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The Contact Process
Graph: G = (V ,E)
Let ξA

t ⊆ V denote the set of ‘infected’ vertices at time t ≥ 0, where
ξA

0 = A is the set of initially infected vertices.

ξA
t (v) := 1{v∈ξA

t }

Contact Process
Let λ > 0 be the infection rate. Then for each v ∈ V and t ≥ 0:

ξA
t (v) transitions

{
1 → 0 at rate 1,
0 → 1 at rate λ

∣∣N (v) ∩ ξA
t

∣∣.
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Graphical Representation

At times (T v
k )k≥1 of a

Poisson process with
rate 1, vertex v becomes
uninfected. Represented
by a dot at v .

At times (T (u,v)
k )k≥1 of a

Poisson process with
rate λ, if u is infected
then v becomes
infected. Represented
by an arrow u → v .
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Monotonicity

The contact process is monotonic in the following sense:
If A ⊆ B then ξA

t ⊆st ξ
B
t for all t .

If λ1 ≤ λ2 then ξA,1
t ⊆st ξ

A,2
t

This type of monotonicity is also called attractiveness.

This can be demonstrated via coupling using the Harris construction.

6



Monotonicity
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Monotonicity

8



Contact Process: Critical infection rate, λc

For an infinite graph, such as the lattice Zd , define the critical infection
rate:

λc := sup{λ : P(ξ0
t ̸= ∅ for all t) = 0}.

Monotonicity in λ, apparent from the graphical construction, implies
that for λ > λc and any A ̸= ∅,

P(ξA
t ̸= ∅ for all t) > 0.

On Z with nearest-neighbor edges, 1.539 ≤ λc < 2 [see, e.g., Liggett
1999]
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Contact Process: Critical infection rate, λc

For a finite graph (e.g., Zn := Z/nZ) ξA
t = ∅ is the unique absorbing

state, so for every λ > 0,

P(ξA
t = ∅ for some t) = 1.

Identify λc by the (asymptotic in n) time to reach the absorbing state.

For example, consider Zn.
Let τ = inf{t : ξZn

t = ∅}.
For λc = λc(Z), then there exist c,C > 0 such that

P(τ ≤ ecn) → 0 if λ > λc ,
P(τ ≥ C log n) → 0 if λ < λc .
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Random graphs by example: The configuration model
To generate a random graph with a prescribed degree sequence:

Draw N independent values from the degree distribution {pk}:
d1, . . . ,dN (conditional on d1 + · · ·+ dN even)
The i th vertex has di half-edges attached to it.
Pair up half-edges at random.
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Contact process on finite random graphs

Start with all vertices infected. How long before everyone is healthy
(ξV

t = ∅)?

Suppose Gn has pk ∝ k−γ .
Pastor-Satorras and Vespigniani (2001, 2002) used mean-field
theory to predict:

▶ If γ ≤ 3 then the process survives for a long time for any λ > 0.
▶ If γ > 3 then the process survives for a long time only if λ > λc > 0.

Berger, Borgs, Chayes and Saberi (2005) show λc = 0 on
preferential attachment graphs (γ = 3). Exponential survival on
stars.
C. and Durrett (2009) show λc = 0 on configuration model graphs,
γ > 2.
Peterson (2011) shows the mean field predictions hold (λc > 0 for
γ > 3) on the complete graph with random vertex weights.
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Contact process on finite random graphs

Exponential survival and metastable densities for random graphs:
Configuration model with power-law degree γ > 2 [Mountford,
Valesin, & Yao, 2013]
Configuration model with γ ≤ 2 [Can & Shapira, 2015]
Preferential attachment [Can, 2017]
Stationary dynamic graphs: λc > 0 if network mixes quickly and
γ > 4 [Jacob & Mörters, 2017]
General degree distribution: λc > 0 iff Eet ·deg(v) < ∞ for some
t > 0 [Huang & Durrett, 2018; Bhamidi, Nam, Nguyen & Sly, 2019]
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Contact process with avoidance behavior

SIS with temporary link inactivation:
[Guo, Trajanovsky, van de Bovenkamp, Wang & Van Mieghem, 2013;
Tunc, Shkarayev & Shaw, 2013;
Shkarayev, Tunc & Shaw, 2014]Epidemics in Adaptive Social Networks 357

Fig. 1 (a) Schematic of the adaptation mechanism. An active SI link is deactivated with deactivation rate d ,
and a deactivated SS link is reactivated with reactivation rate a. (b) Schematic of the link dynamics in the
network. Horizontal arrows indicate infection (arrows toward right) and recovery (arrows toward left) tran-
sitions

to many models with rewiring adaptation. In Sect. 4, we present stochastic and mean-field
results for infection levels and for the geometry of the active subnetwork. We conclude and
discuss future applications in Sect. 5.

2 Model

We study epidemic spread in a population that is represented by a network. Disease spread
is modeled by using a susceptible-infected-susceptible (SIS) dynamics on the network [2].
In this model, individuals can be in one of two states: infected with the disease and conta-
gious (I), or healthy and susceptible to the infection (S). The disease can spread via contact
between susceptibles and infectives at a constant infection rate p per SI link. The infected
individuals recover from the disease, becoming susceptible again, at a constant recovery
rate r .

