Near-Optimal No-Regret Learning for General Convex Games

gfarina@{cs.cmu.edu | meta.com}

Simons Institute

October 14, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recent line of work: uncoupled learning dynamics such that, when employed by all players in a game, each player's regret after T repetitions grows polylogarithmically in T

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Recent line of work: uncoupled learning dynamics such that, when employed by all players in a game, each player's regret after T repetitions grows polylogarithmically in T
- However, so far these results have only been limited to certain classes of games with structured strategy spaces
 - Mostly normal-form games
 - Extensive-form games via kernelized multiplicative weights

- Recent line of work: uncoupled learning dynamics such that, when employed by all players in a game, each player's regret after T repetitions grows polylogarithmically in T
- However, so far these results have only been limited to certain classes of games with structured strategy spaces
 - ▷ Mostly normal-form games
 - Extensive-form games via kernelized multiplicative weights

 Yet, many fundamental models in economics and multiagent systems require more general, convex strategy sets

- Recent line of work: uncoupled learning dynamics such that, when employed by all players in a game, each player's regret after T repetitions grows polylogarithmically in T
- However, so far these results have only been limited to certain classes of games with structured strategy spaces
 - Mostly normal-form games
 - > Extensive-form games via kernelized multiplicative weights
- Yet, many fundamental models in economics and multiagent systems require more general, convex strategy sets

Q: Can O(polylog T) regret be attained in general convex and compact strategy sets while retaining efficient strategy updates?

Q: Can O(polylog T) regret be attained in general convex and compact strategy sets while retaining efficient strategy updates?

■ We answer in the **positive**, and give an uncoupled learning algorithm with $O(\log T)$ per-player regret in general convex games

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▷ In adversarial settings: usual $O(\sqrt{T})$ regret bound

Q: Can O(polylog T) regret be attained in general convex and compact strategy sets while retaining efficient strategy updates?

- We answer in the **positive**, and give an uncoupled learning algorithm with $O(\log T)$ per-player regret in general convex games
 - ▷ In adversarial settings: usual $O(\sqrt{T})$ regret bound
- Per-iteration complexity:
 - \triangleright $O(\log \log T)$ with access to local proximal oracle
 - \triangleright O(poly T) with access to only a linear optimization oracle

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Q: Can O(polylog T) regret be attained in general convex and compact strategy sets while retaining efficient strategy updates?

- We answer in the **positive**, and give an uncoupled learning algorithm with $O(\log T)$ per-player regret in general convex games
 - \triangleright In adversarial settings: usual $O(\sqrt{T})$ regret bound
- Per-iteration complexity:
 - \triangleright $O(\log \log T)$ with access to local proximal oracle
 - \triangleright O(polyT) with access to only a linear optimization oracle
- In special cases where prior results apply, our algorithm improves over the state-of-the-art regret bounds in terms of the dependence on either the number of iterations or dimension of the strategy sets

History and Context

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 Celebrated framework that has been central in the development of online learning and multiagent systems

- Celebrated framework that has been central in the development of online learning and multiagent systems
- Idea: a player is "learning" how to play the game when looking back they do not strongly wish they had played differently

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Celebrated framework that has been central in the development of online learning and multiagent systems
- Idea: a player is "learning" how to play the game when looking back they do not strongly wish they had played differently

Why care about regret minimization?

At least three different scenarios

- Celebrated framework that has been central in the development of online learning and multiagent systems
- Idea: a player is "learning" how to play the game when looking back they do not strongly wish they had played differently

Why care about regret minimization?

1 Natural notion of performance if the learning is truly online

 Good news: no-regret algorithms are designed for adversarial environment

- Celebrated framework that has been central in the development of online learning and multiagent systems
- Idea: a player is "learning" how to play the game when looking back they do not strongly wish they had played differently

Why care about regret minimization?

- **1** Natural notion of performance if the learning is truly online
 - Good news: no-regret algorithms are designed for adversarial environment
- 2 May be a good model for the behavior of a modeled system

- Celebrated framework that has been central in the development of online learning and multiagent systems
- Idea: a player is "learning" how to play the game when looking back they do not strongly wish they had played differently

Why care about regret minimization?

- **1** Natural notion of performance if the learning is truly online
 - Good news: no-regret algorithms are designed for adversarial environment
- 2 May be a good model for the behavior of a modeled system
- 3 Important connections to game-theoretic equilibria
 - Convergence to coarse correlated equilibrium in multi-player general-sum games
 - > Approximation error is tied to maximum individual regret
 - Special case: Nash equilibrium in 2-player 0-sum games

- Why care about regret minimization?
 - **1** Natural notion of performance if the learning is truly online
 - 2 May be a good model for the behavior of a modeled system

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- **3** Important connections to game-theoretic equilibria
- Idea: players train against each other in self play

- Why care about regret minimization?
 - **1** Natural notion of performance if the learning is truly online
 - 2 May be a good model for the behavior of a modeled system

- **3** Important connections to game-theoretic equilibria
- Idea: players train against each other in self play
- Current state-of-the-art for large games

Why care about regret minimization?

- **1** Natural notion of performance if the learning is truly online
- 2 May be a good model for the behavior of a modeled system
- **3** Important connections to game-theoretic equilibria
- Idea: players train against each other in self play
- Current state-of-the-art for large games
- Remarkable practical success: primary component in recent landmark results in AI

Why care about regret minimization?

- **1** Natural notion of performance if the learning is truly online
- 2 May be a good model for the behavior of a modeled system

3 Important connections to game-theoretic equilibria

- Idea: players train against each other in self play
- Current state-of-the-art for large games
- Remarkable practical success: primary component in recent landmark results in Al

Self-play learning is far from fully unpredictable/adversarial setting online learning has historically focused on...

Why care about regret minimization?

- **1** Natural notion of performance if the learning is truly online
- May be a good model for the behavior of a modeled system
- **B** Important connections to game-theoretic equilibria
- Idea: players train against each other in self play
- Current state-of-the-art for large games
- Remarkable practical success: primary component in recent landmark results in Al

Self-play learning is far from fully unpredictable/adversarial setting online learning has historically focused on...

Q: What performance guarantees can be obtained for self-play in general games?

What performance guarantees can be obtained for self-play in general games?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Question first formulated by Daskalakis et al. [2011] for two-player zero-sum matrix games

What performance guarantees can be obtained for self-play in general games?

- Question first formulated by Daskalakis et al. [2011] for two-player zero-sum matrix games
- Since then: considerable interest in extending guarantees to more general setting

What performance guarantees can be obtained for self-play in general games?

- Question first formulated by Daskalakis et al. [2011] for two-player zero-sum matrix games
- Since then: considerable interest in extending guarantees to more general setting

 Chiang et al. [2012] and Rakhlin and Sridharan [2013] pioneered the framework of optimism

What performance guarantees can be obtained for self-play in general games?

- Question first formulated by Daskalakis et al. [2011] for two-player zero-sum matrix games
- Since then: considerable interest in extending guarantees to more general setting
- Chiang et al. [2012] and Rakhlin and Sridharan [2013] pioneered the framework of optimism
- Syrgkanis et al. [2015] crystallized the RVU property and established dynamics with $O(T^{1/4})$ per-player regret in convex games

What performance guarantees can be obtained for self-play in general games?

