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• Testing is one of the most effective ways of 
combating the pandemic:


• It alerts infected individuals to treat faster


• It minimizes the spread of virus with 
isolation 


• It identifies people who came into contact 
with infected individuals


• Reduces asymptomatic transmission 

Introduction
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• Absent the strategic behavior of individuals, increasing the testing capacity 
helps to identify and isolate new cases and to control pandemic

Introduction

• By increasing the testing, individuals will be less cautious, leading to an 
increase in their social activity

Is there a downside to increasing testing?

• This can potentially offset the impact of increasing the testing and can 
make the individuals worse off
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Introduction

• Another important instrument to control a 
pandemic is (mandatory) social distancing  

Testing Social distancing

How should testing be combined with 
social distancing?
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In this talk
• We develop a game-theoretic model to study these issues:
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• We model social activity and voluntary social distancing as a network formation problem:

• Individuals decide about their social activity level, which determines a contact network 
over which the virus spreads

• We use a discrete time process to model the spread of a virus over the endogenous contact 
network. This choice is for tractability


• Testing enables the isolation of infected individuals, slowing down the infections

• We characterize the equilibrium activity level of individuals for any given testing policy 

• We then study the impact of testing policy on the equilibrium outcome and characterize the 
optimal testing policy



Main results
• Greater testing can lead to more social activity (less social distancing) and thus a 

denser social network


• For a range of parameters, paradoxically, greater testing increases infections
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in order to avoid adverse effects on social distancing



Main results
• Greater testing can lead to more social activity (less social distancing) and thus a 

denser social network


• For a range of parameters, paradoxically, greater testing increases infections


6

• Testing should be combined with mandatory social distancing to avoid these 
adverse behavioral effects 

• The optimal testing policy may leave some of the testing capacity of society unused 
in order to avoid adverse effects on social distancing



Related literature
• Endogenous social network formation


• Jackson and Wolinsky 96, Bala and Goyal 00, Newman et al. 01


• We use a simple model in which probability of connection is proportional 
to the product of social activities


• Precautionary tools increase risk-taking and can have adverse effects


• Peltzam 75 in the context of hydraulic breaks and Lakdawalla et al. 06 in 
the context of HIV treatments


• Recent literature on epidemics and COVID-19


• Farboodi et al. 20, Drakopoulos and Randhawa 20, Birge et al. 20, 
Zhang and Britton 22, Alimohammadi et al. 22, Bastani et al. 21, etc.
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• There are  agent types with different values for social activity


• Let us consider two types with , called low-value and high-value types


• Let us denote the set of high and low-value agents by  and 
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• A virus infects a uniformly random individual and then spreads 
according to an extended independent cascade model
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Model
•  individuals represented by  n 𝒱 = {1,⋯, n}
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j

n
xi

• Each individual  decides about her level of social activity 


•  determines the probability of connecting to others

i xi ∈ [0,1]

xi

• There are  agent types with different values for social activity


• Let us consider two types with , called low-value and high-value types


• Let us denote the set of high and low-value agents by  and 

k

0 ≤ vL < vH ≤ 1

ℋ ℒ

• Testing policy : High and low-value individuals are tested 
with probabilities  and , respectively

(αL, αH)
αL αH ∈ [0,1]
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Contact network
• The social activity profile  generates a contact network  wherex = (x1, …, xn) G = (𝒱, E)

ℙ(Eij = Eji = 1) = ηxixj
1 2

i

j

n

ηxixj
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Contact network
• The social activity profile  generates a contact network  wherex = (x1, …, xn) G = (𝒱, E)

ℙ(Eij = Eji = 1) = ηxixj

• This captures activities in which individuals interact with each other such as playing 
basketball, going to a restaurant, going to the office, shopping, etc.


• It does not capture individuals going for activities such as hiking, biking, etc.

1 2

i

j

n

ηxixj
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Spread of infection
• One of the individuals uniformly at random becomes infected and the infection spreads to others 

over the contact network via an extension of independent cascade model of Kempe et al. 2015:
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Spread of infection
• One of the individuals uniformly at random becomes infected and the infection spreads to others 

over the contact network via an extension of independent cascade model of Kempe et al. 2015:
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• At time , individual , chosen uniformly at random, gets infected0 s ∈ 𝒱

• An infected and not tested (and therefore not isolated) individual is active for one round and 
transmits infection to her neighbors with transmission probability 
β ∈ (0,1]

• An infected and tested individual will be isolated. However, before 
the isolation takes place, she is active and can still transmit infection 
to her neighbors with transmission probability , where βp p ∈ [0,1)