We allow healthy individuals to adapt their relationships so as to reduce the risk of being
infected. In this model, susceptible individuals know the infection status of all their neigh-
bors and can temporarily deactivate their connections to infected neighbors, a process that
takes place at a deactivation rate d . Once both individuals are susceptible, the deactivated
links are reactivated at a reactivation rate a. The deactivation and reactivation processes are
illustrated in Fig. 1(a). Note that these processes take place on an unchanging network: what
changes is its active part, i.e., the subset of links that allow the disease transmission.

We study the dynamics of the disease spread on a network with a fixed number of nodes,
N , and a fixed number of links, K . The average degree of the network, κ , is then given
by κ = 2K/N . Given an initial network geometry, the node and network dynamics are
simulated using a continuous time Monte Carlo algorithm [4]. Simulation results presented
in this paper are for Erdős-Rényi networks [3] with N = 104 and K = 105 unless otherwise
specified. Self-links and multiple links between nodes are not allowed.

3 Analytical Approach

In this section, we approximate the full system using a mean-field approach [6, 9]. The
following system of equations describes the evolution of the number of each type of node:

dNS

dt
= rNI − pNSI, (1a)
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Our model

Contact process with avoidance [link inactivation]

Fix a directed graph G. States of vertices are ξt ∈ {0,1}V and states of
edges are ηt ∈ {0,1}E .

ξt(v) transitions 1 → 0 at rate 1.

ξt(v) transitions 0 → 1 at rate λ
∑

(w ,v)∈E

ηt((w , v))ξt(w).

ηt((w , v)) transitions 1 → 0 at rate α if ξt(v) = 0 and ξt(w) = 1.
ηt((w , v)) transitions 0 → 1 instantaneously when ξt(w) = 0.
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Graphical Representation, Harris construction

As in contact process:
dots (rate 1) induce
recovery, arrows (rate λ)
induce infection.
At times (T̃ (u,v)

k )k≥1 of a
Poisson process with
rate α, if u is infected
and v is not, then v
avoids u. Represented
by an arrow with × from
u → v . Avoidance lasts
until the next recovery
dot at u, and arrows
u → v are ignored
during avoidance.

16



Non-monotonicity in the Harris construction

Figure: Smaller initial infected set, larger final infected set

17



Results for Z

Define upper and lower thresholds for survival of infection on Z:

Assume initial configuration ξ0 = {0} and η0 = E . For each α, let

λ−
c (α) := inf{λ : P(ξt ̸= ∅ for all t) > 0}

λ+
c (α) := sup{λ : P(ξt ̸= ∅ for all t) = 0}

Conjecture: λ−
c (α) = λ+

c (α), and increases linearly with α.

Theorem (C., Sivakoff, & Wascher, 2022)
There exist constants a,b > 0 such that for all α > 0,

1 + α ≤ λ−
c (α) ≤ λ+

c (α) ≤ a + bα.
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Results for the n-cycle, Zn

Assume initial configuration ξ0 = Zn and η0 = E .
Let τ = inf{t : ξt = ∅}.

Theorem (C., Sivakoff, & Wascher, 2022)
Let a,b be as in the previous theorem and fix α > 0.

If λ < 1 + α, then there exists C > 0 such that P(τ ≤ C log n) → 1.
If λ > a + bα, then there exists c > 0 such that P(τ ≥ ecn) → 1.
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Results for star graph on n vertices

Assume initial configuration ξ0 = V and η0 = E .
Let τ = inf{t : ξt = ∅}.

Theorem (C., Sivakoff, & Wascher, 2022)
For λ > 0 and α > 0, let

∆ = 2
[
(λ+ α+ 1)−

√
(λ+ α+ 1)2 − 4α

]−1

.

Then
n∆−o(1) ≤ τ ≤ O(n∆) in Probability.

Note: If α = 0 and λ > 0, then τ ≥ ecn with high probability.

Note: ∆ > 1 for all α > 0 and λ > 0.
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Next step

If Gn has asymptotic degree distribution pk ∝ k−γ , do there exist γ and
α (large) and λ > 0 (small) such that τ = nO(1)? eo(n)?

21



Proof Ideas: Z and Zn

For λ < 1 + α, consider location of rightmost infected vertex after k
jumps, Rk :

P(Rk+1 = Rk + 1) = λ
1+α+λ < 1

2 ,

P(Rk+1 ≤ Rk − 1) = 1+α
1+α+λ > 1

2 .
Dominated by biased random walk, so Rk → −∞.
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Proof Ideas: Z and Zn

For large λ, subdivide space-time into 4 × τ sized blocks.

infected vertex

healhty vertex

unknown vertex

open edge

unknown edge

Rk,l

t

(l+1)τ

lτ
2k+1 2k+2 2k+32k

A Good block allows passage of infection from either of the two
blocks below.
By choosing λ > a + bα and τ appropriately, P(A block is Good)
can be made large so that the good blocks stochastically
dominate a supercritical Oriented Site Percolation.
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Bound for λ+
α

While comparing the space-time blocks of the Harris construction with
the “sites” of a supercritical oriented site percolation model, the mai
challenge is that the regions are not independent, and one can’t ignore
the dependence because it is not clear whether that would help or
hinder the survival.