- Question first formulated by Daskalakis et al. [2011] for two-player zero-sum matrix games
- Since then: considerable interest in extending guarantees to more general setting
- Chiang et al. [2012] and Rakhlin and Sridharan [2013] pioneered the framework of optimism
- Syrgkanis et al. [2015] crystallized the **RVU property** and established dynamics with *O*(*T*^{1/4}) per-player regret in convex games
- Chen and Peng [2020] improves to O(T^{1/6}) but only in two-player games

- Daskalakis et al. [2021] shows that in matrix games one can achieve O(log⁴ T) by using the OMWU algorithm
 - Exponential improvement over the guarantees obtained using traditional techniques within the no-regret framework!

- Daskalakis et al. [2021] shows that in matrix games one can achieve O(log⁴ T) by using the OMWU algorithm
 - ▷ *Exponential improvement* over the guarantees obtained using traditional techniques within the no-regret framework!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

■ Farina et al. [2022] show that in certain classes of polyhedral games (including extensive-form games) one can run OMWU on the (exponentially many) vertices in polynomial time thanks to a kernel trick (→ Kernelized OMWU)

- Daskalakis et al. [2021] shows that in matrix games one can achieve O(log⁴ T) by using the OMWU algorithm
 - ▷ *Exponential improvement* over the guarantees obtained using traditional techniques within the no-regret framework!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Farina et al. [2022] show that in certain classes of polyhedral games (including extensive-form games) one can run OMWU on the (exponentially many) vertices in polynomial time thanks to a kernel trick (→ Kernelized OMWU)
- Anagnostides et al. [2022] extendes the technique of Daskalakis et al. [2021] to swap regret in matrix games

- Daskalakis et al. [2021] shows that in matrix games one can achieve O(log⁴ T) by using the OMWU algorithm
 - ▷ *Exponential improvement* over the guarantees obtained using traditional techniques within the no-regret framework!
- Farina et al. [2022] show that in certain classes of polyhedral games (including extensive-form games) one can run OMWU on the (exponentially many) vertices in polynomial time thanks to a kernel trick (→ Kernelized OMWU)
- Anagnostides et al. [2022] extendes the technique of Daskalakis et al. [2021] to swap regret in matrix games
- Piliouras et al. [2022] proposes learning dynamics that guarantee O(log T) regret for a subsequence of iterates in matrix games

- Daskalakis et al. [2021] shows that in matrix games one can achieve O(log⁴ T) by using the OMWU algorithm
 - ▷ *Exponential improvement* over the guarantees obtained using traditional techniques within the no-regret framework!
- Farina et al. [2022] show that in certain classes of polyhedral games (including extensive-form games) one can run OMWU on the (exponentially many) vertices in polynomial time thanks to a kernel trick (→ Kernelized OMWU)
- Anagnostides et al. [2022] extendes the technique of Daskalakis et al. [2021] to swap regret in matrix games
- Piliouras et al. [2022] proposes learning dynamics that guarantee O(log T) regret for a subsequence of iterates in matrix games
- This paper: O(log T) regret for general convex games

Comparison table

Method	Applies to	Regret bound	Cost per iteration
OFTRL / OMD [Syrgkanis et al., 2015]	General convex set	$O(\sqrt{n} \Re T^{1/4})$	Regularizer- & oracle- dependent
OMWU [Daskalakis et al., 2021]	Simplex Δ^d	$O(n \log d \log^4 T)$	<i>O</i> (<i>d</i>)
Clairvoyant MWU [Piliouras et al., 2022]	Simplex Δ^d	$O(n \log d \log T)$	<i>O</i> (<i>d</i>)
Kernelized OMWU [Farina et al., 2022]	Polytope $\Omega = \mathrm{co}\mathcal{V}$ with $\mathcal{V} \subseteq \{0,1\}^d$	$O(n \log \mathcal{V} \log^4 T)$	d imes cost of kernel
LRL-OFTRL [This talk]	General convex set $\mathcal{X} \subseteq \mathbb{R}^d$	$O(nd \ \mathcal{X}\ _1^3 \log T)$	 Oracle-dependent: O(log log T) proximal oracle calls O(poly T) linear opt. oracle calls

(ロ)、(型)、(E)、(E)、 E) の(()

where:

- *n*: number of players
- *T*: number of iterations/repetitions of the game
- ℜ: regularizer-dependent parameter
- $\operatorname{co}\mathcal{V}$: convex hull of \mathcal{V}
- $\|\mathcal{X}\|_1$: upper bound on $\max_{\mathbf{x}\in\mathcal{X}} \|\mathbf{x}\|_1$

Experimental results (log x-axis)

▲□▶▲□▶▲目▶▲目▶ 目 のへ

Convex Games

Convex game

In an *n*-player convex game:

Every player $i \in \{1, ..., n\}$ has a nonnempty convex and compact strategy set X_i (these include *mixed* strategies)

The **utility function** $u_i : \times_{j=1}^n \mathcal{X}_j \to \mathbb{R}$ of player *i* is a continuously differentiable function such that:

1 (concavity) $u_i(\mathbf{x}_i, \mathbf{x}_{-i})$ is concave in \mathbf{x}_i for all \mathbf{x}_{-i}

Convex game

In an *n*-player convex game:

Every player $i \in \{1, ..., n\}$ has a nonnempty convex and compact strategy set X_i (these include *mixed* strategies)

The **utility function** $u_i : \times_{j=1}^n \mathcal{X}_j \to \mathbb{R}$ of player *i* is a continuously differentiable function such that:

- **1** (concavity) $u_i(\mathbf{x}_i, \mathbf{x}_{-i})$ is concave in \mathbf{x}_i for all \mathbf{x}_{-i}
- 2 (bounded gradients) $\|\nabla_{\mathbf{x}_i} u_i(\mathbf{x})\|_{\infty} \leq B$ for all \mathbf{x}

Convex game

In an *n*-player convex game:

Every player $i \in \{1, ..., n\}$ has a nonnempty convex and compact strategy set \mathcal{X}_i (these include *mixed* strategies)

The **utility function** $u_i : \times_{j=1}^n \mathcal{X}_j \to \mathbb{R}$ of player *i* is a continuously differentiable function such that:

- 1 (concavity) $u_i(\mathbf{x}_i, \mathbf{x}_{-i})$ is concave in \mathbf{x}_i for all \mathbf{x}_{-i}
- 2 (bounded gradients) $\|\nabla_{\mathbf{x}_i} u_i(\mathbf{x})\|_{\infty} \leq B$ for all \mathbf{x}
- **3** (smoothness) $\nabla_{x_i} u_i$ is *L*-Lipschitz smooth:

$$\|
abla_{\mathbf{x}_i} u_i(\mathbf{x}) -
abla_{\mathbf{x}_i} u_i(\mathbf{x}')\|_{\infty} \leq L \|\mathbf{x} - \mathbf{x}'\|_1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $\boldsymbol{x}, \boldsymbol{x}'$.

