Functional Law of Large Numbers and PDEs for Spatial Epidemic Models with Infection-age Dependent Infectivity

Etienne Pardoux (I2M, AMU)
joint work with G. Pang (Rice Univ. USA)

Simons Institute, 10/24/2022

The spatial model

- We consider a population of fixed size N distributed in $K=K^{N}$ locations x_{1}, \ldots, x_{K} in $\mathcal{S}=[0,1]$. Let $I_{k}^{N}, k=1, \ldots, K^{N}$ be a partition of $[0,1]$ such that $x_{k}^{N} \in I_{k}^{N}$ and $\left|I_{k}^{N}\right|=\left(K^{N}\right)^{-1}, 1 \leq k \leq K$. Individuals do not move between the locations. There are B_{k}^{N} individuals at location $x_{k}, B_{1}^{N}+\cdots+B_{K^{N}}^{N}=N$.

The spatial model

- We consider a population of fixed size N distributed in $K=K^{N}$ locations x_{1}, \ldots, x_{K} in $\mathcal{S}=[0,1]$. Let $I_{k}^{N}, k=1, \ldots, K^{N}$ be a partition of $[0,1]$ such that $x_{k}^{N} \in I_{k}^{N}$ and $\left|I_{k}^{N}\right|=\left(K^{N}\right)^{-1}, 1 \leq k \leq K$. Individuals do not move between the locations. There are B_{k}^{N} individuals at location $x_{k}, B_{1}^{N}+\cdots+B_{K^{N}}^{N}=N$.
- In each location, individuals are categorized into three groups: S, I and R. We denote the numbers of indiv. in those compartments at time t and location x_{k} as $S_{k}^{N}(t), I_{k}^{N}(t)$ and $R_{k}^{N}(t)$. For all $t \geq 0$, $S_{k}^{N}(t)+I_{k}^{N}(t)+R_{k}^{N}(t)=B_{k}^{N}$.

The spatial model

- We consider a population of fixed size N distributed in $K=K^{N}$ locations x_{1}, \ldots, x_{K} in $\mathcal{S}=[0,1]$. Let $I_{k}^{N}, k=1, \ldots, K^{N}$ be a partition of $[0,1]$ such that $x_{k}^{N} \in I_{k}^{N}$ and $\left|I_{k}^{N}\right|=\left(K^{N}\right)^{-1}, 1 \leq k \leq K$. Individuals do not move between the locations. There are B_{k}^{N} individuals at location $x_{k}, B_{1}^{N}+\cdots+B_{K^{N}}^{N}=N$.
- In each location, individuals are categorized into three groups: S, I and R. We denote the numbers of indiv. in those compartments at time t and location x_{k} as $S_{k}^{N}(t), I_{k}^{N}(t)$ and $R_{k}^{N}(t)$. For all $t \geq 0$, $S_{k}^{N}(t)+I_{k}^{N}(t)+R_{k}^{N}(t)=B_{k}^{N}$.
- We define the piecewise constant functions of x :

$$
\begin{aligned}
S^{N}(t, x) & =\sum_{k=1}^{K} S_{k}^{N}(t) 1_{\mathrm{I}_{k}^{N}}(x), I^{N}(t, x)=\sum_{k=1}^{K} I_{k}^{N}(t) 1_{\mathrm{I}_{k}^{N}}(x) \\
R^{N}(t, x) & =\sum_{k=1}^{K} R_{k}^{N}(t) 1_{\mathrm{I}_{k}^{N}}(x)
\end{aligned}
$$

Varying infectivity

- In each location x_{k}, there are two types of individuals: those who are infected at time $t=0$, there are $I_{k}^{N}(0)$ of those, who have been infected at times $\tau_{-j, k}^{N}<0,1 \leq j \leq I_{k}^{N}(0)$, and those who are susceptible at time $t=0$, and may get infected (i.e. jump from S to I) at times $\tau_{1, k}^{N}<\tau_{2, k}^{N}<\cdots$.

