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4 questions about testing

1. Are perfect tests worth 
waiting for?

2. Is higher accuracy better 
for social welfare?

Why Perfect Tests May Not be Worth Waiting For: Information as a Commodity
(K.D.,  R. Randhawa, Published at Management Science FastTrack)
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4 questions about testing

3. How to use Data and Operations to mitigate 
pandemics: 
• a case study on border control

4. Can public data be used for effective 
mitigation at the border?
• not for defining travel protocols

COVID-19-EVA Executive 
Committee  (Greece)
• Kyriakos Mitsotakis, Prime Minister 
• Nikos Hardalias, Deputy Minister of 

Civil Protection
• Panagiotis Prezerakos, Secretary 

General of Public Health

Implementation and Supply 
chain
• 300 doctors and nurses
• 200 policemen and firemen
• 32 labs
• ~ millions visitors

Nature (2021)



Problem in hand

• Greece conservative approach:
• lockdown of different stringency levels March-May, 2020

• Tourism 25% GDP

• Economy heavily affected by lockdown
• Small IT sector
• Small manufacturing sector



Not really choice on if, choice on how

EU Council Recommendation on the temporary restriction on non-essential travel 
into the EU and the possible lifting of such restriction

Can be done effectively in a data driven way

Not effective advice



Pre-Summer 2020: Travel back in 
time…
• No vaccines available

• Testing was scarce
• Rapid tests unreliable 

• Especially for asymptomatic infections
• PCR testing requires specialized machinery

• 3-6 month lead time for new machines

• knowledge was limited
• How long after exposure until contagious?
• How long asymptomatic and contagious?
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WHAT WE THOUGHT
2020 WOULD LOOK 
LIKE

2020



Before we joined (before May 1st)

• Random testing at the border (1 in 10-15-open loop)

• Grey-listing (72-hour PCR test required) “as we go” based 
on 14-day notification rate.

• Red-listing practically unimplementable with arrivals ~
millions and GDPR constraints. 



Eva: System Overview
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Reinforcement Learning



Eva is more than a reinforcement 
learning algorithm!
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Reinforcement Learning



Eva is more than a reinforcement 
learning algorithm!
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• Which labs should serve which 
points of entry?

• How transport safely/quickly?

Designing the 
Testing Supply-Chain

Designing the 
Passenger Locator Form

• What information is 
epidemiologically relevant?

• What private information is too
invasive?

Reinforcement Learning

GDPR Compliance & EU 
Support



40 Points of Entry (PoE) / 32 Labs
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10%

20%

50%
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• How much testing capacity assign to 
each PoE?

• Which lab(s) should serve which PoE?

• Single-shot decision / no recourse
• Model as a mixed-binary optimization 

• (Some of the) Constraints
• Cannot exceed a lab’s daily processing 

capacity
• Lab/PoE must be close enough for 

twice-daily trips by logistics teams 

Some PoE and All Labs Omitted for Privacy



Operations
40 points 
of entry

300 medical 
professionals 

200 border agents

32
laboratories Policy 

recommendations(true prevalence of travelers)

Implications: Efficient Tracing, Zip-code level
risk evaluation

• Combining risk 
estimates, number of 
arrivals, destination 
zipcode -> added risk
per zip code

• Fast, efficient tracing 
using contact and 
destination 
information 

EVA team: Hamsa Bastani, Kimon Drakopoulos, Vishal Gupta

2
teams of 

engineers/IT
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Interplay of Operations Research and 
Artificial Intelligence

Success of one piece depends on 
the design of the other…
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Real-time data-driven solution to allocate limited testing resources

• Recommend who to test at the border.
• Identify hot-spots with high confidence to greylist

Expectations and Goals



In an ideal world

ES DE

• “Classic” multiarm bandit problem
• Estimation: Given current information → �̂�!(𝑡). 
• Allocation: 

• Exploitation: chose arm with largest �̂�!(𝑡). 
• Exploration: Maybe exists j, 𝑟!(𝑡)..> 𝑟"(𝑡)..