- Games like rock-paper-scissors
 - $\triangleright Simultaneous action game with finite action set A_i for each player i$

イロト 不得 トイヨト イヨト

- Games like rock-paper-scissors
 - Simultaneous action game with finite action set A_i for each player i
- Each player's strategy set if the set of distributions over their actions A_i

$$\mathcal{X}_i = \Delta(\mathcal{A}_i)$$

イロト 不得 トイヨト イヨト

- Games like rock-paper-scissors
 - ▷ Simultaneous action game with finite action set A_i for each player i
- Each player's strategy set if the set of distributions over their actions A_i

 $\mathcal{X}_i = \Delta(\mathcal{A}_i)$

• The utility of player *i* is the **multilinear** function

$$u_i(\mathbf{x}) = \mathbb{E}_{\mathbf{a} \sim \mathbf{x}}[U_i(\mathbf{a})]$$

where U_i is the payoff function of the game

- Games like rock-paper-scissors
 - ▷ Simultaneous action game with finite action set A_i for each player i
- Each player's strategy set if the set of distributions over their actions A_i

$$\mathcal{X}_i = \Delta(\mathcal{A}_i)$$

ヘロト ヘヨト ヘヨト ヘヨト

-

The utility of player *i* is the **multilinear** function

$$u_i(\mathbf{x}) = \mathbb{E}_{\mathbf{a} \sim \mathbf{x}}[U_i(\mathbf{a})]$$

where U_i is the payoff function of the game

Gradients of *u_i* are bounded by the maximum payoff

- Games like rock-paper-scissors
 - ▷ Simultaneous action game with finite action set A_i for each player i
- Each player's strategy set if the set of distributions over their actions A_i

$$\mathcal{X}_i = \Delta(\mathcal{A}_i)$$

The utility of player *i* is the **multilinear** function

$$u_i(\mathbf{x}) = \mathbb{E}_{\mathbf{a} \sim \mathbf{x}}[U_i(\mathbf{a})]$$

where U_i is the payoff function of the game

- Gradients of *u_i* are bounded by the maximum payoff
- Smoothness of ∇u_i is known total variation lemma

Games played on a game tree

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Games played on a game tree

ヘロト 人間 ト 人 ヨト 人 ヨト

æ

Poker, Go, Bridge, ...

Games played on a game tree

Poker, Go, Bridge, ...

Turns, simultaneous moves, stochastic moves

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Games played on a game tree
- Poker, Go, Bridge, ...
- Turns, simultaneous moves, stochastic moves

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Imperfect information

- Games played on a game tree
- Poker, Go, Bridge, ...
- Turns, simultaneous moves, stochastic moves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Imperfect information

Extensive-form games are convex games:

 Strategy space of each player is a sequence-form polytope [Romanovskii, 1962, Koller et al., 1996]

- Games played on a game tree
- Poker, Go, Bridge, ...
- Turns, simultaneous moves, stochastic moves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Imperfect information

Extensive-form games are convex games:

- Strategy space of each player is a sequence-form polytope [Romanovskii, 1962, Koller et al., 1996]
- Utilities are multilinear

- Games played on a game tree
- Poker, Go, Bridge, ...
- Turns, simultaneous moves, stochastic moves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Imperfect information

Extensive-form games are convex games:

- Strategy space of each player is a sequence-form polytope [Romanovskii, 1962, Koller et al., 1996]
- Utilities are multilinear
- Hence gradients are smooth and bounded similarly to normal-form games

Every player has to route a flow f_i from a source to a destination in an undirected graph

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Every player has to route a flow f_i from a source to a destination in an undirected graph
- Every edge is associated with a latency function l_e(f_e) mapping the amount of flow through the edge to some latency

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Every player has to route a flow f_i from a source to a destination in an undirected graph
- Every edge is associated with a latency function l_e(f_e) mapping the amount of flow through the edge to some latency
- Strategy set of each player is all possible ways of splitting f_i into paths from source to destination

- Every player has to route a flow f_i from a source to a destination in an undirected graph
- Every edge is associated with a latency function l_e(f_e) mapping the amount of flow through the edge to some latency
- Strategy set of each player is all possible ways of splitting f_i into paths from source to destination
- Under suitable restrictions on the latency functions, these games satisfy our convex game definition [Syrgkanis et al., 2015, Roughgarden and Schoppmann, 2015]

Games played among *n* firms (players)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Games played among *n* firms (players)
- Every firm *i* decides the quantity s_i of a good to produce from an interval

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Games played among *n* firms (players)

Every firm *i* decides the quantity s_i of a good to produce from an interval

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 A cost function c_i assigns a production cost to the given quantity

- Games played among *n* firms (players)
- Every firm *i* decides the quantity s_i of a good to produce from an interval
- A cost function c_i assigns a production cost to the given quantity
- Price of good is determined by the joint choice of quantities $s = (s_1, \ldots, s_n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Games played among *n* firms (players)
- Every firm *i* decides the quantity s_i of a good to produce from an interval
- A cost function c_i assigns a production cost to the given quantity
- Price of good is determined by the joint choice of quantities $s = (s_1, \ldots, s_n)$

• Utility of firm *i* is defined as $u_i(s) = s_i p(s) - c_i(s)$

- Games played among *n* firms (players)
- Every firm *i* decides the quantity s_i of a good to produce from an interval
- A cost function c_i assigns a production cost to the given quantity
- Price of good is determined by the joint choice of quantities $s = (s_1, \ldots, s_n)$
- Utility of firm *i* is defined as $u_i(s) = s_i p(s) c_i(s)$
- Important case: concave and smooth *u_i* [Even-Dar et al., 2009]

Learning Setup in Convex Games

Repeated interaction

• At all times t, each player outputs their strateg $oldsymbol{x}_i^{(t)} \in \mathcal{X}_i$

- Repeated interaction
- At all times t, each player outputs their strateg $oldsymbol{x}_i^{(t)} \in \mathcal{X}_i$
- Then, everyone observes the gradient of their own utility

$$\boldsymbol{u}_i^{(t)} \coloneqq \nabla_{\boldsymbol{x}_i} u_i(\boldsymbol{x}_1^{(t)}, \ldots, \boldsymbol{x}_n^{(t)})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Repeated interaction
- At all times t, each player outputs their strateg $oldsymbol{x}_i^{(t)} \in \mathcal{X}_i$
- Then, everyone observes the gradient of their own utility

$$\boldsymbol{u}_i^{(t)} \coloneqq \nabla_{\boldsymbol{x}_i} u_i(\boldsymbol{x}_1^{(t)}, \ldots, \boldsymbol{x}_n^{(t)})$$

The canonical measure of performance of each player is regret

$$\mathsf{Reg}_{i}^{(\mathcal{T})} \coloneqq \max_{\boldsymbol{x}^{*} \in \mathcal{X}_{i}} \sum_{t=1}^{\mathcal{T}} \langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^{*} - \boldsymbol{x}_{i}^{(t)} \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our Technique — Main Insights