Varying infectivity

- In each location x_{k}, there are two types of individuals: those who are infected at time $t=0$, there are $I_{k}^{N}(0)$ of those, who have been infected at times $\tau_{-j, k}^{N}<0,1 \leq j \leq I_{k}^{N}(0)$, and those who are susceptible at time $t=0$, and may get infected (i.e. jump from S to I) at times $\tau_{1, k}^{N}<\tau_{2, k}^{N}<\cdots$.
- Let $\left\{\lambda_{j, k}, j \in \mathbb{Z} \backslash\{0\}, 1 \leq k \leq K\right\}$ be an i.i.d. collection of random elements of $\mathrm{D}\left(\mathbb{R} ; \mathbb{R}_{+}\right)$, which satisfy $\lambda(t)=0$ for $t<0$. Let $\eta_{j, k}=\sup \left\{t>0, \lambda_{j, k}(t)>0\right\}$. At time $\tau_{j, k}^{N}+\eta_{j, k}$, the individual j jumps from the I to the R compartment.

Varying infectivity

- In each location x_{k}, there are two types of individuals: those who are infected at time $t=0$, there are $I_{k}^{N}(0)$ of those, who have been infected at times $\tau_{-j, k}^{N}<0,1 \leq j \leq I_{k}^{N}(0)$, and those who are susceptible at time $t=0$, and may get infected (i.e. jump from S to I) at times $\tau_{1, k}^{N}<\tau_{2, k}^{N}<\cdots$.
- Let $\left\{\lambda_{j, k}, j \in \mathbb{Z} \backslash\{0\}, 1 \leq k \leq K\right\}$ be an i.i.d. collection of random elements of $\mathrm{D}\left(\mathbb{R} ; \mathbb{R}_{+}\right)$, which satisfy $\lambda(t)=0$ for $t<0$. Let $\eta_{j, k}=\sup \left\{t>0, \lambda_{j, k}(t)>0\right\}$. At time $\tau_{j, k}^{N}+\eta_{j, k}$, the individual j jumps from the I to the R compartment.
- As a result, the total force of infection at time t and location x_{k} is

$$
\mathfrak{F}_{k}^{N}(t)=\sum_{j=1}^{\mathcal{I}_{k}^{N}(0)} \lambda_{-j, k}\left(t-\tau_{-j, k}\right)+\sum_{j=1}^{A_{k}^{N}(t)} \lambda_{j, k}\left(t-\tau_{j, k}\right)
$$

where $A^{N}(t)$ is the number of initially susceptible who have been infected on the time interval $[0, t]$. We also define $\mathfrak{F}^{N}(t, x)=\sum_{k=1}^{K} \mathfrak{F}_{k}^{N}(t) 1_{I_{k}^{N}}(x)$.

The propagation of the epidemic

- $\left\{P_{k}, 1 \leq k \leq K\right\}$ denoting mutually independent standard Poisson processes, we let

$$
\begin{aligned}
& A_{k}^{N}(t)=P_{k}\left(\int_{0}^{t} \Upsilon_{k}^{N}(s) d s\right), \text { where } \\
& \Upsilon_{k}^{N}(t)=\frac{S_{k}^{N}(t)}{B_{k}^{N}} \frac{1}{K} \sum_{k^{\prime}=1}^{K} \beta_{k, k^{\prime}}^{N} \Im_{k^{\prime}}^{N}(t)
\end{aligned}
$$

The propagation of the epidemic

- $\left\{P_{k}, 1 \leq k \leq K\right\}$ denoting mutually independent standard Poisson processes, we let

$$
\begin{aligned}
& A_{k}^{N}(t)=P_{k}\left(\int_{0}^{t} \Upsilon_{k}^{N}(s) d s\right), \text { where } \\
& \Upsilon_{k}^{N}(t)=\frac{S_{k}^{N}(t)}{B_{k}^{N}} \frac{1}{K} \sum_{k^{\prime}=1}^{K} \beta_{k, k^{\prime}}^{N} \Im_{k^{\prime}}^{N}(t)
\end{aligned}
$$

- Finally we define the number of infected indiv. at location x_{k} and time t, who have have been infected for a duration less than \mathfrak{a} :

$$
\mathfrak{I}_{k}^{N}(t, \mathfrak{a})=\sum_{j=1}^{I_{k}^{N}(0)} 1_{\tau_{-j, k}^{N}+\eta_{-j, k}>t} 1_{-\tau_{-j, k}^{N} \leq(\mathfrak{a}-t)^{+}}+\sum_{j=A_{k}^{N}\left((t-\mathfrak{a})^{+}\right)+1}^{A_{k}^{N}(t)} 1_{\tau_{j, k}^{N}+\eta_{j, k}>t}
$$

Also $\mathfrak{I}^{N}(t, \mathfrak{a}, x)=\sum_{k=1}^{K} \Im_{k}^{N}(t, \mathfrak{a}) 1_{\mathrm{I}_{k}^{N}}(x)$.

