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Introduction
‣ What I’ll attempt to do in this talk: 

‣ Explain practical epidemic-related problems from a “statistics” perspective


‣ Tie them with different perspectives that we’ve seen so far in the workshop


‣ Try and sketch out potential avenues of research for Statistics and Epidemiology

Introduction and Motivation
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The very wide field of Mathematics for Epidemics
A very brief outlook on this week

‣Vast literature on Epidemics Models using deterministic models 

‣ Classical SIR/ SEIR/SIS models as building blocks


‣ Added complexity to accommodate the modelling of interventions, or virulence


‣ Stochastic versions to accommodate for the randomness of the process, but can be 
costly to estimate


‣ Contributions from other fields (e.g. economics): adding behavioural components, 
incentives, interventions, etc.


➡ Purpose of these models: understand population-level mechanisms underpinning 
disease propagation, effect of interventions, etc. given disease parameters

Introduction and Motivation

3



A Statistical outlook
Inference on epidemics data

Consider now the problem of estimating disease parameters. 

Countless statistical challenges:


• Huge amounts of pre-processing involved (e.g. smoothing out the weekend 
effects)


• Missing data: we do not observe the contact graph or covariates of interest


• Biases and heterogeneity in epidemics dynamics (e.g. reproductive number) 
depending on counties, communities, etc.


• Data integration and data sources of varying quality

Introduction and Motivation
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Talk outline
Statistical challenges in analysing Network Data

I. How to model heterogeneity and variability in epidemic parameters?


II. How to percolate uncertainty in predictions?


III. A case for better model evaluation techniques

Introduction and Motivation

5



Heterogeneity and the Reproduction number
‣ Simple SIR/SIS models:


 
 




              or, other interpretation: 


 
 
Pb: uniform mixing assumption does not capture well enough the complexity of 
the disease propagation 

·S = − βSI·I = βSI − γI·R = γI

R0 =
β
γ

R0 = 𝔼[nb of secondary infections] = c̄τDI

How to model heterogeneity and variability in epidemic parameters?
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Where  is the average number of contacts, 

 is the transmission rate, and 

  is the duration of the infectious period.

c̄
τ
DI



Objective: 


Devise a model simple enough to provide meaningful inference given the limited 
data


BUT realistic enough to capture key underlying virus dynamics and 
epidemiological states.

How to model heterogeneity and variability in epidemic parameters?

Heterogeneity and the Reproduction number

Source:  Suen, Sze-chuan, Jeremy D. Goldhaber-Fiebert, and Margaret L. Brandeau. "Risk stratification in compartmental epidemic models: Where to draw the line?." Journal of 
theoretical biology 428 (2017): 1-17.
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‣ Intrinsic variability in the reproduction number: 
 
Option 1: “Explain away” the 
heterogeneity through the use 
of covariates 
 
 
 

How to model heterogeneity and variability in epidemic parameters?

Heterogeneity and the Reproduction number
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‣ For instance: breaking down the  into different categories. 
E.g Stratify by age groups





Other possibilities: gender, current health status, risk behaviours or other risk factors

R0

Figure from Balabdaoui, Fadoua, and Dirk Mohr. "Age-stratified discrete compartment model 

of the COVID-19 epidemic with application to Switzerland." Scientific reports 10.1 (2020): 1-12.

Heterogeneity and the Reproduction number
How to model heterogeneity and variability in epidemic parameters?
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‣ Intrinsic variability in the reproduction number: 
 
Option 1: “Explain away” the 
heterogeneity through the use 
of covariates


‣ Hierarchical models


‣ Regressions models[1] 
 

where  is the  contagiousness of  
the individual, and  are individual  
characteristics that account for  
additional heterogeneous effects of  
susceptibility 
 

log βijt = log(β) + ηi(t) + bT
S xj

ηi
xj

[1] From Bu, Fan, Allison E. Aiello, Alexander Volfovsky, and Jason Xu. "Likelihood-based inference for partially observed stochastic epidemics with individual heterogeneity." 

     arXiv preprint arXiv:2112.07892 (2021).. 