Outline

1 What RVU bounds enable and what they don't

 \triangleright O(1) social regret, but no guarantees^{???} on individual regret

Outline

- What RVU bounds enable and what they don't
 ▷ O(1) social regret, but no guarantees^{???} on individual regret
- 2 What would be enough to enable O(1) social \rightarrow individual regret guarantee?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

- What RVU bounds enable and what they don't
 ▷ O(1) social regret, but no guarantees^{???} on individual regret
- 2 What would be enough to enable O(1) social \rightarrow individual regret guarantee?
- 3 That will give intuition as to how we got to our dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Optimistic FTRL / OMD guarantee RVU bounds:¹

$$\mathsf{Reg}_{i}^{(T)} \lesssim \frac{1}{\eta} + \eta \sum_{t=1}^{T} \left\| \boldsymbol{u}_{i}^{(t)} - \boldsymbol{u}_{i}^{(t-1)} \right\|_{*}^{2} - \frac{1}{\eta} \sum_{t=1}^{T} \left\| \boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)} \right\|^{2}$$

¹Stepsize- and time-independent factors are omitted $\rightarrow \langle B \rangle \langle B \rangle \langle B \rangle \langle B \rangle \langle B \rangle$

Optimistic FTRL / OMD guarantee RVU bounds:¹

$$\operatorname{Reg}_{i}^{(T)} \lesssim \frac{1}{\eta} + \eta \sum_{t=1}^{T} \left\| \boldsymbol{u}_{i}^{(t)} - \boldsymbol{u}_{i}^{(t-1)} \right\|_{*}^{2} - \frac{1}{\eta} \sum_{t=1}^{T} \left\| \boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)} \right\|^{2}$$

RVU bounds are powerful

This fact alone implies that the **social regret** (sum of regrets of all players) is at most a *T*-independent constant

¹Stepsize- and time-independent factors are omitted $\rightarrow \langle \overline{\sigma} \rangle \land \overline{z} \rightarrow \langle \overline{z} \rangle \land \overline{z} \rightarrow \langle \overline{z} \rangle$

Optimistic FTRL / OMD guarantee RVU bounds:¹

$$\mathsf{Reg}_{i}^{(T)} \lesssim \frac{1}{\eta} + \eta \sum_{t=1}^{T} \left\| \boldsymbol{u}_{i}^{(t)} - \boldsymbol{u}_{i}^{(t-1)} \right\|_{*}^{2} - \frac{1}{\eta} \sum_{t=1}^{T} \left\| \boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)} \right\|^{2}$$

 Using the smoothness of the utilities, the middle sum can be bounded as

$$\sum_{t=1}^{T} \left\| \boldsymbol{u}_{i}^{(t)} - \boldsymbol{u}_{i}^{(t-1)} \right\|_{*}^{2} \leq L^{2} \sum_{t=1}^{T} \sum_{j=1}^{n} \left\| \boldsymbol{x}_{j}^{(t)} - \boldsymbol{x}_{j}^{(t-1)} \right\|^{2}$$

Optimistic FTRL / OMD guarantee RVU bounds:¹

$$\mathsf{Reg}_{i}^{(T)} \lesssim \frac{1}{\eta} + \eta \sum_{t=1}^{T} \left\| \boldsymbol{u}_{i}^{(t)} - \boldsymbol{u}_{i}^{(t-1)} \right\|_{*}^{2} - \frac{1}{\eta} \sum_{t=1}^{T} \left\| \boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)} \right\|^{2}$$

 Using the smoothness of the utilities, the middle sum can be bounded as

$$\sum_{t=1}^{T} \left\| \boldsymbol{u}_{i}^{(t)} - \boldsymbol{u}_{i}^{(t-1)} \right\|_{*}^{2} \leq L^{2} \sum_{t=1}^{T} \sum_{j=1}^{n} \left\| \boldsymbol{x}_{j}^{(t)} - \boldsymbol{x}_{j}^{(t-1)} \right\|^{2}$$

So, the **social** regret is bounded as

$$\sum_{i=1}^{n} \operatorname{Reg}_{i}^{(T)} \lessapprox \frac{n}{\eta} + \left(n\eta L^{2} - \frac{1}{\eta} \right) \sum_{t=1}^{T} \sum_{j=1}^{n} \left\| \mathbf{x}_{j}^{(t)} - \mathbf{x}_{j}^{(t-1)} \right\|^{2}$$
$$\leq \frac{n}{\eta} \qquad \qquad \left(\text{as long as } \eta \leq \frac{1}{L\sqrt{n}} \right)$$

¹Stepsize- and time-independent factors are omitted $\rightarrow \langle B \rangle \langle$

What about individual regret?

 Unfortunately, convergence to coarse-correlated equilibria in multiplayer games is driven by the maximum individual regret, and not by the social regret
Unfortunately, convergence to coarse-correlated equilibria in multiplayer games is driven by the maximum individual regret, and not by the social regret

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Natural question

What do RVU bounds tell us about individual regret?

 Unfortunately, convergence to coarse-correlated equilibria in multiplayer games is driven by the maximum individual regret, and not by the social regret

Natural question

What do RVU bounds tell us about individual regret?

1 Regret is upper bounded by the social squared path length

$$\operatorname{Reg}_{i}^{(T)} \lesssim \frac{1}{\eta} + \eta L^{2} \sum_{t=1}^{T} \sum_{j=1}^{n} \left\| \mathbf{x}_{j}^{(t)} - \mathbf{x}_{j}^{(t-1)} \right\|^{2}$$

 Unfortunately, convergence to coarse-correlated equilibria in multiplayer games is driven by the maximum individual regret, and not by the social regret

Natural question

What do RVU bounds tell us about individual regret?

1 Regret is upper bounded by the social squared path length

$$\operatorname{\mathsf{Reg}}_{i}^{(T)} \lessapprox \frac{1}{\eta} + \eta L^{2} \sum_{t=1}^{T} \sum_{j=1}^{n} \left\| \boldsymbol{x}_{j}^{(t)} - \boldsymbol{x}_{j}^{(t-1)} \right\|^{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2 So, if the social squared path length was small...

 Unfortunately, convergence to coarse-correlated equilibria in multiplayer games is driven by the maximum individual regret, and not by the social regret

Natural question

What do RVU bounds tell us about individual regret?