Popular Solutions:
• Upper Confidence Bounds (regret-order-optimal)
• Thomson Sampling (regret-order-optimal)
• Gittins Index (optimal but hard to calculate)



Our setting
• Types: countries (for now) 𝑘 ∈ {1, . . , 𝐾}

• Each passenger if tested 𝑋!~𝐵 𝑅! 𝑡

• True positivity of k-type, 𝑅! 𝑡 unknown (very) non-stationary process

• Decision: 𝑁!(𝑡) number of arms to “pull” from each arm 

• Goal: max ∑"#∑!$"% 𝐸[𝑇! 𝑡 ], 𝑇! 𝑡 ~ 𝐵𝑖𝑛(𝑅! 𝑡 , 𝑁! 𝑡 )

Fancy expression for 
“more tests to high-risk types”



Combinatorial Constraints

• I lied 𝑁' 𝑡 → 𝑁'((𝑡)

• 𝑁' 𝑡 = ∑(𝑁'((𝑡)

• Unfortunately:

• ∑!𝑁!&(𝑡) ≤ 𝐵& (budget)

• 𝑁!&(𝑡) ≤ 𝐷!&(t) (arrivals)



Estimation Challenges

I. Imbalanced data: ~1/1000 test positive
• How to distinguish 0.7% (risky) vs. 0.1% (safe) arms?
• Empirical Bayes approach -> fit common prior -> posterior update

II. High-dimensional features: origin city/country/gender etc..
• Lasso Regression to identify risky subtypes

No technical details



Empirical Bayes approach
• Natural split in groups:

• White-listed
• Grey-listed
• Black-listed*

• For each group common prior → 𝐵(𝛼, 𝛽)

• Naïve estimators: 𝑃!/(𝑃! +𝑁!)

• Fit 𝛼, 𝛽 →moment matching

• A𝒑𝒌 𝒕 : posterior based on 𝑃!, 𝑁!
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Arm Granularity
• Interpolate between country-level (coarse) vs. city-level (fine)
• 1000s of regions: cannot allocate 100s of tests to each region

• high variance

• ~100 countries: miss out on city-specific risk 
• high bias

• Most locations at country-level but isolate very risky cities

• Use LASSO regression to identify a sparse subset of cities that 
are particularly risky beyond conditioning on country (Bastani & 
Bayati ‘15)



Feature Selection

• Segment many cities from a country to a small # of arms

𝐶(, 𝐶), … , 𝐶* 𝐺(, 𝐺)

2
1.9

1.7

2.2

5

1.8

2.3
≈ 2 5LASSO

Back to estimation

𝑦! = ∑"#$% 𝛿"𝟏 𝑐 = 𝑐! �̂�"&' + ∑( 𝛿(𝟏 𝑓 = 𝑓! + 𝜖! .Formally:



Estimation Step
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Allocation Challenges
I. Nonstationary dynamics:

• Discard old data (Luo et al. 2018, Zhao et al. 2020)
• Exponential smoothing (Besbes et al. 2014)

II. Batched decision-making + Delayed feedback: 
• decide who to test at the start of each day. 7500 tests at once, 1-3 

days to get result. 
• Optimistic Gittins Index
• Certainty-Equivalent Pseudo Updates

III. “Combinatorial” Constraints:
• Dynamic matching of indexes to ports. 

No technical details



Too forward-looking?
• NO

• Change ~ 1-2 weeks (Non stationarity)
• Results delayed ~ 1-3 days
• “One Step Ahead”

• The optimistic Gittins index (Gutin & Farias 2016) with 1-step lookahead is
𝜆 = 𝔼 𝑅 𝑦 + 𝛾 ⋅ 𝔼 𝜆 − 𝑅 𝑦 6

• Intuition: Bayesian value if we play this arm for one step and then play optimally 
thereafter
• Bonus: simple fixed point equation for Beta distributions



Optimistic Gittins Index

• Step 1: Compute 𝜆* for each arm 𝑖
• Step 2: Pull arm

𝑖∗ = argmax
*

𝜆*

• Step 3: Update prior 𝑦* based on observed reward 𝑅,



Within a Batch

𝜆-

𝜆.