We need to define the blocks carefully so that P(ablockisgood) is high
regardless of interferences coming from the outside of that block.
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Proof Ideas: Star graph
When the center is infected, the leaves are independent Markov chains
on {1A,0A,0D,1D} with generator

1A
0A
0D
1D


−1 1 0 0
λ −(λ+ α) α 0
0 0 0 0
0 1 0 −1


which has eigenvalues 0 > −γ1 > −1 > −γ2, where γ1 = 1/∆.

Center becomes healthy at time T ∼ Exp(1).

Number of non-0D leaves at time T is ≈ ne−γ1T , which is < 1 if
T > ∆ log n.

P(T > ∆ log n) = n−∆, so the center must be reinfected about n∆

times before this happens.

If this doesn’t happen, then there are many 1A leaves at time T , so the
center is reinfected quickly.

25



Simulation summary for CPA on cycle graphs
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Simulation study of a model for badging and
pool-testing system

Ongoing joint work with
Bud Mishra and Inavamsi Enaganti (NYU)
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Motivation

To track pandemic involving highly contagious diseases (with
some infected individuals being asymptomatic carriers), ideally,
every individual would be tested frequently and regularly, unless
there is a complete lockdown.
But, there are many impediments and constraints, which can
make it impossible or un- realistic to test every individual
frequently within short intervals, e.g., lack of availability of
sufficiently many testing machines, cost of reliable test
procedures, the time necessary for obtaining results for such
tests, huge population size and lack of awareness about the tests
(particularly in some of the developing countries).
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The badging system

Three kinds of badges: green, orange, and red.
People with green badges would have no restriction on their
movements and accesses. People having red badges may be
highly restricted, and people with orange badges are in-between.
The extent of restriction would be parameterized.
Testing rates may be ordered. People with red (resp. orange)
badges will be tested at a lower frequency compared to the people
having orange (resp. red) badges.
Green (resp. orange) badges downgrades to orange (resp. red)
after testing positive. Orange and red badges upgrade to green
badges after testing negative.
Pool testing. Limited number of pools.
Anonymous communication to the users.
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Compartment model of the badging system

Susceptible Green (SG) Infected Green (IG) Recovered Green (RG)

Susceptible Orange (SO) Infected Orange (IO) Recovered Orange (RO)

Susceptible Red (SR) Infected Red (IR) Recovered Red (RR)

Testing Positive Testing Negative Disease state transition

Legend

Each of the 9 compartments correspond to a disease state of an individual
and the badge of the individual. The transitions in black denote the change in
the disease state of an individual. The Blue and Yellow transitions correspond
to change in the Badge of an individual based on the result of a test being
positive or negative respectively.
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ODE system
Three main aspects need to be modeled:

the structure of the network that captures the physical proximity
and interactions among people,
the disease spreading mechanism,
rules for issuing different badges and associated rubrics.

Assuming “complete graph” interaction, SIR epidemic model, and the 3
badge system, the state space is

X := {DB : D ∈ {S, I,R} and B ∈ {G,O,R}}

Parameters:
β and γ for the standard SIR model,
“allowable movement policy”. Person with badge B has freedom
level ϕB ∈ [0,1]. SB and IB′ interacts at rate
βϕBϕB′ , and increases IB.
testing rates: tG ≥ tO ≥ tR.
false positivity and negativity chances, pool size, number of pools.
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ODE Plots

1st row: 1 = ϕG = ϕO = ϕR and tG = tO = tR.
2nd row: 1 = ϕG > ϕO > ϕR = 0 and tG = tO = tR.
3rd row: 1 = ϕG > ϕO > ϕR = 0 and tG > tO > tR.
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Agent-based model plots

The ODE system captures the long term behaviors. Other
questions (e.g., expected time to get a correct badge) can be
addressed by looking at the associated ABM.
The expected time needed for a person to get a correct badge is
not monotone in pool size, and it stabilizes if the pool size is
increased sufficiently.
Total number of infected people is a decreasing function of pool
size.
Robustness against inherent false positive and false negative
testing rates.
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Good testing and badging policies
Mainly four kinds of cost:

cost for quarantining or restricting people
cost incurred by the infected people
cost for the tests
overhead

Good strategies are those for which the total cost is low.
The total cost associated with a pandemic within a certain time
period depends on many factors. The disease prevalence, fatality
rates, economic costs because of restrictions on the movement of
people which in turn depend on the pooling strategy, additional
constraints, etc. share a very convoluted nonlinear relationship
with the total cost.
The constraints and priorities vary across different communities.
Different communities may have different sets of constraints, and
they can set parameters according to their needs, constraints,
preferences, or abilities.
The total cost is observed to be a non-monotone function of the
parameters (even pool size).
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Thanks!
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