1 Regret is upper bounded by the social squared path length

$$\mathsf{Reg}_{i}^{(\mathcal{T})} \lessapprox \frac{1}{\eta} + \eta L^{2} \sum_{t=1}^{\mathcal{T}} \sum_{j=1}^{n} \left\| \mathbf{x}_{j}^{(t)} - \mathbf{x}_{j}^{(t-1)} \right\|^{2}$$

2 So, if the social squared path length was small...

3 On the other hand, for $\eta = O(1)$ the social regret is

$$\sum_{i=1}^{n} \operatorname{Reg}_{i}^{(T)} \lesssim \frac{n}{\eta} - \frac{1}{\eta} \sum_{t=1}^{T} \sum_{j=1}^{n} \left\| \mathbf{x}_{j}^{(t)} - \mathbf{x}_{j}^{(t-1)} \right\|^{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Main insight

1 Regret is upper bounded by the social squared path length

$$\mathsf{Reg}_{i}^{(\mathcal{T})} \lessapprox \frac{1}{\eta} + \eta L^{2} \sum_{t=1}^{\mathcal{T}} \sum_{j=1}^{n} \left\| \mathbf{x}_{j}^{(t)} - \mathbf{x}_{j}^{(t-1)} \right\|^{2}$$

2 So, if the social squared path length was small...

3 On the other hand, for $\eta = O(1)$ the social regret is

$$\sum_{i=1}^{n} \operatorname{Reg}_{i}^{(T)} \lesssim \frac{n}{\eta} - \frac{1}{\eta} \sum_{t=1}^{T} \sum_{j=1}^{n} \left\| \boldsymbol{x}_{j}^{(t)} - \boldsymbol{x}_{j}^{(t-1)} \right\|^{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Main insight

1 Regret is upper bounded by the social squared path length

$$\mathsf{Reg}_{i}^{(\mathcal{T})} \lessapprox \frac{1}{\eta} + \eta L^{2} \sum_{t=1}^{\mathcal{T}} \sum_{j=1}^{n} \left\| \mathbf{x}_{j}^{(t)} - \mathbf{x}_{j}^{(t-1)} \right\|^{2}$$

2 So, if the social squared path length was small...

3 On the other hand, for $\eta = O(1)$ the social regret is

$$\sum_{i=1}^{n} \operatorname{Reg}_{i}^{(T)} \lesssim \frac{n}{\eta} - \frac{1}{\eta} \sum_{t=1}^{T} \sum_{j=1}^{n} \left\| \boldsymbol{x}_{j}^{(t)} - \boldsymbol{x}_{j}^{(t-1)} \right\|^{2}$$

Main insight

If we knew that $\operatorname{Reg}_{i}^{(T)} \geq 0$ for all player, then:

1 From second inequality: social path length $\leq n$, that is at most constant wrt time T!

Main insight

1 Regret is upper bounded by the social squared path length

$$\mathsf{Reg}_{i}^{(\mathcal{T})} \lessapprox \frac{1}{\eta} + \eta L^{2} \sum_{t=1}^{\mathcal{T}} \sum_{j=1}^{n} \left\| \mathbf{x}_{j}^{(t)} - \mathbf{x}_{j}^{(t-1)} \right\|^{2}$$

2 So, if the social squared path length was small...

3 On the other hand, for $\eta = O(1)$ the social regret is

$$\sum_{i=1}^{n} \operatorname{Reg}_{i}^{(T)} \lesssim \frac{n}{\eta} - \frac{1}{\eta} \sum_{t=1}^{T} \sum_{j=1}^{n} \left\| \boldsymbol{x}_{j}^{(t)} - \boldsymbol{x}_{j}^{(t-1)} \right\|^{2}$$

Main insight

- If we knew that $\operatorname{Reg}_{i}^{(T)} \geq 0$ for all player, then:
 - **1** From second inequality: social path length $\leq n$, that is at most **constant** wrt time T!
 - 2 Plugging into first inequality: constant individual regret

Main question

(How) Can we

♦ Ensure the nonnegativity of the player regrets,

While at the same time

Not losing the RVU bound?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Our Technique — Technical Details

Based on Optimistic FTRL, but with three important twists:

1 Lifting

- hinspace OFTRL operates on a lifted space $\mathcal{ ilde{X}} \subseteq \mathbb{R}^{d+1}$
- $\triangleright\,$ Feedback is lifted to $\tilde{\mathcal{X}}$ before iterates can be produced

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Based on Optimistic FTRL, but with three important twists:

1 Lifting

- hinspace OFTRL operates on a lifted space $ilde{\mathcal{X}} \subseteq \mathbb{R}^{d+1}$
- $\triangleright\,$ Feedback is lifted to $\tilde{\mathcal{X}}$ before iterates can be produced

2 Log regularization

 \triangleright Proximal steps are regularized on $\tilde{\mathcal{X}}$ with a log regularizer that is *not* a barrier for $\tilde{\mathcal{X}}$

Based on Optimistic FTRL, but with three important twists:

1 Lifting

- hinspace OFTRL operates on a lifted space $ilde{\mathcal{X}} \subseteq \mathbb{R}^{d+1}$
- \triangleright Feedback is lifted to $\tilde{\mathcal{X}}$ before iterates can be produced

2 Log regularization

 \triangleright Proximal steps are regularized on $\tilde{\mathcal{X}}$ with a log regularizer that is *not* a barrier for $\tilde{\mathcal{X}}$

3 Normalization

 $\triangleright~$ Iterates are projected back from $\tilde{\mathcal{X}}$ to \mathcal{X}

Based on Optimistic FTRL, but with three important twists:

1 Lifting

- hinspace OFTRL operates on a lifted space $ilde{\mathcal{X}} \subseteq \mathbb{R}^{d+1}$
- $\triangleright\,$ Feedback is lifted to $\tilde{\mathcal{X}}$ before iterates can be produced

2 Log regularization

 \triangleright Proximal steps are regularized on $\tilde{\mathcal{X}}$ with a log regularizer that is *not* a barrier for $\tilde{\mathcal{X}}$

3 Normalization

 $\triangleright~$ Iterates are projected back from $\mathcal{\tilde{X}}$ to \mathcal{X}

Notation & assumptions

- Let \mathcal{X} be the strategy set of a player
- Without loss of generality, $\mathcal{X} \subseteq [0, +\infty)^d$ (else shift \mathcal{X})
- Given a vector $\mathbf{x} \in \mathcal{X}$, denote $\mathbf{x}[r]$ its *r*-th coordinate
- There is no coordinate r s.t. $\boldsymbol{x}[r] = 0 \ \forall \boldsymbol{x} \in \mathcal{X}$ (or drop d)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lifting

The lifting of \mathcal{X} is the d+1 dimensional set

$$ilde{\mathcal{X}} := \left\{ egin{pmatrix} \lambda \ oldsymbol{y} \end{pmatrix} : \lambda \in [0,1], oldsymbol{y} \in \lambda \mathcal{X}
ight\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lifted utilities

Because we will operate on the lifted strategy space $\tilde{\mathcal{X}}$, we will need a way to **lift utilities** as well!

- Let $\mathbf{x}^{(t)} \in \mathcal{X}$ be the last-output strategy
- The lifted utility is defined as

$$\widetilde{\boldsymbol{u}}^{(t)} \coloneqq \begin{bmatrix} -\langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^{(t)} \rangle \\ \boldsymbol{u}^{(t)} \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lifted utilities

Because we will operate on the lifted strategy space $\tilde{\mathcal{X}}$, we will need a way to **lift utilities** as well!