• An active individual remains active for one round
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Spread of infection
• From active agents, the infection simultaneously and independently transmits to each 

of their uninfected neighbors


• If an uninfected agent is neighbor to multiple infected individuals, then the 
infection is transmitted to this agent in an order-independent fashion
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Spread of infection
• From active agents, the infection simultaneously and independently transmits to each 

of their uninfected neighbors


• If an uninfected agent is neighbor to multiple infected individuals, then the 
infection is transmitted to this agent in an order-independent fashion
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n

1 − (1 − β)(1 − βp)
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• : The expected infection probability of individual  
in the random network of contacts for social activity profile  and 
testing policy 

ℙinf
i (x, αL, αH) i

x
(αL, αH)



Utility of agents
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Utility of agents

• Expected utility of agent :i
ui(x, αL, αH) = vixi − ℙinf

i (x, αL, αH) − c (αL1{i ∈ L} + αH1{i ∈ H})

Individuals value 

social interaction Individuals incur 


a cost when infected
A possibly small 

cost of testing
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Infection probability
Lemma

• Monotonicity in action profile: For any ,  for i ∈ 𝒱 ℙinf
i (x̂, αL, αH) ≥ ℙinf

i (x, αL, αH) x̂ ≥ x

• Higher social activity implies more connections and higher infection probability


13



Infection probability
Lemma

• Monotonicity in action profile: For any ,  for i ∈ 𝒱 ℙinf
i (x̂, αL, αH) ≥ ℙinf

i (x, αL, αH) x̂ ≥ x

• Higher social activity implies more connections and higher infection probability


• Concavity in action profile: For any ,  is concave in 
i ∈ 𝒱 ℙinf
i (x, αL, αH) xi

• The marginal increase in the infection probability decreases as the social activity increases


13



Infection probability
Lemma

• Monotonicity in action profile: For any ,  for i ∈ 𝒱 ℙinf
i (x̂, αL, αH) ≥ ℙinf

i (x, αL, αH) x̂ ≥ x

• Higher social activity implies more connections and higher infection probability


• Concavity in action profile: For any ,  is concave in 
i ∈ 𝒱 ℙinf
i (x, αL, αH) xi

• The marginal increase in the infection probability decreases as the social activity increases


• Monotonicity in testing probability: For any ,  for i ∈ 𝒱 ℙinf
i (x, α′ L, α′ H) ≤ ℙinf

i (x, αL, αH)
(α′ H, α′ L) ≥ (αH, αL)

• Higher testing probability implies a lower infection probability


13



Infection probability
Lemma

• Monotonicity in action profile: For any ,  for i ∈ 𝒱 ℙinf
i (x̂, αL, αH) ≥ ℙinf

i (x, αL, αH) x̂ ≥ x

• Higher social activity implies more connections and higher infection probability


• Concavity in action profile: For any ,  is concave in 
i ∈ 𝒱 ℙinf
i (x, αL, αH) xi

• The marginal increase in the infection probability decreases as the social activity increases


• Monotonicity in testing probability: For any ,  for i ∈ 𝒱 ℙinf
i (x, α′ L, α′ H) ≤ ℙinf

i (x, αL, αH)
(α′ H, α′ L) ≥ (αH, αL)

• Higher testing probability implies a lower infection probability


13

These three are the main 
properties that we use in 

the analysis!



For an exogenous social activity profile, increasing the testing 
probability, decreases the infection probability
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For an exogenous social activity profile, increasing the testing 
probability, decreases the infection probability

How about in equilibrium when individuals choose their social activity 
endogenously?
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action, her type, and her network position and not her index
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, i = l, h}
• As we decrease , one of the constraints of  will be violated


• The constraint corresponding to low-value agents violate first


• There is no symmetric pure equilibrium


(αL, αH) 𝒜1

• Solution concept: symmetric equilibrium where the action of each agent depends on, others’ 
action, her type, and her network position and not her index
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1
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ℙinf
h (xℋ = 1, xℒ = 0, αL, αH) ≤ vH +

1
n }

• Such an equilibrium exist in the set

• The mixed-strategy for low-value agents exists because of the first two constraints (mean-value 
theorem) and is given by

vL − ℙinf
l (xℋ = 1, xl = 1,xℒ∖{l} = γL(αL, αH), αL, αH) = −

1
n

xi = {1  w.p. γL(αL, αH)
0  w.p. 1 − γL(αL, αH)16



Equilibrium characterization
Proposition
There exist functions  and  and regions  
such that, for sufficiently large , there are four possibilities for the equilibrium:

γL : [0,1]2 → [0,1] γH : [0,1]2 → [0,1] 𝒜1, …, 𝒜4
n

Equilibrium actions: (high-value, low-value)

αL

αH

1

1

0
0
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l (xℋ = 1, xl = 1,xℒ∖l = 1γL(αL, αH), αL, αH) = vL +

