constraints,
* historical testing results for each arm
« certainty equivalent updates for any pending tests

1 2 5349 14500y

0.06
2 0.07 0.05 2 2170 3 (50)

3 0.01 1 8562 3 (50) —

Back to allocation




Allocations in a Batch

» Exploration & exploitation within a batch

Test Allocation vs Arrivals

(Anonymized)

Country/City ldentities Anonymized

tested
untested



Part Il: Evaluation



Benefits: Infections Caught vs.
Random Survelllonce

No. Infections Caught (Anonymized)

Season
Peak
Off-Peak

Improvement
1.85x
1.36x

Eva

Random
Surveillance

Sep

Oct

T
Nov

* Model md_pendent counterfactual
analysis via off-policy learning

» Peak Season (Aug 6 — Sept 30)

Random Surveillance identifies 54.1%
(+8 7%) of the infections Eva identifies

+ Performance improves as testing is
more scarce

Random Surveillance needs 1.85X the testing capacity to
achieve same performance!

37



daily_ratio
N

Improvement vs. Testing Scarcity

frac_tested

2-3X

when arrivals >> tests

With 7500 at the border

15,000-22,500 tests

More than capacity of the country.




Benefits: Infections Caught vs. “Smart”

No. Infections Caught (Anonymized)

Survelllance

Method

Peak

Off-Peak

Aug

Cases  1.45x 1.09x ° < /-/
Deaths  1.37x  1.13x oo s
Positivity ~ 1.25x 1.14x oo o //.
D
LN ) ,.
. // !
Eva > o !
7
7
7/
L) L) {
>4
Ve
, L] L]
/ L]
/ e [ _J
Sep Oct Nov
Cases Deaths == : Eva Positivity

Policies based on Common
Epidemiological Data

* A whole HOST of data reliability issues

« Performance ranges from: 69.0% (£9.4%)
to 79.7% (x9.3%) of Eva’s Performance

“Smart” Surveillance needs 1.25-1.45X the testing
capacity to achieve same performance!

Why? (See paper for details)

+ Systematic differences between general
population/ asymptomatic traveler
population

» Country-specific idiosyncrasies in testing
protocols

» Reporting Delays

39



Ineffectiveness of public data

Reported Cases vs Risk Estimation
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Ineffectiveness of public data

Hypothesis testing
>0.5% ?




Ineffectiveness of public dato

Data Used in Training/Testing

14-day average of cases per million, and
deaths per million

Hypothesis testing
>0.5%?




Ineffectiveness of public dato

1

Data Used in Training/Testing

14-day average of cases per million, and
deaths per million

14-day average of cases per million, deaths
per million, tests per thousand and reported
positivity rate

Hypothesis testing
>0.5%?




Ineffectiveness of public dato

Hypothesis testing

14-day average of cases per million, and o/ 2
deaths per million >0.5%

14-day average of cases per million, deaths
per million, tests per thousand and reported
positivity rate

14-day time-series of cases per million and
deaths per million

1




Ineffectiveness of public dato

Hypothesis testing

14-day average of cases per million, and o/ 2
deaths per million >0.5%

14-day average of cases per million, deaths
per million, tests per thousand and reported
positivity rate

14-day time-series of cases per million and
deaths per million

14-day time-series of cases per million,
deaths per million, reported positivity rate,
and tests administered per thousand

1




Ineffectiveness of public data

Data Used in Training/Testing

14-day average of cases per million, and
deaths per million

14-day average of cases per million, deaths
per million, tests per thousand and reported
positivity rate

14-day time-series of cases per million and
deaths per million

14-day time-series of cases per million,
deaths per million, reported positivity rate,
and tests administered per thousand

14-day time-series of cases per million,
deaths per million, positivity rate, tests per
thousand, country fixed effects

1

Hypothesis testing
>0.5%?




Ineffectiveness of public data

Data Used in Training/Testing

14-day average of cases per million, and
deaths per million

14-day average of cases per million, deaths
per million, tests per thousand and reported
positivity rate

14-day time-series of cases per million and
deaths per million

14-day time-series of cases per million,
deaths per million, reported positivity rate,
and tests administered per thousand

14-day time-series of cases per million,
deaths per million, positivity rate, tests per
thousand, country fixed effects

True Positive Rate

Hypothesis testing
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Implications

» To estimate magnitude of true prevalence in fravelers

* There is no “one size fits all” rule based on cases, deaths, tests,
positivity.

« Country specific features must be included (e.g. Sun et al. (2020))

« Model based policies can be problematic (Ahn et al. (2021))

To ensure that the process is manageable and transparent, the proposal focuses on three
criteria, namely the 14-day cumulative COVID-19 case notification rate, test positivity rate,
and the testing rate. These criteria should then be applied to the different areas, ideally
Member States’ regions. Only areas with a testing rate of more than 250 COVID-19 tests per
100 000 population should be assessed according to these criteria, to ensure that sufficiently
robust data is available.

Model 2: AUC=0.523

Using these criteria, restrictions could be applied, if at all, to regions with a 14-day
cumulative COVID-19 case notification of 50 or more and a test positivity rate of 3% or
more. Restrictions could be applied to regions where the 14-day cumulative COVID-19 case
notification rate is more than 150 per 100 000 population even if the test positivity rate is
below 3%. The criteria and thresholds outlined are based on extensive discussions with and
data made available by Member States.



Lessons learned the hard way

 “pick your fights”: work within
practical constraints instead of
trying to redesign the
organization.

* People can be a different kind of
smart.

» Don’t be arrogant about tasks.
Sometime you will have to work
on the menial tasks.




Other Benefits of Evao

Sotirios Tsiodras, MD

» Chief Scientific Advisor, Greek COVID-19 Response
+ Member Scientific Advisory Forum European CDC
» President, Greek Infectious Disease Society

Eva used to efficiently allocate scarce testing
resources.

Prevalence estimates guided strategy beyond
targeting

» Reposition mobile testing units within country

Eva's estimates shared centrally with European Union
to shape travel policies across continent.




Thank you!
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Simple Network

Let’s think simple:

« 50% of agents have a low degree
« 50% of agents have a high degree

u(t+ 1) = (D) + (1= ()8, 1) A dy

Hr(t + 1) = p(®) + (1 — py(0)O@A, 1) A dy

H-agent infection probability, g ()

Targeting L
(Point A)
Targeting H&L

. (Perfect Test)
Targeting L

(Point B)
Targeting H&L
(Perfect Test)

Targeting H
(Point C)

I
0.1 0.2 0.3 0.4 0.5 0.6 0.7

L-agent infection probability, ur (1)

0.8

0.9

1



Insights and Results: Lags A

For each country classify whether
. 12
R (t) > mediang,mmer (R:(t"))
using cases in the period [t + ¢ — 14,t + ¢].
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So whate

Prevalence (Anonymized)
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1.85x — 2.01x

in peak season