The stochastic finite population model

- We have

$$
\begin{aligned}
& S^{N}(t, x)=S^{N}(0, x)-A^{N}(t, x), \\
& I^{N}(t, x)=\sum_{j=1}^{I^{N}(0, x)} 1_{\tau_{-j, k}^{N}+\eta_{-j, k>t}+\sum_{j=1}^{A^{N}(t, x)} 1_{\tau_{j, k}^{N}+\eta_{j, k}>t}, \text { if } x \in I_{k}}^{R^{N}(t, x)}=R^{N}(0, x)+\sum_{j=1}^{I^{N}(0, x)} 1_{\tau_{-j, k}^{N}+\eta_{-j, k} \leq t}+\sum_{j=1}^{A^{N}(t, x)} 1_{\tau_{j, k}^{N}+\eta_{j, k} \leq t}
\end{aligned}
$$

The stochastic finite population model

- We have

$$
\begin{aligned}
& S^{N}(t, x)=S^{N}(0, x)-A^{N}(t, x), \\
& I^{N}(t, x)=\sum_{j=1}^{I^{N}(0, x)} 1_{\tau_{-j, k}^{N}+\eta_{-j, k>t}+\sum_{j=1}^{A^{N}(t, x)} 1_{\tau_{j, k}^{N}+\eta_{j, k}>t}, \text { if } x \in I_{k}}^{R^{N}(t, x)=R^{N}(0, x)+\sum_{j=1}^{I^{N}(0, x)} 1_{\tau_{-j, k}^{N}+\eta_{-j, k} \leq t}+\sum_{j=1}^{A^{N}(t, x)} 1_{\tau_{j, k}^{N}+\eta_{j, k} \leq t}} .
\end{aligned}
$$

- We let $\bar{X}^{N}(t, x):=\frac{x^{N}(t, x)}{B^{N}(x)}$, where $B^{N}(x)=\sum_{k=1}^{K} B_{k}^{N} 1_{I_{k}^{N}}(x)$.

The stochastic finite population model

- We have

$$
\begin{aligned}
S^{N}(t, x) & =S^{N}(0, x)-A^{N}(t, x), \\
I^{N}(t, x) & =\sum_{j=1}^{I^{N}(0, x)} 1_{\tau_{-j, k}^{N}+\eta_{-j, k}>t}+\sum_{j=1}^{A^{N}(t, x)} 1_{\tau_{j, k}^{N}+\eta_{j, k}>t}, \text { if } x \in I_{k} \\
R^{N}(t, x) & =R^{N}(0, x)+\sum_{j=1}^{I^{N}(0, x)} 1_{\tau_{-j, k}^{N}+\eta_{-j, k} \leq t}+\sum_{j=1}^{A^{N}(t, x)} 1_{\tau_{j, k}^{N}+\eta_{j, k} \leq t}
\end{aligned}
$$

- We let $\bar{X}^{N}(t, x):=\frac{X^{N}(t, x)}{B^{N}(x)}$, where $B^{N}(x)=\sum_{k=1}^{K} B_{k}^{N} 1_{I_{k}^{N}}(x)$.
- We wish to take the liit as $N \rightarrow \infty$ in $\left(\bar{S}^{N}(t, x), \overline{\mathfrak{F}}^{N}(t, x), \bar{I}^{N}(t, x), \bar{R}^{N}(t, x)\right)$ and also in $\overline{\mathfrak{I}}^{N}(t, \mathfrak{a}, x)$.