Heterogeneity and the Reproduction number
How to model heterogeneity and variability in epidemic parameters?
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‣ More than uncertainty, there is intrinsic variability in the reproduction number: 
 
Option 1: “Explain away” the heterogeneity through the use of covariates


‣ Hierarchical models


‣ Regressions models[1] 



‣ Adding a network structure to explain away the variability in transmission 
across individuals 
 

log βijt = log(β) + ηi(t) + bT
S xj

[1] From Bu, Fan, Allison E. Aiello, Alexander Volfovsky, and Jason Xu. "Likelihood-based inference for partially observed stochastic epidemics with individual heterogeneity." 

     arXiv preprint arXiv:2112.07892 (2021).. 

Heterogeneity and the Reproduction number
How to model heterogeneity and variability in epidemic parameters?
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‣ More than uncertainty, there is intrinsic variability in the reproduction number: 
 
Option 1: “Explain away” the heterogeneity through the use of covariates. 
But:


‣ Inaccessible information (eg. Contact network, individual 
characteristics)


‣ How much “explanation” is enough? 
 

[1] From Bu, Fan, Allison E. Aiello, Alexander Volfovsky, and Jason Xu. "Likelihood-based inference for partially observed stochastic epidemics with individual heterogeneity." 

     arXiv preprint arXiv:2112.07892 (2021).. 

Heterogeneity and the Reproduction number
How to model heterogeneity and variability in epidemic parameters?
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‣ Another huge hurdle: Identifiability of the different parameters 
 
A model is identifiable if we can determine the values of its parameters from 
knowledge of its inputs and outputs. 
 
If a model is non-identifiable (or non-observable) different sets of parameters (or 
states) can produce the same predictions or fit to data. 
 
For COVID-19, non-identifiability in model calibrations was identified as the 
main reason for wide variations in model predictions [1, 2].

How to model heterogeneity and variability in epidemic parameters?

Heterogeneity and the Reproduction number

Sources: 

[1] Massonis, Gemma, Julio R. Banga, and Alejandro F. Villaverde. "Structural identifiability and observability of compartmental models of the COVID-19 pandemic." Annual 
reviews in control 51 (2021): 441-459.

[2] Roda W.C., Varughese M.B., Han D., Li M.Y. Why is it difficult to accurately predict the COVID-19 epidemic? Infectious Disease Modelling. 2020;5:271–28113



‣ Two types of identifiability:


‣ Structural Identifiability: due to the model and measurement (input–
output) structure


‣ Practical Identifiability: lack of information in datasets

The identifiability issue
How to model heterogeneity and variability in epidemic parameters?

Sources: 

[1] Massonis, Gemma, Julio R. Banga, and Alejandro F. Villaverde. "Structural identifiability and observability of compartmental models of the COVID-19 pandemic." Annual 
reviews in control 51 (2021): 441-459. 14



‣ Source: Identifiability of Infection Model 
Parameters Early in an Epidemic: Timothy 
Sauer, Tyrus Berry, Donald 
Ebeigbe, Michael M. Norton, Andrew J. 
Whalen, and Steven J. Schiff, SIAM 
Journal on Control and 
Optimization 2022 60:2, S27-S48


‣ For simple SEIR models, the 
model is structurally identifiable 
from the number of infections , 
as long as the peak of the 
epidemic can be observed

It

How to model heterogeneity and variability in epidemic parameters?

The identifiability issue
Example
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https://epubs.siam.org/doi/abs/10.1137/20M1353289
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Dealing with the identifiability issue
Two options

‣ Option 1 (a):  Resort to a simpler compartmental model? 
 
“Reducing the model dimension in this way may achieve observability and 
identifiability.”[1]


‣ Option 1 (b): Use information from other studies to impute some of the 
parameters of the model. 
 
 

[1]From Identifiability of Infection Model Parameters Early in an Epidemic: Timothy Sauer, Tyrus Berry, Donald Ebeigbe, Michael M. Norton, Andrew J. Whalen, 
and Steven J. Schiff, SIAM Journal on Control and Optimization 2022 60:2, S27-S48

How to model heterogeneity and variability in epidemic parameters?
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‣ Option 1:  Resort to a simpler compartmental model? 
 
