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Information propagated through a social network:

● The news we read

● The technologies we hear about

● Running marketing promotions

● Public health issues
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https://www.nytimes.com/2021/05/12/us/covid-vaccines-vulnerable.html 

Social influence & public health

https://www.nytimes.com/interactive/2021/05/14/us/vaccine-race-gap.html 
https://www.nytimes.com/2021/05/13/health/covid-vaccine-latino-hispanic.html 

https://www.nytimes.com/2021/05/12/us/covid-vaccines-vulnerable.html
https://www.nytimes.com/interactive/2021/05/14/us/vaccine-race-gap.html
https://www.nytimes.com/2021/05/13/health/covid-vaccine-latino-hispanic.html
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Social influence & opportunities

Access to information is access to opportunity/healthcare 
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● Given a network G, with diffusion model as 
independent cascade with probability p, pick the best 
k early-adopters (‘seeds’) that maximize outreach:1

● Algorithms that choose based on:

○ Centrality: degree, distance centrality, … 

○ Iteratively: greedy

Information diffusion
(Social influence maximization problem)

1 Kempe, David, Jon Kleinberg, and Éva Tardos. "Maximizing the spread of influence through a social network." In Proceedings of the ninth ACM SIGKDD Conference, pp. 137-146. 2003.

Agnostic to communities

NP-complete



2 Fish, Benjamin, et al. “Gaps in information access in social networks”. The World Wide Web Conference. ACM, 2019. 9

⇒ Bias in centrality measures and social structure gets reproduced2
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● Parity constraint in an optimization function 
based on greedy algorithms:

Fairness-efficiency trade-off

no constraint parity constraintOur approach:

● Partially known networks ⇒ centrality measures (# of connections etc)

● Model of network growth & tap into inactive communities

● Theoretical conditions for when equity increases efficiency (outreach)

Information diffusion

2 Fish, Benjamin, et al. “Gaps in information access in social networks”. The World Wide Web Conference. ACM, 2019.
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Our approach:

● Partially known networks ⇒ centrality measures (# of connections etc)

● Model of network growth & tap into inactive communities

● Theoretical conditions for when equity increases efficiency (outreach)

Information diffusion

Random seeding with extra x 
nodes is comparable to optimal 
seeding (for small x)



● Our vision: bias as a sign of inefficiency

○ Diversity: tap into inactivated communities 
in the early adopters set
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● Seeding can be done with awareness of labels: 
statistical parity in your campaign (even if choosing 
less connected people)

○ Parity seeding (strict)

○ Diversity seeding (relaxed)

Information diffusion
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● Seeding can be done with awareness of labels: 
statistical parity in your campaign (even if choosing 
less connected people)
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● Seeding can be done with awareness of labels: 
statistical parity in your campaign (even if choosing 
less connected people)

○ Parity seeding (strict)

○ Diversity seeding (relaxed)

● Baseline: Seeding can be done agnostically: ignore 
labels, already takes into account network structure

● Our vision: bias as a sign of inefficiency

○ Diversity: tap into inactivated communities 
in the early adopters set

163 Stoica, Ana-Andreea, Jessy Xinyi Han, and Augustin Chaintreau. "Seeding Network Influence in Biased Networks and the Benefits of Diversity." WWW. 2020.

Information diffusion



Early 
adopters
(seedset)
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Color-agnostic v. Diversity Seeding
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Color-agnostic v. Diversity Seeding
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Models of network evolution: 
● Explain where inequality or bias originates and how it propagates in an algorithm
● Useful to prove guarantees about interventions to mitigate bias 

Where and how do we intervene to improve 
the gain of a minority group? 