Assumptions

- $K^{N} \rightarrow \infty$ as $N \rightarrow \infty, \inf _{k} B_{k}^{N} \rightarrow \infty$, and $\sup _{N, k, k^{\prime}} \frac{B_{k}^{N}}{B_{k^{\prime}}^{N}}<\infty$. We assume that the initial conditions converge towards appropriate
limits, namely for all $a>0$, as $N \rightarrow \infty$,
$\left\|\bar{S}^{N}(0, \cdot)-\bar{S}(0, \cdot)\right\|_{1}+\left\|\overline{\mathcal{J}}^{N}(0, a, \cdot)-\overline{\mathscr{J}}(0, a, \cdot)\right\|_{1}+\left\|\bar{R}^{N}(0, \cdot)-\bar{R}(0, \cdot)\right\|_{1} \rightarrow 0$

Assumptions

- $K^{N} \rightarrow \infty$ as $N \rightarrow \infty, \inf _{k} B_{k}^{N} \rightarrow \infty$, and $\sup _{N, k, k^{\prime}} \frac{B_{k}^{N}}{B_{k^{\prime}}^{N}}<\infty$.
- We assume that the initial conditions converge towards appropriate limits, namely for all $\mathfrak{a}>0$, as $N \rightarrow \infty$,

$$
\left\|\bar{S}^{N}(0, \cdot)-\bar{S}(0, \cdot)\right\|_{1}+\left\|\overline{\mathfrak{I}}^{N}(0, \mathfrak{a}, \cdot)-\overline{\mathfrak{I}}(0, \mathfrak{a}, \cdot)\right\|_{1}+\left\|\bar{R}^{N}(0, \cdot)-\bar{R}(0, \cdot)\right\|_{1} \rightarrow 0
$$

Assumptions

- $K^{N} \rightarrow \infty$ as $N \rightarrow \infty, \inf _{k} B_{k}^{N} \rightarrow \infty$, and $\sup _{N, k, k^{\prime}} \frac{B_{k}^{N}}{B_{k^{\prime}}^{N}}<\infty$.
- We assume that the initial conditions converge towards appropriate limits, namely for all $\mathfrak{a}>0$, as $N \rightarrow \infty$,

$$
\left\|\bar{S}^{N}(0, \cdot)-\bar{S}(0, \cdot)\right\|_{1}+\left\|\overline{\mathfrak{I}}^{N}(0, \mathfrak{a}, \cdot)-\overline{\mathfrak{I}}(0, \mathfrak{a}, \cdot)\right\|_{1}+\left\|\bar{R}^{N}(0, \cdot)-\bar{R}(0, \cdot)\right\|_{1} \rightarrow 0
$$

- $\sup _{N, k, k^{\prime}} \beta_{k, k^{\prime}}^{N}<\infty$ and $\beta^{N}\left(x, x^{\prime}\right) \rightarrow \beta\left(x, x^{\prime}\right)$ in $L^{1}\left([0,1]^{2}\right)$, where

$$
\beta^{N}\left(x, x^{\prime}\right)=\sum_{k, k^{\prime}=1}^{K} \frac{B_{k^{\prime}}^{N}}{B_{k}^{N}} \beta_{k, k^{\prime}}^{N} 1_{I_{k}^{N}}(x) 1_{I_{k^{\prime}}^{N}}\left(x^{\prime}\right)
$$

Assumptions

- $K^{N} \rightarrow \infty$ as $N \rightarrow \infty, \inf _{k} B_{k}^{N} \rightarrow \infty$, and $\sup _{N, k, k^{\prime}} \frac{B_{k}^{N}}{B_{k^{\prime}}^{N}}<\infty$.
- We assume that the initial conditions converge towards appropriate limits, namely for all $\mathfrak{a}>0$, as $N \rightarrow \infty$,

$$
\left\|\bar{S}^{N}(0, \cdot)-\bar{S}(0, \cdot)\right\|_{1}+\left\|\overline{\mathfrak{I}}^{N}(0, \mathfrak{a}, \cdot)-\overline{\mathfrak{I}}(0, \mathfrak{a}, \cdot)\right\|_{1}+\left\|\bar{R}^{N}(0, \cdot)-\bar{R}(0, \cdot)\right\|_{1} \rightarrow 0
$$

- $\sup _{N, k, k^{\prime}} \beta_{k, k^{\prime}}^{N}<\infty$ and $\beta^{N}\left(x, x^{\prime}\right) \rightarrow \beta\left(x, x^{\prime}\right)$ in $L^{1}\left([0,1]^{2}\right)$, where

$$
\beta^{N}\left(x, x^{\prime}\right)=\sum_{k, k^{\prime}=1}^{K} \frac{B_{k^{\prime}}^{N}}{B_{k}^{N}} \beta_{k, k^{\prime}}^{N} 1_{I_{k}^{N}}(x) 1_{I_{k^{\prime}}^{N}}\left(x^{\prime}\right)
$$

- $\lambda(t) \leq \lambda^{*}$ a.s. for all $t \geq 0, \lambda$ has at most a given finite number of jumps and is uniformly continuous between its jumps. Notation : $\bar{\lambda}(t)=\mathbb{E}[\lambda(t)]$.