“Reducing the model dimension in this way may achieve observability and 
identifiability.”[1] 

   Option 2: Adopt a Bayesian perspective. 

‣ Convenience: Circumvents the identifiability issues by adding priors


‣ “Adapted”: Maybe more philosophically in line 

[1] From Bu, Fan, Allison E. Aiello, Alexander Volfovsky, and Jason Xu. "Likelihood-based inference for partially observed stochastic epidemics with individual heterogeneity." 

     arXiv preprint arXiv:2112.07892 (2021).. 

Dealing with the identifiability issue
Two options

How to model heterogeneity and variability in epidemic parameters?
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A primer on Bayesian Statistics
The Bayesian Paradigm

‣ Consider now all parameters of our model as random 
variables: 




‣ All parameters  are themselves considered as 
random variables


‣ The goal is to find the “posterior” for the model parameters 
given the data.

ℙ[θ |X] ∝ ℙ[X, θ]ℙ[θ]

(β, ϵ, ρ, μ, d)
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 The reproduction number as a random variable?



A Bayesian Compartmental Model
An example of Bayesian Analysis

• Consider the following Bayesian  
Model 
 

 

 
 
 

 

➡ Extension of the model by Cori et al [1] 

Xtg ∼ Poisson(R(g)
t−1

∑
s=1

wsXg,t−s)

cg ∼ Γ(2,1)
τ ∼ β(1,39)
R(g) = cgτDI

 The reproduction number as a random variable?
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[1] Cori A., Ferguson N.M., Fraser C., Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am. J. 
Epidemiol. 2013;178(9):1505–1512. 



A Bayesian Compartmental Model
An example of Bayesian Analysis

‣ Consider the following Bayesian  
Model 
 

 

 
 
 

 
where  is the number of contacts in group ,  is the probability of transmission per 
contact, and  is the infection period. 

Xtg ∼ Poisson(R(g)
t−1

∑
s=1

wsXg,t−s)

cg ∼ Γ(2,1)
τ ∼ β(1,39)
R(g) = cgτDI

Cg g τ
DI

 The reproduction number as a random variable?
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Distribution of the recovered spatial reproduction numbers R for the spatial Random-Effects Model
21

 The reproduction number as a random variable?
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 The reproduction number as a random variable?



Consequences

‣ Might yield different consequences in terms of predictive scenarios


‣ Consider the following synthetic experiments: 
 

 
 
Assume now that  is a random 
variable, with expected value  

 and  
finite variance. 

Xt+1 = Poisson(RXt)

R

R0 = 𝔼[R]

Modelling R as a random variable

Results over 40,000 simulations23

 The reproduction number as a random variable?



‣ Conclusion: Severe 
differences in confidence 
bounds


‣ Increased chances of 
rare events compared to 
using a constant, 
average .R0

Modelling R as a random variable
Consequences
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Stopping time till 5,000 deaths.

 The reproductive number as a random variable?
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Open-ended questions

‣What to make of this reproduction number? 

‣ Does it abide to the “R as a threshold” rule?


‣What are reasonable sets of priors? 

‣ How can we best evaluate prior sensitivity?


‣ Can we deploy non-parametric statistics methods to circumvent the 
need for prior specification?

Modelling R as a random variable
 The reproductive number as a random variable?
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Other Examples of Bayesian analyses
Extension of our model

‣ Extension of our work in Johnson et al [1] 

 The reproductive number as a random variable?
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Johnson, Kory D., et al. "Disease momentum: Estimating the reproduction number in the presence of superspreading." Infectious Disease Modelling 6 (2021): 706-728.



Other Examples of Bayesian analyses
Extension of our model

‣ Proposed extension using empirical Bayes:


‣ Modifies previous seasons’ curves


‣ small set of transformations to construct a probability distribution for 
the underlying level of ILI this season 

 The reproductive number as a random variable?
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Brooks, Logan C., David C. Farrow, Sangwon Hyun, Ryan J. Tibshirani, and Roni Rosenfeld. "Flexible modeling of epidemics with an empirical Bayes framework." PLoS 
computational biology 11, no. 8 (2015): e1004382.