𝜆/

𝜆0

no update
• No new information 

between pulls

• Over-explore one 
arm while we are 
waiting for testing 
results (2 days)

ES DE IT US



Certainty Equivalent Update

• No new information 
between pulls
• but can “simulate” 

evolution

• Over-explore one 
arm while we are 
waiting for testing 
results (2 days)0 1

pd
f



Within a Batch

𝜆-

𝜆.

𝜆/

𝜆0

no update

ES DE IT US

• No new information 
between pulls

• Over-explore one 
arm while we are 
waiting for testing 
results (2 days)



Within a Batch
• Allocates estimated 

# of tests required to 
resolve uncertainty 
for arms with high 
variance

• Remaining tests 
allocated to arms 
with high mean 
reward

• Can simulate tests in 
“pipeline”

𝜆-1

𝜆.

𝜆/

𝜆0

Certainty-
equivalent update

Back to allocation



Combinatorial Constraints

𝜆!(𝑘)



Arm Passenger ID Port + Rem Tests

2 5319 1 (500)
2 2170 3 (50)

1 8562 3 (50)

… …

Algorithm

• Inputs: 
• passenger manifest at each port, 
• port-specific testing constraints, 
• historical testing results for each arm
• certainty equivalent updates for any pending tests

Arm Pseudo Gittins

1 0.06

2 0.07
3 0.01

… …



Arm Passenger ID Port + Rem Tests

2 5319 1 (500)
2 2170 3 (50)

1 8562 3 (50)

… …

Algorithm

Arm Pseudo Gittins

1 0.06

2 0.07
3 0.01

… …
• Inputs: 
• passenger manifest at each port, 
• port-specific testing constraints, 
• historical testing results for each arm
• certainty equivalent updates for any pending tests



Algorithm

Arm Pseudo Gittins

1 0.06

2 0.07 0.05
3 0.01

… …

Arm Passenger ID Port + Rem Tests

2 5319 1 (500)
2 2170 3 (50)

1 8562 3 (50)

… …

• Inputs: 
• passenger manifest at each port, 
• port-specific testing constraints, 
• historical testing results for each arm
• certainty equivalent updates for any pending tests



Algorithm

Arm Pseudo Gittins

1 0.06

2 0.07 0.05
3 0.01

… …

Arm Passenger ID Port + Rem Tests

2 5319 1 (500)
2 2170 3 (50)

1 8562 3 (50)

… …
Back to allocation

• Inputs: 
• passenger manifest at each port, 
• port-specific testing constraints, 
• historical testing results for each arm
• certainty equivalent updates for any pending tests



Allocations in a Batch

• Exploration & exploitation within a batch

Country/City Identities Anonymized

(A
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m
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d)

tested
untested

High Risk Low Risk



Part II: Evaluation



Benefits:  Infections Caught vs. 
Random Surveillance

37

• Model independent counterfactual 
analysis via off-policy learning

• Peak Season (Aug 6 – Sept 30)
• Random Surveillance  identifies 54.1% 

(±8.7%) of the infections Eva identifies
• Performance improves as testing is 

more scarce

Random Surveillance needs 1.85X the testing capacity to 
achieve same performance!
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Peak
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Off−Peak
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2-3X
when arrivals >> tests

With 7500 at the border 

15,000-22,500 tests 
More than capacity of the country. 

Improvement vs. Testing Scarcity



Benefits: Infections Caught vs. “Smart” 
Surveillance

39

Policies based on Common 
Epidemiological Data

• A whole HOST of data reliability issues
• Performance ranges from: 69.0% (±9.4%) 

to 79.7% (±9.3%)  of Eva’s Performance

Why? (See paper for details)
• Systematic differences between general 

population/ asymptomatic traveler 
population

• Country-specific idiosyncrasies in testing 
protocols

• Reporting Delays

Method

Cases

Peak

Deaths

Off−Peak

Positivity

1.45x

1.37x

1.25x

1.09x

1.13x

1.14x
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Cases Deaths Eva Positivity

Eva

“Smart” Surveillance needs 1.25-1.45X the testing 
capacity to achieve same performance!



