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The spatial model

We consider a population of fixed size N distributed in K = KN

locations x1, . . . , xK in S = [0, 1]. Let INk , k = 1, . . . ,KN be a
partition of [0, 1] such that xNk ∈ INk and |INk | = (KN)−1, 1 ≤ k ≤ K .
Individuals do not move between the locations. There are BN

k

individuals at location xk , BN
1 + · · ·+ BN

KN = N.

In each location, individuals are categorized into three groups : S , I
and R. We denote the numbers of indiv. in those compartments at
time t and location xk as SN

k (t), INk (t) and RN
k (t). For all t ≥ 0,

SN
k (t) + INk (t) + RN

k (t) = BN
k .

We define the piecewise constant functions of x :

SN(t, x) =
K∑

k=1

SN
k (t)1INk

(x), IN(t, x) =
K∑

k=1

INk (t)1INk
(x),

RN(t, x) =
K∑

k=1

RN
k (t)1INk

(x) .
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Varying infectivity

In each location xk , there are two types of individuals : those who are
infected at time t = 0, there are INk (0) of those, who have been
infected at times τN−j ,k < 0, 1 ≤ j ≤ INk (0), and those who are
susceptible at time t = 0, and may get infected (i.e. jump from S to
I ) at times τN1,k < τN2,k < · · · .
Let {λj ,k , j ∈ Z\{0}, 1 ≤ k ≤ K} be an i.i.d. collection of random
elements of D(R;R+), which satisfy λ(t) = 0 for t < 0. Let
ηj ,k = sup{t > 0, λj ,k(t) > 0}. At time τNj ,k + ηj ,k , the individual j
jumps from the I to the R compartment.
As a result, the total force of infection at time t and location xk is

FN
k (t) =

INk (0)∑
j=1

λ−j ,k(t − τ−j ,k) +

AN
k (t)∑
j=1

λj ,k(t − τj ,k),

where AN(t) is the number of initially susceptible who have been
infected on the time interval [0, t]. We also define
FN(t, x) =

∑K
k=1 F

N
k (t)1INk

(x).
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The propagation of the epidemic

{Pk , 1 ≤ k ≤ K} denoting mutually independent standard Poisson
processes, we let

AN
k (t) = Pk

(∫ t

0
ΥN

k (s)ds

)
, where

ΥN
k (t) =

SN
k (t)

BN
k

1

K

K∑
k ′=1

βNk,k ′F
N
k ′(t) .

Finally we define the number of infected indiv. at location xk and
time t, who have have been infected for a duration less than a :

INk (t, a)=

INk (0)∑
j=1

1τN−j,k+η−j,k>t1−τN−j,k≤(a−t)++

AN
k (t)∑

j=AN
k ((t−a)+)+1

1τNj,k+ηj,k>t

Also IN(t, a, x) =
∑K

k=1 I
N
k (t, a)1INk

(x).
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The stochastic finite population model

We have

SN(t, x) = SN(0, x)− AN(t, x),

IN(t, x) =

IN(0,x)∑
j=1

1τN−j,k+η−j,k>t +

AN(t,x)∑
j=1

1τNj,k+ηj,k>t , if x ∈ Ik

RN(t, x) = RN(0, x) +

IN(0,x)∑
j=1

1τN−j,k+η−j,k≤t +

AN(t,x)∑
j=1

1τNj,k+ηj,k≤t .

We let X̄N(t, x) := XN(t,x)
BN(x)

, where BN(x) =
∑K

k=1 B
N
k 1INk

(x).

We wish to take the liit as N →∞ in
(S̄N(t, x), F̄N(t, x), ĪN(t, x), R̄N(t, x)) and also in ĪN(t, a, x).
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Assumptions

KN →∞ as N →∞, infk B
N
k →∞, and supN,k,k ′

BN
k

BN
k′
<∞.

We assume that the initial conditions converge towards appropriate
limits, namely for all a > 0, as N →∞,

‖S̄N(0, ·)−S̄(0, ·)‖1+‖ĪN(0, a, ·)−Ī(0, a, ·)‖1+‖R̄N(0, ·)−R̄(0, ·)‖1→0

supN,k,k ′ β
N
k,k ′ <∞ and βN(x , x ′)→ β(x , x ′) in L1([0, 1]2), where

βN(x , x ′) =
K∑

k,k ′=1

BN
k ′

BN
k

βNk,k ′1INk
(x)1IN

k′
(x ′) .