II. Evaluating Uncertainty
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Of The Importance of Correctly capturing uncertainty
Case study: Data-Driven Practical Problems

Example: Risk Simulator for informing Live Events Management — CAPACITY study: 

•Partnership between Certific (a private, remote testing certification service) and Imperial 
College London


•Goal:  

•predict and measure the outcomes of full capacity live events while ensuring 
rigorous implementation and alignment to current public health and recommended 
safety measures.


•Provide a streamlined and efficient pre-event screening protocol of all ticket holders


 Evaluating Uncertainty

29



Of The Importance of Correctly capturing uncertainty
Case study: Data-Driven Practical Problems
Example: Consider the case of an event at the Royal Albert Hall 

• Capacity: 5000 in the main concert hall, which has a volume of 86,650 m3 


• Dwell time of 3 hours.


•  Attendees will be assumed to be a cross-section representative of the general British public and will be 
required to have a negative COVID-19 antigen test result within 2 days prior to the event, as well as 
satisfying other self-declared symptoms and exposure-risk questions. 


• Vaccination status would be requested, but not required, for attendance, and full compliance with mask 
wearing was assumed in our default example  

Can we try and estimate — say 4 weeks in advance — the risk of the event?


Can we try and quantify the effect of a screening protocol?


 Evaluating Uncertainty
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Case Study: CAPACITY study
Pipeline for our modelling task

31

 Evaluating Uncertainty



Case Study: CAPACITY study
Stage 1: Trajectory prediction

Projected incidence (average and 95% prediction interval)  
using a 100-nearest neighbour approach, which provides good  
coverage (observed trajectory lies within the 95% prediction  
interval). The black line denotes observed incidence rates,  
while the red denotes the predicted rates, based on an initial  
period of observation of 14 days; the prediction interval for the  
predicted incidence over the next 4 weeks is highlighted in dark 
 grey.

32
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Viboud C, Boëlle PY, Carrat F, Valleron AJ, Flahault A. Prediction of the spread of influenza epidemics by the method of analogues. American Journal of Epidemiology. 2003; 
158(10):996–1006. doi: 10. 1093/aje/kwg239 PMID: 14607808



Case Study: CAPACITY study
Stage 2: predicting the “escape” rate

(A) Density of the COVID-19 incubation time and percentage culture positive and (B) probability that an individual is infectious (light grey), 
that the screening protocol will miss them (black), and that they will be missed and so attend the event (red) as a function of days since 

infection. The shaded regions denote the uncertainty of this estimate due to the uncertainty on the sensitivity of the test.
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Case Study: CAPACITY study
Stage 3: Modelling contagion dynamics within the auditorium

34

 Evaluating Uncertainty

Jimenez Aerosol Transmission model (based on the Wells-Riley model)


‣ Used several times throughout the course of the pandemic, including to allow 
in-class teaching at UIC


‣ Estimator calibrates the quanta to known transmission events and considers 
important factors to compute a risk estimate, including event-specific (eg, 
number of people, local prevalence) and venue-specific (ventilation rate, size 
of the venue, UV exposure) variables. 

Elbanna A, Wong G, Weiner Z, Wang T, Zhang H, Liu Z, et al. Entry screening and multi-layer mitigation of COVID-19 cases for a safe university reopening. medRxiv.  



Case Study: CAPACITY study
Stage 3: Modelling contagion dynamics within the auditorium
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 Evaluating Uncertainty

Jimenez Aerosol Transmission model (based on the Wells-Riley model):


‣ Used several times throughout the course of the pandemic, including to allow in-class teaching at 
UIC


‣ Estimator calibrates the quanta to known transmission events and considers important factors to 
compute a risk estimate, including event-specific (eg, number of people, local prevalence) and 
venue-specific (ventilation rate, size of the venue, UV exposure) variables. 


‣ Probability of infection is defined as: 
 

 
where    the number of infectors,    is the pulmonary ventilation rate of a person,    is the 
quanta generation rate,   is the exposure time interval, and   is the room ventilation rate with 
clean air 

PI = 1 − e− nIqpt
Q

nI q p
t Q

Elbanna A, Wong G, Weiner Z, Wang T, Zhang H, Liu Z, et al. Entry screening and multi-layer mitigation of COVID-19 cases for a safe university reopening. medRxiv.  



