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Motivation: Infections Spreading Over a Network

Infections spread from person-to-person contacts.

The dynamics of the infection spread depends on the contact network:
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isolated cliques of 
households

connected network with 
super-spreaders 

What information about the network do we need to predict epidemics?



The Epidemic Model
o State of nodes: Susceptible (S), 

Infectious (I), or Recovered (R).

o When a node is infected, it stays in 
state I for time !. Then it becomes R. 

oTransmission rate from an infected node 
to its susceptible neighbor: " .
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Typical choices: "=const, !=const or ! ∼ exp(().

!
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Epidemics in Parallel Worlds

A Thought experiment: 
Two copies of the same network, with infection starting from a same set of nodes.
- Sometimes the infection dies out fast. What’s the probability of an outbreak?
- If it leads to an outbreak, can we predict the size?
- Can we predict the time dynamic of S, I, R?
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Predicting Epidemics Using Network Models
Step 1. Choose a network model to capture the interaction between individuals: 
o Erdos Renyi
o Configuration Model [Molloy, Reed, Newman, Barabasi, Watts ’11][Janson,  

Luczak, Windridge ‘14] 
o Preferential Attachment [Bollobás, Riordan ‘03]
o Stochastic Block Model [Britton, Pardoux ‘18]
o Household models [Ball, Sirl, Trapman. 2009, Hofstad, Leeuwaarden, Stegehuis. 

’15 -- for configuration model]
o …
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Predicting Epidemics Using Network Models

Erdös-Renyi: average degree Configuration model: degree sequence

Step 1. Choose a network model to capture the interaction between individuals: 
Erdos Renyi, Configuration Model, Preferential Attachment, Stochastic Block Model, 
Household Models, etc. 

Step 2. Estimate the relevant model parameters.
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Can we have a model-free estimation of 
Epidemics?
e.g., can we predict probability and size of outbreak, or time evolution?
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This Talk in a Nutshell: 
Local information is enough. You don’t need a network model!
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Local information is enough to estimate the relative size of the 
outbreak and the time evolution of the epidemics. 
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Initial condition: each node is I with probability *, and S otherwise.

Under a general SIR process, and general underlying network:



Local Estimator: Time Dynamics

Local SIR:
Input: a constant ", and time $.
1. Draw a uniform random node %.
2. Run the infection in " neighborhood up to 
time $.
return the status of % at time $

A run of the algorithm with ! = 4

$
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Estimator: average number of nodes in S, I, or R over ' queries.
Initial condition: each node is is I with probability (, and S 
otherwise

Initially infected
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Local Estimator: Relative Size of an Outbreak

A run of the algorithm with ! = 4

$
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Backward Process
Input: a constant ".
1. Draw a uniform random node %.
2. Run the infection backward from %.
3. If it reaches to an infected node 
within " neighborhood:

return True.
otherwise:

return False. 
Estimator: average over q queries to the above algorithm.
Equivalently, we could run the local SIR up to time infinity.
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Initially not infected
Initially infected



Main Result:

Theorem. [A., Borgs, Hofstad, Saberi (’22)]

For convergent sequence of graph in probability, and for any ! > 0, there 

exist constants $!, %! ≥ 0 such that whp:

1) $! queries to the backward process with input %" gives a 1 − ϵ -

approximation of the final size of infection (
#! $
% ).

2) $! queries to the timed process with input %", t gives a 1 − ϵ -

approximation of (
&" '
( , )" '

( , *" '
( ).

The same results hold also when . → 0.
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SIR process starting with each node being infected independently with probability (.
Let )% $ , *% $ , +% $ be the number of susceptible, infectious and recovered at t.
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A Few Notes
The algorithms:

o can be implemented in + 1

o is model-free

o Preserves edge-differential privacy

o is extendable to dynamic network models

o Does not require local tree-like structures in the network
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Epidemics Starting from One Node
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Initial condition: A uniform 
random node is in I.

Can we still predict the time 
evolution of epidemics? 
Not generally!



Same Local Structure but Different Outbreaks
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A collection of !

"#$ %
4-regular 

random graphs, each of size log )

A 4-regular random graph 
of size)
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Epidemics in Well-Connected Network
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Local information is enough to estimate the relative size and 
probability of an outbreak on well-connected networks. 
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Initial condition: one uniform random node is I
Simple epidemic model: constant recovery time.
Outbreak: -(.) nodes eventually getting infected.



Local Estimator: Probability of Outbreak
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Forward Process
Input: a constant ".
1. Draw a uniform random node %.
2. Simulate an infection starting 
from %.
3. If % can lead to infecting " others:

return 1.
otherwise:

return 0. 

A run of the algorithm with ! = 4

$
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Estimator: average over ' queries to the above algorithm.
Outbreak: linear number of nodes eventually getting infected.