The limiting quantities

- Consider the system (with $\left.F(t)=\mathbb{P}\left(\eta_{1,1} \leq t\right), F^{c}(t)=1-F(t)\right)$

$$
\begin{aligned}
\bar{S}(t, x) & =\bar{S}(0, x)-\int_{0}^{t} \bar{\Upsilon}(s, x) d s, \\
\overline{\mathfrak{F}}(t, x) & =\int_{0}^{\infty} \bar{\lambda}(\mathfrak{a}+t) \overline{\mathfrak{I}}(0, d \mathfrak{a}, x)+\int_{0}^{t} \bar{\lambda}(t-s) \bar{\Upsilon}(s, x) d s, \\
\overline{\mathfrak{I}}(t, \mathfrak{a}, x) & =\int_{0}^{(\mathfrak{a}-t)^{+}} \frac{F^{c}\left(\mathfrak{a}^{\prime}+t\right)}{F^{c}\left(\mathfrak{a}^{\prime}\right)} \overline{\mathfrak{I}}\left(0, d \mathfrak{a}^{\prime}, x\right)+\int_{(t-\mathfrak{a})^{+}}^{t} F^{c}(t-s) \bar{\Upsilon}(s, x) d s \\
\bar{R}(t, x) & =\bar{R}(0, x)+\int_{0}^{\infty}\left(1-\frac{F^{c}\left(\mathfrak{a}^{\prime}+t\right)}{F^{c}\left(\mathfrak{a}^{\prime}\right)}\right) \overline{\mathfrak{I}}\left(0, d \mathfrak{a}^{\prime}, x\right)+\int_{0}^{t} F(t-s) \bar{\Upsilon}(s, x) d s
\end{aligned}
$$

The limiting quantities

- Consider the system (with $\left.F(t)=\mathbb{P}\left(\eta_{1,1} \leq t\right), F^{c}(t)=1-F(t)\right)$

$$
\begin{aligned}
\bar{S}(t, x) & =\bar{S}(0, x)-\int_{0}^{t} \bar{\Upsilon}(s, x) d s, \\
\overline{\mathfrak{F}}(t, x) & =\int_{0}^{\infty} \bar{\lambda}(\mathfrak{a}+t) \overline{\mathfrak{I}}(0, d \mathfrak{a}, x)+\int_{0}^{t} \bar{\lambda}(t-s) \bar{\Upsilon}(s, x) d s, \\
\overline{\mathfrak{I}}(t, \mathfrak{a}, x) & =\int_{0}^{(\mathfrak{a}-t)^{+}} \frac{F^{c}\left(\mathfrak{a}^{\prime}+t\right)}{F^{c}\left(\mathfrak{a}^{\prime}\right)} \overline{\mathfrak{I}}\left(0, d \mathfrak{a}^{\prime}, x\right)+\int_{(t-\mathfrak{a})^{+}}^{t} F^{c}(t-s) \bar{\Upsilon}(s, x) d s \\
\bar{R}(t, x) & =\bar{R}(0, x)+\int_{0}^{\infty}\left(1-\frac{F^{c}\left(\mathfrak{a}^{\prime}+t\right)}{F^{c}\left(\mathfrak{a}^{\prime}\right)}\right) \overline{\mathfrak{I}}\left(0, d \mathfrak{a}^{\prime}, x\right)+\int_{0}^{t} F(t-s) \bar{\Upsilon}(s, x) d s
\end{aligned}
$$

- where $\bar{\Upsilon}(t, x)=\bar{S}(t, x) \int_{0}^{1} \beta\left(x, x^{\prime}\right) \overline{\mathfrak{F}}\left(t, x^{\prime}\right) d x^{\prime}$.