Ineffectiveness of public data



Ineffectiveness of public data
Hypothesis testing

> 0.5% ?



Ineffectiveness of public data
Model Data Used in Training/Testing

1 14-day average of cases per million, and 
deaths per million

Hypothesis testing
> 0.5% ?
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Ineffectiveness of public data
Model Data Used in Training/Testing

1 14-day average of cases per million, and 
deaths per million

2
14-day average of cases per million, deaths 

per million, tests per thousand and reported 
positivity rate

3 14-day time-series of cases per million and 
deaths per million

4
14-day time-series of cases per million, 

deaths per million, reported positivity rate, 
and tests administered per thousand

5
14-day time-series of cases per million, 

deaths per million, positivity rate, tests per 
thousand, country fixed effects
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Implications
• To estimate magnitude of true prevalence in travelers 
• There is no “one size fits all” rule based on cases, deaths, tests, 

positivity. 
• Country specific features must be included (e.g. Sun et al. (2020))
• Model based policies can be problematic (Ahn et al. (2021))

Model 2: AUC=0.523



Lessons learned the hard way
• “pick your fights”: work within 

practical constraints instead of 
trying to redesign the 
organization.

• People can be a different kind of 
smart. 

• Don’t be arrogant about tasks. 
Sometime you will have to work 
on the menial tasks. 

• Most “real” projects can be 
politicized. Avoid personal 
publicity (at least until the paper 
is published). 

• Don’t work on tasks that are not 
related to your personal goals. It 
is ok to say NO. 

• High impact à High stress don’t 
ignore your emotional health.



Other Benefits of Eva

50

Sotirios Tsiodras, MD
• Chief Scientific Advisor, Greek COVID-19 Response 
• Member Scientific Advisory Forum European CDC
• President, Greek Infectious Disease Society

Eva used to efficiently allocate scarce testing 
resources.

Prevalence estimates guided strategy beyond
targeting
• Reposition mobile testing units within country
• Identify within country “hot-spots” based on traveler 

itineraries
• Guide contact tracing

Eva's estimates shared centrally with European Union 
to shape travel policies across continent.



Thank you!



Backup Slides



Simple Network

Let’s think simple:

• 50% of agents have a low degree 
• 50% of agents have a high degree 

result, the conditions of Propositions 2 and 3 are satisfied as time progresses for appropriate values

of β,λ, ρ. This dramatic difference between the rate of increase of µH(t) and µL(t) can be seen in

Figure 5, where the y-axis corresponds to µH(t) and the x-axis corresponds to µL(t).

Targeting H&L
(Perfect Test)

Targeting L
(Point B)

Targeting H&L
(Perfect Test)

Targeting L
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(Point C)

L-agent infection probability, µL(t)
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Figure 5: Optimal operating point for a test over the duration of an epidemic for different dH/dL
values. Each path (marked with arrows) represents the optimal test at each time instant as the
epidemic evolves; it starts with near-zero infection probability (near origin) and terminates with all
agents infected (1,1). The multiple curves differ in dH/dL and are arranged in monotone order with
the 45-degree line corresponding to dH/dL = 1 and the top-most path having the highest dH/dL
ratio.

Figure 5 depicts the evolution of the epidemic over time, starting with a near-zero infection

probability for both agent types and terminating with all agents infected with certainty. Different

paths represent different primitives, and specifically different agent degree ratios dH/dL. The paths

are placed in monotone order, with the smallest dH/dL ratio equal to unity corresponding to the

45-degree line on which the agent types are essentially identical and thus have identical progression

of infection probability. Let us consider the top-most curve, which has the highest asymmetry

between the agent types. As the epidemic starts, the high-degree agents are those with the highest

probability of infection, and the low-degree agents are still at smaller levels. Hence, the optimal

test is to operate at point C (in Figure 3(a)) and to target H-agents. At this operating point,

the test has a 100% true positive rate, but a strictly positive false positive rate, which dissuades

L-agents from taking up the scarce testing resources. As the epidemic progresses and both agent

25



Insights and Results: Lags
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So what?

+ 1.85x → 2.01x
in peak season=

Healthier population Less arrivals
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