- Let $\mathbf{x}^{(t)} \in \mathcal{X}$ be the last-output strategy
- The lifted utility is defined as

$$ilde{oldsymbol{u}}^{(t)} \coloneqq egin{bmatrix} -\langle oldsymbol{u}^{(t)}, oldsymbol{x}^{(t)}
angle \\ oldsymbol{u}^{(t)} \end{bmatrix}$$

Important observation

$$\left\langle \tilde{\pmb{u}}^{(t)}, \begin{bmatrix} 1 \\ \pmb{x}^{(t)} \end{bmatrix} \right\rangle = 0$$

・ロト・西ト・山田・山田・山口・

The logarithmic regularizer for \mathbb{R}^{d+1} is

$$\mathcal{R}(\lambda, oldsymbol{y}) \coloneqq -\log \lambda - \sum_{r=1}^d \log oldsymbol{y}[r] \qquad (\lambda, oldsymbol{y}) \in \mathbb{R}^{d+1}_{>0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Self-concordant function, but **not** a barrier for $\tilde{\mathcal{X}}$

Normalization

Iterates produced on the lifted space $\tilde{\mathcal{X}}$ are then renormalized back to $\mathcal{X}:$

$$\tilde{\mathcal{X}} \ni \begin{bmatrix} \lambda \\ \mathbf{y} \end{bmatrix} \mapsto \frac{\mathbf{y}}{\lambda} \in \mathcal{X}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

The complete algorithm

$$\begin{array}{c|c} \text{Data: Learning rate } \eta \\ 1 & \text{Set } \tilde{\boldsymbol{U}}^{(1)}, \boldsymbol{u}^{(0)} \leftarrow \boldsymbol{0} \in \mathbb{R}^{d+1} \\ 2 & \text{for } t = 1, 2, \dots, T & \text{do} \\ 3 & \text{Set } \begin{bmatrix} \lambda^{(t)} \\ \boldsymbol{y}^{(t)} \end{bmatrix} \leftarrow \underset{(\lambda, \boldsymbol{y}) \in \tilde{\mathcal{X}}}{\arg \max} \left\{ \eta \left\langle \tilde{\boldsymbol{U}}^{(t)} + \tilde{\boldsymbol{u}}^{(t-1)}, \begin{bmatrix} \lambda \\ \boldsymbol{y} \end{bmatrix} \right\rangle + \log \lambda + \sum_{r=1}^{d} \log \boldsymbol{y}[r] \right\} \quad [\triangleright \text{ OFTRL}] \\ 4 & \text{Play strategy } \boldsymbol{x}^{(t)} \coloneqq \frac{\boldsymbol{y}^{(t)}}{\lambda^{(t)}} \in \mathcal{X} \qquad [\triangleright \text{ Normalization}] \\ 5 & \text{Observe } \boldsymbol{u}^{(t)} \in \mathbb{R}^{d} \\ 6 & \text{Set } \tilde{\boldsymbol{u}}^{(t)} \leftarrow \begin{bmatrix} -\langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^{(t)} \rangle \\ \boldsymbol{u}^{(t)} \end{bmatrix} \qquad [\triangleright \text{ Lifting}] \\ 7 & \text{Set } \tilde{\boldsymbol{U}}^{(t+1)} \leftarrow \tilde{\boldsymbol{U}}^{(t)} + \tilde{\boldsymbol{u}}^{(t)} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Regret Analysis

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Regret on the original strategy space:

$$\mathsf{Reg}^{(T)} \coloneqq \max_{\boldsymbol{x}^* \in \mathcal{X}} \sum_{t=1}^T \langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^* - \boldsymbol{x}^{(t)} \rangle$$

Regret on lifted space:

$$\tilde{\mathsf{R}}\mathsf{eg}^{(\mathcal{T})} \coloneqq \max_{(\lambda^*, \boldsymbol{y}^*) \in \tilde{\mathcal{X}}} \sum_{t=1}^{\mathcal{T}} \left\langle \tilde{\boldsymbol{u}}^{(t)}, \begin{bmatrix} \lambda^* \\ \boldsymbol{y}^* \end{bmatrix} - \begin{bmatrix} \lambda^{(t)} \\ \boldsymbol{y}^{(t)} \end{bmatrix} \right\rangle$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What is the relationship between the two?

Regret on the original strategy space:

$$\operatorname{Reg}^{(T)} := \max_{\substack{\boldsymbol{x}^* \in \mathcal{X} \\ \boldsymbol{x}^* \in \mathcal{X}}} \sum_{t=1}^{T} \langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^* - \boldsymbol{x}^{(t)}_{(t)} \rangle$$
Lifting of utilities: $\tilde{\boldsymbol{u}}^{(t)} := \begin{bmatrix} -\langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^{(t)} \rangle \\ \boldsymbol{u}^{(t)} \end{bmatrix} \begin{bmatrix} -\langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^{(t)} \rangle \\ \boldsymbol{u}^{(t)} \end{bmatrix} \begin{bmatrix} \cdot \langle \boldsymbol{x}^* \rangle \\ \boldsymbol{x}^{(t)} := \frac{\boldsymbol{y}^{(t)}}{\boldsymbol{x}^{(t)}} \end{bmatrix}$

$$\widetilde{\operatorname{Reg}}^{(T)} := \max_{(\lambda^*, \boldsymbol{y}^*) \in \widetilde{\mathcal{X}}} \sum_{t=1}^{T} \langle \widetilde{\boldsymbol{u}}^{(t)}, \begin{bmatrix} \lambda^* \\ \boldsymbol{y}^* \end{bmatrix} - \begin{bmatrix} \lambda^{(t)} \\ \boldsymbol{y}^{(t)} \end{bmatrix} \rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What is the relationship between the two?

Regret on the original strategy space:

$$\operatorname{Reg}^{(T)} \coloneqq \max_{\boldsymbol{x}^* \in \mathcal{X}} \sum_{t=1}^{T} \langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^* - \boldsymbol{x}^{(t)}_{(t)} \rangle$$
Lifting of utilities: $\tilde{\boldsymbol{u}}^{(t)} \coloneqq \begin{bmatrix} -\langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^{(t)} \rangle \\ \boldsymbol{u}^{(t)} \end{pmatrix} \begin{bmatrix} -\langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^{(t)} \rangle \\ \boldsymbol{u}^{(t)} \end{pmatrix} \begin{bmatrix} \cdot \langle \boldsymbol{x}^{(t)}, \boldsymbol{x}^{(t)} \rangle \\ \cdot \langle \boldsymbol{x}^{(t)} \coloneqq \boldsymbol{y}^{(t)} \rangle \end{bmatrix}$

$$\widetilde{\operatorname{Reg}}^{(T)} \coloneqq \max_{(\lambda^*, \boldsymbol{y}^*) \in \widetilde{\mathcal{X}}} \sum_{t=1}^{T} \left\langle \widetilde{\boldsymbol{u}}^{(t)}, \begin{bmatrix} \lambda^* \\ \boldsymbol{y}^* \end{bmatrix} - \begin{bmatrix} \lambda^{(t)} \\ \boldsymbol{y}^{(t)} \end{bmatrix} \right\rangle$$

What is the relationship between the two?