The convergence result

- We have

Theorem

$\left\|\bar{S}^{N}(t, \cdot)-\bar{S}(t, \cdot)\right\|_{1} \rightarrow 0,\left\|\overline{\mathfrak{F}}^{N}(t, \cdot)-\overline{\mathfrak{F}}(t, \cdot)\right\|_{1} \rightarrow 0,\left\|\bar{R}^{N}(t, \cdot)-\bar{R}(t, \cdot)\right\|_{1}$ $\left\|\overline{\mathfrak{I}}^{N}(t, \mathfrak{a}, \cdot)-\overline{\mathfrak{I}}^{N}(t, \mathfrak{a}, \cdot)\right\|_{1} \rightarrow 0$
in probability as $N \rightarrow \infty$, locall uniformly in t and \mathfrak{a}, where the limits are given by the unique solution to the above set of integral equations.

The convergence result

- We have

Theorem

$\left\|\bar{S}^{N}(t, \cdot)-\bar{S}(t, \cdot)\right\|_{1} \rightarrow 0,\left\|\overline{\mathfrak{F}}^{N}(t, \cdot)-\overline{\mathfrak{F}}(t, \cdot)\right\|_{1} \rightarrow 0,\left\|\bar{R}^{N}(t, \cdot)-\bar{R}(t, \cdot)\right\|_{1}$ $\left\|\overline{\mathfrak{I}}^{N}(t, \mathfrak{a}, \cdot)-\overline{\mathfrak{I}}^{N}(t, \mathfrak{a}, \cdot)\right\|_{1} \rightarrow 0$
in probability as $N \rightarrow \infty$, locall uniformly in t and \mathfrak{a}, where the limits are given by the unique solution to the above set of integral equations.

- In fact the pair $(\bar{S}, \overline{\mathfrak{F}})$ is the unique solution of an integral equation, and the other quantities are then expressed in terms of that solution.

The convergence result

- We have

Theorem

$\left\|\bar{S}^{N}(t, \cdot)-\bar{S}(t, \cdot)\right\|_{1} \rightarrow 0,\left\|\overline{\mathfrak{F}}^{N}(t, \cdot)-\overline{\mathfrak{F}}(t, \cdot)\right\|_{1} \rightarrow 0,\left\|\bar{R}^{N}(t, \cdot)-\bar{R}(t, \cdot)\right\|_{1}$ $\left\|\overline{\mathfrak{I}}^{N}(t, \mathfrak{a}, \cdot)-\overline{\mathfrak{I}}^{N}(t, \mathfrak{a}, \cdot)\right\|_{1} \rightarrow 0$
in probability as $N \rightarrow \infty$, locall uniformly in t and \mathfrak{a}, where the limits are given by the unique solution to the above set of integral equations.

- In fact the pair $(\bar{S}, \overline{\mathfrak{F}})$ is the unique solution of an integral equation, and the other quantities are then expressed in terms of that solution.
- The result follows from the proof that as $N \rightarrow \infty$, locally uniformly in t,

$$
\left\|\bar{S}^{N}(t, \cdot)-\bar{S}(t, \cdot)\right\|_{1} \rightarrow 0, \quad\left\|\overline{\mathfrak{F}}^{N}(t, \cdot)-\overline{\mathfrak{F}}(t, \cdot)\right\|_{1} \rightarrow 0
$$

Main idea of the proof

- We have

$$
\begin{aligned}
& {\left[\bar{S}^{N}-\bar{S}\right](t, x)=\left[\bar{S}^{N}-\bar{S}\right](0, x)-\int_{0}^{t}\left[\bar{\Upsilon}^{N}-\bar{\Upsilon}\right](s, x) d s+M_{A}^{N}(t, x),} \\
& {\left[\overline{\mathfrak{F}}^{N}-\overline{\mathfrak{F}}\right](t, x)=\left[\overline{\mathfrak{F}}_{0}^{N}-\overline{\mathfrak{F}}_{0}\right](t, x)+\int_{0}^{t} \bar{\lambda}(t-s)\left[\bar{\Upsilon}^{N}-\bar{\Upsilon}\right](s, x) d s+\mathcal{E}_{\mathfrak{F}}^{N}(t, x)}
\end{aligned}
$$