Relative Size and Probability of Outbreak

In SIR with constant recovery time, transmission happens over each edge 
independently with the same probability ,.
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Theorem 1. [A., Borgs, Saberi ‘21]
Let G! !∈ℕ be a sequence of large-set expanders with bounded average degree converging locally in 
probability to G, o with non-random distribution µ. Let -(∞) be final infection size. Then for p ≠ p( µ

- ∞
)

→
ℙ
4*, 4* = 5

0. with prob 1 − @(A)
@ A . with prob @(A)

.

→
ℙ

: convergence in probability in percolation and B.
ζ p := E +,- ∼/[ℙ+ 0 ( connected component of N = ∞ )].
A1 B = inf A ∈ 0,1 : @(A) > 0 .

Takeaways:
1. With high probability, the final infection size is either either R(1) or @ p ) + N()).
2. Size and probability of outbreak are the same in SIR with constant recovery time.



Local Estimator Predicts Size and Probability 
of Outbreak
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A run of the algorithm with ! = 4

$
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Theorem 2. [A., Borgs, Saberi (SODA’22)]
Let T% !∈ℕ be a sequence of convergent large-set expanders. Then for any U > 0, there exist constants V2, 
!2 ≥ 0, such that whp V2 queries to the above algorithm with input !2 is a X − Y -approximation of 
Z [ (the relative size / probability of an outbreak).

Takeaway: Size of the outbreak, can be estimated with a constant number of queries with constant ! as input.
The result is robust to non-exact estimation of the infection probability (A)

Input: a constant ".
1. Draw a uniform random node %.
2. Simulate an infection starting from %.
3. If % can lead to infecting " others:

return 1.
otherwise:

return 0. 



Main Technique: Graph Convergence
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Definition. (Local Convergence in Probability [Benjamini, Schramm ‘01]) 
A sequence of finite graphs {T%}%∈ℕ converges locally in probability to B if for any bounded 
continuous function ^: _∗ → ℝ ,

E4! ^ T% →
ℙ
E/ f ,

where in E4! ^ T% , we take expectation with respect to the uniform random root in T%.

Takeaway: the distribution of the neighborhood of a typical node converges.
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Most Network Locally Converge

oErdos Renyi à Branching Process

oConfiguration Model à Branching Process

oPreferential Attachment à Polya Point Process

oHousehold models à Households on the limiting external graph
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Condition on Network: Expansion
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a(b, ̅b)

b
̅bDefinition. (Expanders) 

T is d-expander if e T ≥ d, where
e T = min

5⊆7 +

8(5, ̅5)

<=!( 5 ,| ̅5|)

Takeaway: If you want to isolate a large 
community from the rest of the town, you 
need to remove many connections.
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Large-set Expansion

Yeganeh Alimohammadi, Graph Limits and Processes on 
Networks

Definition. (Expander) 
T is d-expander if e T ≥ d, where
e T = min

5⊆7 +

8(5, ̅5)

<=!( 5 ,| ̅5|)

Definition. (Large-set Expander) 
T with average degree bounded by f is 
d, U, f large-set expander if e2 T ≥ d, where 
e2 T = min

5⊆7 +
5 ?2%

8(5, ̅5)

<=!( 5 ,| ̅5|)

a(b, ̅b)

b
̅b

Definition. (Sequence of Large-set Expander) 
A sequence of possibly random graphs G! !∈ℕ is called a large-set expander sequence with bounded 
average degree, if there exists gh < ∞ and d > 0 such that for all U ∈ (0, .5), the probability that G! is 
an d, U, f large-set expander goes to 1 as n → ∞.
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Examples of Convergent Large-set Expanders
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o Configuration Model [Molloy, Reed, Newman, Barabasi, Watts ‘11] 
o Preferential Attachment [Bollobás, Riordan ‘03]
o Household models [Ball, Sirl, Trapman. 2009, Hofstad, Leeuwaarden, 

Stegehuis. ’15 -- for configuration model]

Blow up vertices 

T%@AB

Informal Lemma. If T%@AB !∈ℕ are convergent large-set expanders then T% !∈ℕ is as well.

T%
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Does the Algorithm Work on Real-world Graphs?

o Copenhagen dataset
o GPS data of 700 students
o Edge exists if distance <6 ft

Data: “Interaction data: Copenhagen Networks Study”
[Sapiezynski, Stopczynksi, Lassen, & Lehman, Nature ’19]
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Num of queries = 10, ' = 0.28, 
95% confidence interval is highlighted



Proof Ideas:
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SIR with constant recovery time and 
percolation
Percolation: keep each edge with probability / (call this graph G(/)).

SIR with constant recovery time can be coupled to percolation.

Largest component (giant) in G(/) corresponds to an outbreak!

Instead, we can study the size of the giant and its uniqueness.
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Relative Size of the Giant in Expanders
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Theorem 1. [A., Borgs, Saberi ‘21]
Let G! !∈ℕ be a sequence of large-set expanders with bounded average degree converging locally in 
probability to G, o ∈ k∗ with non-random distribution µ. Let C= be the ith largest component. If p ≠ p( µ ,

|CC|
n
→
ℙ
ζ p ,

Also	for	all	A ∈ [0,1], |D"|
!
→
ℙ
0.