$\tilde{\mathsf{Reg}}^{(\mathcal{T})} = \max\{0, \mathsf{Reg}^{(\mathcal{T})}\}\$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Result

$$\tilde{\mathsf{R}}\mathsf{eg}^{(\mathcal{T})} = \mathsf{max}\{0, \mathsf{Reg}^{(\mathcal{T})}\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Consequences:

Result

$$\tilde{\mathsf{R}}\mathsf{eg}^{(\mathcal{T})} = \mathsf{max}\{\mathsf{0},\mathsf{Reg}^{(\mathcal{T})}\}$$

Consequences:

- **1** $\operatorname{Reg}^{(T)} \leq \widetilde{\operatorname{Reg}}^{(T)}$
 - $\triangleright~$ Any algorithm that guarantees small regret on the lifted space $\tilde{\mathcal{X}}$ automatically guarantees small regret on \mathcal{X}

Result

$$\tilde{\mathsf{R}}\mathsf{eg}^{(\mathcal{T})} = \mathsf{max}\{\mathsf{0},\mathsf{Reg}^{(\mathcal{T})}\}$$

Consequences:

1
$$\operatorname{Reg}^{(T)} \leq \widetilde{\operatorname{Reg}}^{(T)}$$

 $\triangleright~$ Any algorithm that guarantees small regret on the lifted space $\tilde{\mathcal{X}}$ automatically guarantees small regret on \mathcal{X}

2 $\tilde{\mathsf{Reg}}^{(T)} \ge 0$

▷ The lifted regret is always nonnegative

What do we have at this point?

We are **not** done

While we have established nonnegative regret in the lifted space, we cannot invoke the result we mentioned earlier

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What do we have at this point?

We are **not** done

While we have established nonnegative regret in the lifted space, we cannot invoke the result we mentioned earlier

Utilities might not be Lipschitz continuous

The utilities are in response of the normalized $\mathbf{x}^{(t)} = \mathbf{y}^{(t)}/\lambda^{(t)}$, but the iterates produced on the lifted space are $(\lambda^{(t)}, \mathbf{y}^{(t)})$. In other words we:

have
$$\|\tilde{\boldsymbol{u}}^{(t)} - \tilde{\boldsymbol{u}}^{(t-1)}\|_* \leq L \left\| \frac{\boldsymbol{y}^{(t)}}{\lambda^{(t)}} - \frac{\boldsymbol{y}^{(t-1)}}{\lambda^{(t-1)}} \right\|$$
want $\|\tilde{\boldsymbol{u}}^{(t)} - \tilde{\boldsymbol{u}}^{(t-1)}\|_* \leq L \left\| \begin{bmatrix} \lambda^{(t)} \\ \boldsymbol{y}^{(t)} \end{bmatrix} - \begin{bmatrix} \lambda^{(t-1)} \\ \boldsymbol{y}^{(t-1)} \end{bmatrix} \right\|$

If the λ 's are very small, what we have is far from what we want

This is where the choice of optimistic FTRL with log regularizer comes in!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ● ●

Multiplicative stability

Logarithmic regularization guarantees multiplicative stability:

$$1 - \eta \lessapprox rac{\lambda^{(t+1)}}{\lambda^{(t)}} \lessapprox 1 + \eta, \qquad 1 - \eta \lessapprox rac{oldsymbol{y}^{(t+1)}[r]}{oldsymbol{y}^{(t)}[r]} \lessapprox 1 + \eta$$

1 OFTRL dynamics are locally stable:

$$\begin{bmatrix} \lambda^{(t+1)} - \lambda^{(t)} \\ \boldsymbol{y}^{(t+1)} - \boldsymbol{y}^{(t)} \end{bmatrix}^{\top} \nabla^{2} \mathcal{R}(\lambda^{(t)}, \boldsymbol{y}^{(t)}) \begin{bmatrix} \lambda^{(t+1)} - \lambda^{(t)} \\ \boldsymbol{y}^{(t+1)} - \boldsymbol{y}^{(t)} \end{bmatrix} \lessapprox \eta^{2}$$

Multiplicative stability

Logarithmic regularization guarantees multiplicative stability:

$$1 - \eta \lessapprox rac{\lambda^{(t+1)}}{\lambda^{(t)}} \lessapprox 1 + \eta, \qquad 1 - \eta \lessapprox rac{oldsymbol{y}^{(t+1)}[r]}{oldsymbol{y}^{(t)}[r]} \lessapprox 1 + \eta$$

1 OFTRL dynamics are **locally** stable:

$$\begin{bmatrix} \lambda^{(t+1)} - \lambda^{(t)} \\ \boldsymbol{y}^{(t+1)} - \boldsymbol{y}^{(t)} \end{bmatrix}^{\top} \nabla^{2} \mathcal{R}(\lambda^{(t)}, \boldsymbol{y}^{(t)}) \begin{bmatrix} \lambda^{(t+1)} - \lambda^{(t)} \\ \boldsymbol{y}^{(t+1)} - \boldsymbol{y}^{(t)} \end{bmatrix} \lessapprox \eta^{2}$$

2 The Hessian of the log regularizer is

$$abla^2 \mathcal{R}(\lambda, oldsymbol{y}) = ext{diag}(\lambda^{-2}, oldsymbol{y}[1]^{-2}, \dots, oldsymbol{y}[d]^{-2})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Multiplicative stability

Logarithmic regularization guarantees multiplicative stability:

$$1 - \eta \lessapprox rac{\lambda^{(t+1)}}{\lambda^{(t)}} \lessapprox 1 + \eta, \qquad 1 - \eta \lessapprox rac{oldsymbol{y}^{(t+1)}[r]}{oldsymbol{y}^{(t)}[r]} \lessapprox 1 + \eta$$

1 OFTRL dynamics are **locally** stable:

$$\begin{bmatrix} \lambda^{(t+1)} - \lambda^{(t)} \\ \boldsymbol{y}^{(t+1)} - \boldsymbol{y}^{(t)} \end{bmatrix}^{\top} \nabla^{2} \mathcal{R}(\lambda^{(t)}, \boldsymbol{y}^{(t)}) \begin{bmatrix} \lambda^{(t+1)} - \lambda^{(t)} \\ \boldsymbol{y}^{(t+1)} - \boldsymbol{y}^{(t)} \end{bmatrix} \lessapprox \eta^{2}$$

2 The Hessian of the log regularizer is

$$abla^2 \mathcal{R}(\lambda, oldsymbol{y}) = ext{diag}(\lambda^{-2}, oldsymbol{y}[1]^{-2}, \dots, oldsymbol{y}[d]^{-2})$$

3 Combining the two, we find

$$\left(\frac{\lambda^{(t+1)}}{\lambda^{(t)}} - 1\right)^2 + \sum_{r=1}^d \left(\frac{\boldsymbol{y}^{(t+1)}[r]}{\boldsymbol{y}^{(t)}[r]} - 1\right)^2 \lessapprox \eta^2 \implies \left|\frac{\boldsymbol{y}^{(t+1)}[r]}{\boldsymbol{y}^{(t)}[r]} - 1\right| \lessapprox \eta$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Multiplicative stability

Multiplicative stability enables us to **transfer** smoothness guarantees in the lifted space to to original space