λ(t) ≤ λ∗ a.s. for all t ≥ 0, λ has at most a given finite number of
jumps and is uniformly continuous between its jumps. Notation :
λ̄(t) = E[λ(t)].
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The limiting quantities

Consider the system (with F (t) = P(η1,1 ≤ t), F c(t) = 1− F (t))

S̄(t, x) = S̄(0, x)−
∫ t

0
Ῡ(s, x)ds,

F̄(t, x) =

∫ ∞
0

λ̄(a + t)Ī(0, da, x) +

∫ t

0
λ̄(t − s)Ῡ(s, x)ds,

Ī(t, a, x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) +

∫ t

(t−a)+

F c(t − s)Ῡ(s, x)ds,

R̄(t, x) = R̄(0, x)+

∫ ∞
0

(
1−F

c(a′ + t)

F c(a′)

)
Ī(0, da′, x)+

∫ t

0
F (t − s)Ῡ(s, x)ds .

where Ῡ(t, x) = S̄(t, x)
∫ 1

0 β(x , x ′)F̄(t, x ′)dx ′.
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Ῡ(s, x)ds,

F̄(t, x) =

∫ ∞
0
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The convergence result

We have

Theorem

‖S̄N(t, ·)− S̄(t, ·)‖1 → 0, ‖F̄N(t, ·)− F̄(t, ·)‖1 → 0, ‖R̄N(t, ·)− R̄(t, ·)‖1 → 0

‖ĪN(t, a, ·)− ĪN(t, a, ·)‖1 → 0

in probability as N →∞, locall uniformly in t and a, where the limits are
given by the unique solution to the above set of integral equations.

In fact the pair (S̄ , F̄) is the unique solution of an integral equation,
and the other quantities are then expressed in terms of that solution.

The result follows from the proof that as N →∞, locally uniformly in
t,

‖S̄N(t, ·)− S̄(t, ·)‖1 → 0, ‖F̄N(t, ·)− F̄(t, ·)‖1 → 0
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Main idea of the proof

We have

[S̄N−S̄ ](t, x)=[S̄N−S̄ ](0, x)−
∫ t

0
[ῩN−Ῡ](s, x)ds+MN

A(t, x),

[F̄N−F̄](t, x)=[F̄N
0 − F̄0](t, x)+

∫ t

0
λ̄(t − s)[ῩN − Ῡ](s, x)ds+ENF (t, x) .

An important step is to show that MN
A , F̄N

0 − F̄0 and ENF tend to 0 in
probability, in L1([0, 1]), locally uniformly in t.
Moreover

[ῩN − Ῡ](t, x) = S̄N(t, x)

∫ 1

0
βN(x , x ′)F̄N(t, x ′)dx ′

− S̄(t, x)

∫ 1

0
β(x , x ′)F̄(t, x ′)dx ′ .

Thanks to a priori estimates on supN,t≤T ,x
{
S̄N(t, x) + F̄N(t, x)

}
,

and supt≤T ,x
{
S̄(t, x) + F̄(t, x)

}
, we deduce the wished convergence

by standard inequalities and Gronwall’s Lemma.
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probability, in L1([0, 1]), locally uniformly in t.
Moreover

[ῩN − Ῡ](t, x) = S̄N(t, x)

∫ 1

0
βN(x , x ′)F̄N(t, x ′)dx ′

− S̄(t, x)

∫ 1

0
β(x , x ′)F̄(t, x ′)dx ′ .

Thanks to a priori estimates on supN,t≤T ,x
{
S̄N(t, x) + F̄N(t, x)

}
,

and supt≤T ,x
{
S̄(t, x) + F̄(t, x)

}
, we deduce the wished convergence

by standard inequalities and Gronwall’s Lemma.
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PDE models 1

We suppose that F is absolutely continuous, with the density f (t). We

define the associated hazard function : µ(a) = f (a)
F c (a) . We have

Proposition

Assume that for each x ∈ [0, 1], a 7→ Ī(0, a, x) is absolutely continuous,
and let ī(0, a, x) = Īa(0, a, x). Then for all t, a > 0, a.e. x ∈ [0, 1],
a 7→ Ī(t, a, x) is absolutely continuous, and ī(t, a, x) := Īa(t, a, x) satisfies

∂ ī(t, a, x)

∂t
+
∂ ī(t, a, x)

∂a
= −µ(a)̄i(t, a, x),

with the initial condition ī(0, a, x) = Īa(0, a, x) and the boundary condition

ī(t, 0, x) = S̄(t, x)

∫ 1

0
β(x , x ′)

∫ t+ā

0

λ̄(a′)
F c (a′)

F c (a′−t)

ī(t, a′, x ′)da′dx ′ .

Note that I(0,∞, x) = I(0, ā, x).
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PDE models 2

Moreover, we have ∂S̄(t,x)
∂t = −ī(t, 0, x), the above PDE has a unique

solution given as follows :

ī(t, a, x) = 1a≥t
F c(a)

F c(a− t)
ī(0, a− t, x) + 1a<tF

c(a)̄i(t − a, 0, x),

where the boundary function is the unique solution of the integral equation

ī(t, 0, x) =
(
S̄(0, x)−

∫ t

0
ī(s, 0, x)ds

)
×
∫ 1

0
β(x , x ′)

(∫ ∞
0
λ̄(a + t )̄i(0, a, x ′)da+

∫ t

0
λ̄(t − s )̄i(s, 0, x ′)ds

)
dx ′ .
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