Takeaway: Giant in convergent expanders is unique, and its size converges to its limit.

→
ℙ

: convergence in probability in percolation and B.
ζ p := E +,- ∼/[ℙ+ 0 ( connected component of N = ∞ )].
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Proof Sketch: Size of the Giant Converges
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Relative num of 
nodes in a 

component larger 
than k in T(A − U)
→E @F(A − U)

Relative num of 
nodes in the 

largest connected 
component of T(A)

Relative num of 
nodes in a 

component larger 
than ! in T A
→E @F(A)

Sprinkling!

@F p := E +,- ∼/[ℙ+ 0 ( connected component of N ≥ ! )]. lim
F→H

@F p = @(A).
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Proof Sketch: Size of the Giant Converges
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Relative num of 
nodes in a 

component larger 
than k in T(A − U)
→E @F(A − U)

Relative num of 
nodes in the 

largest connected 
component of T(A)

Relative num of 
nodes in a 

component larger 
than ! in T A
→E @F(A)

Sprinkling!

Lemma. For a sequence of graphs satisfying the assumptions of Theorem 2, @(A) is continuous 
for all A ≠ A1(B). Equivalently, the limit B is ergodic.

Converges to @(A) Converges to @(A − U)

(Sourav Sarkar proved this lemma for deterministic sequence of convergent expanders in 2018.)
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Brief History of Sprinkling

[Erdös, Rényi’60] 
[Posa’76][Ajtai, Kolmós, Szemerédi ‘82]
[Bollobás, Riordan ‘01] [Alon, Benjamini, Stacey ‘02] 
[Borgs, Chayes, van der Hofstad, Slade, Spencer ‘07]
[Benjamini, Nachmias, Peres ‘09]
[Janson, Rucinski’10] [van der Hofstad, Nachmias ‘17] 
[Krivelevich, Sudakov ’17]
[Dudek,  C.  Reiher,  A.  Rucínski,  and  M.  Schacht ‘20] 
[Nenadov, Trujic ’21][Easo, Hutchcroft ’21]
[A., Borgs, Saberi ‘21+]

Yeganeh Alimohammadi, Graph Limits and Processes on 
Networks 31



Proof: the Lower Bound
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Step 0: For some U > 0 let AC = A1 B + U be such that 1 − A = 1 − AC (1 − U).
Consider two copies of percolation T%(AC) and T%(U). The union of them gives an instance of T% A .

T%(AC) T%(U) The original graph T%
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Proof: the Lower Bound
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Step 1: There exists some r > 0 such that for all s > 0, whp there are r) nodes with component larger 
than s in T% AC .

Step 2 (Sprinkling): Let	ZI = nodes with component larger than s .
There is a path in T%(U) between any two large partition of components in uJ:

ℙ+!(2) ∃ w, x ⊆ 2K#: w , x disconnected in T% U and T% AC , |A|, x ≥
r)
3
| T%(AC)

≤ exp(−)~ L,M,N,2 )

Step 3: ℙ+!(0) ~N)�ÄÅ)Ç Ä ~NÉAN)Ñ)� N^ ÇÅÖÑ M%

O
→ 1, as ) → ∞.

Step 0: For some U > 0 let AC = A1 B + U be such that 1 − A = 1 − AC (1 − U).
Consider two copies of percolation T%(AC) and T%(U). The union of them gives an instance of T% A .
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Step 2: Sprinkling
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xw Menger’s Theorem. Let G be a finite undirected graph and A and x two 
disjoint set of vertices. Then the minimum edge-cut between A and x is 
equal to the number of pairwise edge-independent paths from A to x.

There are ML%
O

edge-disjoint paths in T% between A and x (expansion).
Since the average degree is bounded by f, the length of half of these 
paths is bounded by ℓ = PN

ML
. (# paths = ML%

P
)

Each path appear in T%(U) with probability Uℓ.
The probability that non of the paths appear in T%(U) : 1 − Uℓ

#0SBTU

Number of w , x partitions in T%(AC) : 2
$
#

Finally: 2
!
# 1 − U

%&
'(

'(!
%
≤ exp )(C

J
− ML

P
U
%&
'()

Step 2 (Sprinkling): There is a path in T%(U) between any two large partition of components in uJ:

ℙ+!(2) ∃ w, x ⊆ 2K#: w , x disconnected in T% U and T% AC , |A|, x ≥
r)
3
| T%(AC) ≤ exp(−)~ L,M,N,2 )
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Takeaways: Local Information Goes a Long 
Way!

Initial condition: one node infected.
Local information is enough to estimate the probability and relative size of an 
outbreak for large class of networks under a simple infection spread.
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Initial condition:  ( fraction infected. 
Local information is enough to estimate the time evolution of the epidemics. 
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Graph limits enabled us to analyze global quantities with local 
structures. Can we find more applications?
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