Networks modeling for building more diverse and efficient heuristics



Biased preferential attachment model (BPAM)

Minority-majority: blue label and red label
• Fraction of red nodes = r < ½

Preferential attachment (rich-get-richer): nodes connect w.p. proportional to 
degree

Homophily: if different labels, connection is accepted w.p. ρ

4Avin, Chen et al. "Homophily and the glass ceiling effect in social networks." ITCS. 2015 21
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Preferential attachment with homophily
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Preferential attachment with homophily



Preferential 
attachment
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Preferential attachment with homophily



RejectAccept

Preferential 
attachment
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Preferential attachment with homophily



Accept

Preferential 
attachment

ρ
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Preferential attachment with homophily



Biased preferential attachment model (BPAM)

Minority-majority: blue label and red label
• Fraction of red nodes = r < ½

Preferential attachment (rich-get-richer): nodes connect w.p. proportional to 
degree

Homophily: if different labels, connection is accepted w.p. ρ

4Avin, Chen et al. "Homophily and the glass ceiling effect in social networks." ITCS. 2015 29

⇒ known to exhibit inequality in the degree distribution of the two communities4

topk(R)
topk(B)

Thm [Avin et al]: β(R) > 3 > β(B)



Early 
adopters
(seedset)
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Color-agnostic v. Diversity Seeding
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Color-agnostic v. Diversity Seeding



Theorem: for the graph sequences G(n) generated from the BPAM:

1. Diversity seeding and parity seeding leads to fairer outreach for the same budget

2. ∃ k* (closed form) such that when k > k* diversity seeding and parity seeding can 
outperform agnostic seeding in outreach

Theoretical analysis of diversity interventions

33



Proof sketch
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Our goal is to find two thresholds         and         that give in expectation the same amount of seeds as a 
general ("agnostic") threshold k(n) but better influence: 

First step: estimate first-step influence size of

Second step: extend to an estimation of 
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Proof sketch
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Our goal is to find two thresholds         and         that give in expectation the same amount of seeds as a 
general ("agnostic") threshold k(n) but better influence: 

First step: estimate first-step influence size of

● We know             because the degree distribution follows a power law with coefficients 

● Can compute first order influence for any threshold by computing 

and 



Proof sketch
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Our goal is to find two thresholds         and         that give in expectation the same amount of seeds as a 
general ("agnostic") threshold k(n) but better influence: 

Set                      , compute         based on the budget constraint, and solve 



Theoretical analysis of 
diversity interventions

Network of ~53,000 nodes, 2 communities, homophily ⍴ = 0.135

Minority fraction
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● Compute regions where each 
heuristic performs better than the 
agnostic one

● As communities become more 
equal, need fewer seeds for 
diversity heuristic to be more 
efficient 

● Not the same thing happens with 
the parity heuristic!
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DBLP citation dataset: men 
and women
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DBLP citation dataset: men 
and women



What about other 
seeding heuristics?
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DBLP citation dataset: men 
and women

● Extend diversity seeding to neighbor 
seeding (NS): the neighbor set of the 
seeds has statistical parity

1000 seeds:
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Future directions

● Other models beyond independent cascade?

○ Linear threshold model5

● Theoretical analysis for different centrality metrics? 

● Diversify modeling choices?

● Causality questions 

○ Am I friends with people because we influenced each other or the other way around?6

46
5 Ali, J., Babaei, M., Chakraborty, A., Mirzasoleiman, B., Gummadi, K.P. and Singla, A., 2022, May. On the fairness of time-critical influence maximization in social networks. ICDE. 2022. 
6 Cristali I, Veitch V. Using Embeddings for Causal Estimation of Peer Influence in Social Networks. arXiv preprint arXiv:2205.08033. 2022.



Thank you!
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Questions?



Additional slides
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Preferential attachment with homophily



Proof sketch

‘Wealth’ of red nodes: 

• Fraction of edges towards R

Define a function F as the rate of growth of αt

• F has a fixed point α

r

α

50



Evolution equation:

○ When does a node of degree k get a new link

rate at which R nodes receive edges through randomness 

rate at which R nodes receives edges through preferential 
attachment

Preferential 
attachment

Randomly

topk(R)
topk(B)

Proof sketch
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