Predictions

Event August 20, 2020  
median, mean  

(99% CI)

January 20, 2021, 
median, mean  

(99% CI)

March 20, 2021, 
 median, mean 

(99% CI)

No mask wearing,  
3 hours, n=5000

0, 0.3 (0-4) 5, 9.9 (0-76) 1, 2.4 (0-21)

50% mask wearing,  
3 hours, n=5000

0, 0.2 (0-3) 3, 5.5 (0-40) 1, 1.3 (0-13)

100% mask wearing,  
3 hours, n=5000

0, 0.1 (0-1) 1, 2.4 (0-19) 0, 0.7 (0-6)

100% mask wearing,  
1.5 hours, n=5000

0, 0.04 (0-1) 0, 1.4 (0-10) 0, 0.4 (0-3)

100% mask wearing,  
3 hours, n=2500

0, 0.2 (0-1) 0, 0.9 (0-8) 0, 0.2 (0-3)

Table . Effect of different input parameters on the quantiles of the number of infections for an 
event at the Royal Albert Hall across all 3 dates.
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Case Study: CAPACITY study



‣ A lot of data integration:


‣ Integrating data from multiple studies (e.g. vaccination data, efficiency, 
mask efficiency, incubation period, infectiousness duration, etc)


‣ Merging with existing model on transmissions


‣ We tried to adopt the model that would give us “the most conservative” 
estimates of new infections


➡ A LOT of different components

Diagnostic of our approach
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‣ A lot of data integration:


‣ Integrating data from multiple studies (e.g. vaccination data, efficiency, 
mask efficiency, incubation period, infectiousness duration, etc)


‣ Merging with existing model on transmissions


➡ A LOT of different components


➡ We need to keep track of the uncertainty

Diagnostic of our approach
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‣ Keeping track of uncertainty:


‣ Option 1: Sensitivity analysis 
BUT: 
    - becomes difficult as the number of parameters increases 
    - risk needs to be compounded across parts of the pipeline

How to keep track of uncertainty

39
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‣ Keeping track of uncertainty:


‣ Option 1: Sensitivity analysis 
BUT: 
    - becomes difficult as the number of parameter increases 
    - risk needs to be compounded across parts of the pipeline


‣Option 2: Model everything as random and run simulations 
Allows uncertainty to percolate

How to keep track of uncertainty
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Evaluating Uncertainty in Epidemics Models

‣ Problem: 


‣ how to choose adequate priors for all my variables?


‣ Coverage guarantees? (Ie, do I know that my confidence interval is valid)

41
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How to keep track of uncertainty



Currently, in the literature: Alternative approaches

‣ Neural Network (?!) based approaches 
Kamarthi, Harshavardhan, Lingkai Kong, Alexander Rodríguez, Chao Zhang, and B. Aditya Prakash. "When in doubt: Neural non-parametric 
uncertainty quantification for epidemic forecasting." Advances in Neural Information Processing Systems 34 (2021): 19796-19807.


‣ Polynomial chaos expansion of the output random variables 
PCE is a probabilistic method consisting in the projection of the model output on a basis of 
orthogonal stochastic polynomials in the random input.


‣ Susceptible to the curse of dimensionality?


‣ New methods in Statistics?


‣ Quantile Regression?


‣ Conformalized Quantile Regression

42
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III. Model Validation
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Model Validation, Model Selection
“All models are wrong, some are useful”

‣ We need better measures to evaluate and compare models


‣ AIC/ BIC based measure to evaluate model fit.


‣ Difficult to fit data:


‣ Strong autocorrelations          MSE is a biased estimate of the error


‣ Data is not stationary.         Thinning is difficult    


‣ It is notoriously difficult to estimate upticks in the pandemic

44

Goodness of fit and Model Validation



Conclusion

‣ Several huge challenges in statistics applied to epidemiology:


‣ Design of robust inference models for epidemics parameters


‣ Valid uncertainty confidence (or credible) intervals


‣ Design of better evaluation strategies
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