1
n
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Greater testing increases the infection probability in regions  and  that we have mixed-
strategy equilibrium

𝒜2 𝒜4
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• Let us consider region  in which greater 
testing increases the infection probability


• In this region, low-values play  and high-values 
play mixed
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who are mixing to go to full activity
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• In this region the pure strategy full activity 
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• Greater testing incentivizes high-value agents 
who are mixing to go to full activity


• In equilibrium the incentives for mixing is 
restored by increasing the infection probability

• In this region the pure strategy full activity 
is not equilibrium




So far, we characterized the equilibrium and the impact of testing on it 
for  agent typesk = 2
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So far, we characterized the equilibrium and the impact of testing on it 
for  agent typesk = 2

How about  agent types?k > 2
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equilibrium
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Extension to  typesk > 2
• For  user types , there are  regions that characterize the 

equilibrium
k v1 < v2 < … < vk 2k

Example: Infection probability as a function of testing probabilities for k = 3

Infection probability of type 2
Infection probability of type 3

v1v1

A1A1A2A2A3A3A4A4A5A5A6A6

Infection probability of type 1

α1 = α2 = α3 = αα1 = α2 = α3 = α

v2v2

v3v3
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So far, we have argued that increasing the testing capacity may 
increase the infection probability of individuals when we consider their 

strategic social distancing behavior
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So far, we have argued that increasing the testing capacity may 
increase the infection probability of individuals when we consider their 

strategic social distancing behavior

What are the implications of this non-monotonicity for the optimal 
testing policy?
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Optimal testing policy
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• Social planner problem:
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Optimal testing policy
Theorem
There exist three thresholds such that, for sufficiently large , we have:n

• There are enough tests that all agents can be tested and they will be fully active  the social planner is 
happy to use all tests

⇒
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Take away: The optimal testing policy does not necessarily use all tests! 



The unwillingness of the social planner to always use all testing capacity 
is related to the fact that greater testing reduces voluntary social 

distancing 
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This naturally suggests that testing should be combined with 
mandatory social distancing

The unwillingness of the social planner to always use all testing capacity 
is related to the fact that greater testing reduces voluntary social 

distancing 

26



Testing policy with mandatory social distancing
• Mandatory social distancing puts an upper bound on the social activity levels

xi ≤ x̄H for i ∈ ℋ, xj ≤ x̄L for j ∈ ℒ

27



Testing policy with mandatory social distancing
• Mandatory social distancing puts an upper bound on the social activity levels

xi ≤ x̄H for i ∈ ℋ, xj ≤ x̄L for j ∈ ℒ

max
(αL,αH,x̄L,x̄H)

W(xe, αL, αH)

αH |ℋ | + αL |ℒ | ≤ θn

s.t. xe is the unique symmetric equilibirium

• The planner’s problem becomes

27



Testing policy with mandatory social distancing

Proposition

• Mandatory social distancing puts an upper bound on the social activity levels

xi ≤ x̄H for i ∈ ℋ, xj ≤ x̄L for j ∈ ℒ

max
(αL,αH,x̄L,x̄H)

W(xe, αL, αH)

αH |ℋ | + αL |ℒ | ≤ θn

s.t. xe is the unique symmetric equilibirium

• The planner’s problem becomes

27



Testing policy with mandatory social distancing

Proposition

• Mandatory social distancing puts an upper bound on the social activity levels

xi ≤ x̄H for i ∈ ℋ, xj ≤ x̄L for j ∈ ℒ

max
(αL,αH,x̄L,x̄H)

W(xe, αL, αH)

αH |ℋ | + αL |ℒ | ≤ θn

s.t. xe is the unique symmetric equilibirium

• The planner’s problem becomes

27



Testing policy with mandatory social distancing

Proposition

For any testing capacity , there exists a testing policy with mandatory social distancing that 
achieves the social welfare of the first best. Moreover, with this policy the social planner uses 
all the testing capacity.
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Conclusion
• We develop a model of testing, social activity, and voluntary social distancing 


• Social activity levels determine the endogenous contact network over which infection spreads


• Testing enables authorities to identify and isolate infected individuals who spread the virus


• Our analysis, however, shows the impact of testing on the spread of an infection is more complex 
because, knowing tests lead to isolation of infected ones, agents increase their social activity level


• Because of users strategic behavior greater testing can lead to higher infection probability and the 
optimal testing policy may not use all testing capacity  testing should be combined with mandatory 
social distancing


• Modeling take-aways 

• To conceptualize the problem of endogenous social distancing behavior as one of social network 
formation


• To use the (variation of) independent cascade model to account for a general contact network 
and testing

⇒
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• To use the (variation of) independent cascade model to account for a general contact network 
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⇒

Thanks! 
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