Main idea of the proof

- We have

$$
\begin{aligned}
& {\left[\bar{S}^{N}-\bar{S}\right](t, x)=\left[\bar{S}^{N}-\bar{S}\right](0, x)-\int_{0}^{t}\left[\bar{\Upsilon}^{N}-\bar{\Upsilon}\right](s, x) d s+M_{A}^{N}(t, x),} \\
& {\left[\overline{\mathfrak{F}}^{N}-\overline{\mathfrak{F}}\right](t, x)=\left[\overline{\mathfrak{F}}_{0}^{N}-\overline{\mathfrak{F}}_{0}\right](t, x)+\int_{0}^{t} \bar{\lambda}(t-s)\left[\bar{\Upsilon}^{N}-\bar{\Upsilon}\right](s, x) d s+\mathcal{E}_{\mathfrak{F}}^{N}(t, x)}
\end{aligned}
$$

- An important step is to show that $M_{A}^{N}, \overline{\mathfrak{F}}_{0}^{N}-\overline{\mathfrak{F}}_{0}$ and $\mathcal{E}_{\mathfrak{F}}^{N}$ tend to 0 in probability, in $L^{1}([0,1])$, locally uniformly in t.

Main idea of the proof

- We have

$$
\begin{aligned}
& {\left[\bar{S}^{N}-\bar{S}\right](t, x)=\left[\bar{S}^{N}-\bar{S}\right](0, x)-\int_{0}^{t}\left[\bar{\Upsilon}^{N}-\bar{\Upsilon}\right](s, x) d s+M_{A}^{N}(t, x),} \\
& {\left[\overline{\mathfrak{F}}^{N}-\overline{\mathfrak{F}}\right](t, x)=\left[\overline{\mathfrak{F}}_{0}^{N}-\overline{\mathfrak{F}}_{0}\right](t, x)+\int_{0}^{t} \bar{\lambda}(t-s)\left[\bar{\Upsilon}^{N}-\bar{\Upsilon}\right](s, x) d s+\mathcal{E}_{\mathfrak{F}}^{N}(t, x) .}
\end{aligned}
$$

- An important step is to show that $M_{A}^{N}, \overline{\mathfrak{F}}_{0}^{N}-\overline{\mathfrak{F}}_{0}$ and $\mathcal{E}_{\mathfrak{F}}^{N}$ tend to 0 in probability, in $L^{1}([0,1])$, locally uniformly in t.
- Moreover

$$
\begin{aligned}
{\left[\bar{\Upsilon}^{N}-\bar{\Upsilon}\right](t, x)=} & \bar{S}^{N}(t, x) \int_{0}^{1} \beta^{N}\left(x, x^{\prime}\right) \overline{\mathfrak{F}}^{N}\left(t, x^{\prime}\right) d x^{\prime} \\
& -\bar{S}(t, x) \int_{0}^{1} \beta\left(x, x^{\prime}\right) \overline{\mathfrak{F}}\left(t, x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

Thanks to a priori estimates on $\sup _{N, t \leq T, x}\left\{\bar{S}^{N}(t, x)+\overline{\mathfrak{F}}^{N}(t, x)\right\}$, and $\sup _{t \leq T, x}\{\bar{S}(t, x)+\overline{\mathfrak{F}}(t, x)\}$, we deduce the wished convergence by standard inequalities and Gronwall's Lemma.

PDE models 1

We suppose that F is absolutely continuous, with the density $f(t)$. We define the associated hazard function : $\mu(\mathfrak{a})=\frac{f(\mathfrak{a})}{F^{c}(\mathfrak{a})}$. We have

Proposition

Assume that for each $x \in[0,1], \mathfrak{a} \mapsto \overline{\mathfrak{I}}(0, \mathfrak{a}, x)$ is absolutely continuous, and let $\overline{\mathfrak{i}}(0, \mathfrak{a}, x)=\overline{\mathfrak{I}}_{\mathfrak{a}}(0, \mathfrak{a}, x)$. Then for all $t, \mathfrak{a}>0$, a.e. $x \in[0,1]$, $\mathfrak{a} \mapsto \overline{\mathfrak{I}}(t, \mathfrak{a}, x)$ is absolutely continuous, and $\overline{\mathfrak{i}}(t, \mathfrak{a}, x):=\overline{\mathfrak{I}}_{\mathfrak{a}}(t, \mathfrak{a}, x)$ satisfies

$$
\frac{\partial \overline{\mathfrak{i}}(t, \mathfrak{a}, x)}{\partial t}+\frac{\partial \overline{\mathfrak{i}}(t, \mathfrak{a}, x)}{\partial \mathfrak{a}}=-\mu(\mathfrak{a}) \overline{\mathfrak{i}}(t, \mathfrak{a}, x)
$$

with the initial condition $\overline{\mathfrak{i}}(0, \mathfrak{a}, x)=\overline{\mathfrak{I}}_{\mathfrak{a}}(0, \mathfrak{a}, x)$ and the boundary condition

$$
\overline{\mathfrak{i}}(t, 0, x)=\bar{S}(t, x) \int_{0}^{1} \beta\left(x, x^{\prime}\right) \int_{0}^{t+\overline{\mathfrak{a}}} \frac{\bar{\lambda}\left(\mathfrak{a}^{\prime}\right)}{\frac{F^{c}\left(\mathfrak{a}^{\prime}\right)}{F^{c}\left(\mathfrak{a}^{\prime}-t\right)}} \overline{\mathfrak{i}}\left(t, \mathfrak{a}^{\prime}, x^{\prime}\right) d \mathfrak{a}^{\prime} d x^{\prime}
$$

Note that $\Im(0, \infty, x)=\Im(0, \overline{\mathfrak{a}}, x)$.

PDE models 2

Moreover, we have $\frac{\partial \bar{S}(t, x)}{\partial t}=-\overline{\mathfrak{i}}(t, 0, x)$, the above PDE has a unique solution given as follows :

$$
\overline{\mathfrak{i}}(t, \mathfrak{a}, x)=1_{\mathfrak{a} \geq t} \frac{F^{c}(\mathfrak{a})}{F^{c}(\mathfrak{a}-t)} \overline{\mathfrak{i}}(0, \mathfrak{a}-t, x)+1_{\mathfrak{a}<t} F^{c}(\mathfrak{a}) \overline{\mathfrak{i}}(t-\mathfrak{a}, 0, x)
$$

where the boundary function is the unique solution of the integral equation

$$
\begin{aligned}
\overline{\mathfrak{i}}(t, 0, x) & =\left(\bar{S}(0, x)-\int_{0}^{t} \overline{\mathfrak{i}}(s, 0, x) d s\right) \\
& \times \int_{0}^{1} \beta\left(x, x^{\prime}\right)\left(\int_{0}^{\infty} \bar{\lambda}(\mathfrak{a}+t) \overline{\mathfrak{i}}\left(0, \mathfrak{a}, x^{\prime}\right) d \mathfrak{a}+\int_{0}^{t} \bar{\lambda}(t-s) \overline{\mathfrak{i}}\left(s, 0, x^{\prime}\right) d s\right) d x^{\prime}
\end{aligned}
$$

References 1

围 G. Pang, É.P., Functional limit theorems for non-Markovian epidemic models, Annals of Applied Probability 32, pp. 1615-1665, 2022.
R R. Forien, G. Pang, É.P., Estimating the state of the Covid-19 epidemic in France using a non-Markovian model, Royal Society Open Science 8 : 202327, 2021.
围 R. Forien, G. Pang, É.P., Epidemic models with varying infectivity, SIAM J. Applied Math. 81, pp. 1893-1930, 2021.
R. Forien, G. Pang, É.P., Multipatch multigroup epidemic model with varying infectivity, Probability, Uncertainty and Quantitative Risk, to appear, Dec 2022.

References 2

(1. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. of Mathematical Biology 6, pp. 58-73, 1979.
围 D.G. Kendall, Mathematical models of the spread of infection Mathematics and computer science in Biology and Medicine, pp. 213-225, 1965.
國 W.O. Kermack and A.G. McKendrick, A Contribution to the Mathematical Theory of Epidemics, Proc. Royal Soc. London, Series A, 115, 700-721, 1927.
H.R. Thieme A model for the spatial spread of an epidemic, J. of Mathematical Biology 4, pp. 337-351, 1977.

THANK YOU FOR

YOUR ATTENTION!