Multiplicative stability

Multiplicative stability enables us to **transfer** smoothness guarantees in the lifted space to to original space

In particular, we can establish the following RVU bound

$$0 \le \tilde{\mathsf{Reg}}^{(T)} \lesssim \frac{\log T}{\eta} + \eta \sum_{t=1}^{T} \| \boldsymbol{u}^{(t+1)} - \boldsymbol{u}^{(t)} \|_{\infty}^{2} - \frac{1}{\eta} \sum_{t=1}^{T} \| \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \|_{1}^{2}$$

and from here conclude that

1 Bounded social square path length

$$\sum_{t=1}^{T} \left\| \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \right\|_{1}^{2} \lesssim \log 7$$

Multiplicative stability

Multiplicative stability enables us to **transfer** smoothness guarantees in the lifted space to to original space

In particular, we can establish the following RVU bound

$$0 \le \tilde{\mathsf{R}}\mathsf{eg}^{(T)} \lesssim \frac{\log T}{\eta} + \eta \sum_{t=1}^{T} \| \boldsymbol{u}^{(t+1)} - \boldsymbol{u}^{(t)} \|_{\infty}^{2} - \frac{1}{\eta} \sum_{t=1}^{T} \| \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \|_{1}^{2}$$

and from here conclude that

1 Bounded social square path length

$$\sum_{t=1}^{T} \left\| \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \right\|_{1}^{2} \lesssim \log 7$$

2 ... And in turn, bounded individual regret

$$\operatorname{\mathsf{Reg}}_i^{(\mathcal{T})} \leq \widetilde{\operatorname{\mathsf{Reg}}}_i^{(\mathcal{T})} \lessapprox \log \mathcal{T}$$
Exact regret bound

Regret bound

When player $i \in \{1, ..., n\}$ plays on a strategy set $\mathcal{X} \subseteq \mathbb{R}^d$ with *L*-Lipschitz utilities bounded by *B* and using learning rate

$$\eta = \miniggl\{rac{1}{256}, rac{1}{128 nL \|\mathcal{X}\|_1^2}iggr\}$$

then the following regret bounds holds at any T:

$$\operatorname{\mathsf{Reg}}_i^{(\mathcal{T})} \leq c \log \mathcal{T}$$

where

$$c\coloneqq B\|\mathcal{X}\|_1ig(12+256(d+1)\max\{nL\|\mathcal{X}\|_1^2,2\}ig)$$

Comparison table

Method	Applies to	Regret bound	Cost per iteration
OFTRL / OMD [Syrgkanis et al., 2015]	General convex set	$O(\sqrt{n}\Re T^{1/4})$	Regularizer- & oracle- dependent
OMWU [Daskalakis et al., 2021]	Simplex Δ^d	$O(n \log d \log^4 T)$	<i>O</i> (<i>d</i>)
Clairvoyant MWU [Piliouras et al., 2022]	Simplex Δ^d	$O(n \log d \log T)$ (subsequence)	<i>O</i> (<i>d</i>)
Kernelized OMWU [Farina et al., 2022]	Polytope $\Omega = \mathrm{co}\mathcal{V}$ with $\mathcal{V} \subseteq \{0,1\}^d$	$O(n \log \mathcal{V} \log^4 T)$	d imes cost of kernel
LRL-OFTRL [This talk]	General convex set $\mathcal{X} \subseteq \mathbb{R}^d$	$O(nd \ \mathcal{X}\ _1^3 \log T)$	 Oracle-dependent: O(log log T) proximal oracle calls O(poly T) linear opt. oracle calls

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

where:

- *n*: number of players
- *T*: number of iterations/repetitions of the game
- ℜ: regularizer-dependent parameter
- $\operatorname{co}\mathcal{V}$: convex hull of \mathcal{V}
- $\|\mathcal{X}\|_1$: upper bound on $\max_{\mathbf{x}\in\mathcal{X}} \|\mathbf{x}\|_1$

Implementation and Iteration Complexity

・ロト・日本・ヨト・ヨー うへの

Algorithm: Log-Regularized Lifted Optimistic FTRL (LRL-OFTRL) **Data:** Learning rate η 1 Set $\tilde{\boldsymbol{U}}^{(1)}, \boldsymbol{u}^{(0)} \leftarrow \boldsymbol{0} \in \mathbb{R}^{d+1}$ 2 for t = 1, 2, ..., T do $\left| \begin{array}{c} \operatorname{Set} \begin{bmatrix} \boldsymbol{\lambda}^{(t)} \\ \boldsymbol{y}^{(t)} \end{bmatrix} \leftarrow \operatorname*{arg\,max}_{(\boldsymbol{\lambda}, \boldsymbol{v}) \in \tilde{\mathcal{X}}} \left\{ \eta \left\langle \tilde{\boldsymbol{\mathcal{U}}}^{(t)} + \tilde{\boldsymbol{u}}^{(t-1)}, \begin{bmatrix} \boldsymbol{\lambda} \\ \boldsymbol{y} \end{bmatrix} \right\rangle + \log \boldsymbol{\lambda} + \sum_{i}^{d} \log \boldsymbol{y}[r] \right\}$ 3 [▷ OFTRL] Play strategy $\mathbf{x}^{(t)} \coloneqq \frac{\mathbf{y}^{(t)}}{\mathbf{y}^{(t)}} \in \mathcal{X}$ 4 [▷ Normalization] Observe $\boldsymbol{u}^{(t)} \in \mathbb{R}^d$ 5 Set $\tilde{\boldsymbol{u}}^{(t)} \leftarrow \begin{bmatrix} -\langle \boldsymbol{u}^{(t)}, \boldsymbol{x}^{(t)} \rangle \\ \boldsymbol{u}^{(t)} \end{bmatrix}$ 6 [▷ Lifting] Set $\tilde{\boldsymbol{U}}^{(t+1)} \leftarrow \tilde{\boldsymbol{U}}^{(t)} + \tilde{\boldsymbol{u}}^{(t)}$ 7

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

 Algorithm:
 Log-Regularized
 Lifted
 Optimistic
 FTRL (LRL-OFTRL)
 Data:
 Learning rate η Description
 <thDescription</th>
 Description
 <thDescription</th>
 <thDescription</th>

1 Set
$$\tilde{\boldsymbol{U}}^{(1)}, \boldsymbol{u}^{(0)} \leftarrow \boldsymbol{0} \in \mathbb{R}^{d+1}$$

2 for $t = 1, 2, \mathcal{T}$ do
3 $\left| \text{Set } \begin{bmatrix} \lambda^{(t)} \\ \boldsymbol{y}^{(t)} \end{bmatrix} \leftarrow \arg \max_{(\lambda, \boldsymbol{y}) \in \tilde{\mathcal{X}}} \left\{ \eta \left\langle \tilde{\boldsymbol{U}}^{(t)} + \tilde{\boldsymbol{u}}^{(t-1)}, \begin{bmatrix} \lambda \\ \boldsymbol{y} \end{bmatrix} \right\rangle + \log \lambda + \sum_{r=1}^{d} \log \boldsymbol{y}[r] \right\} \right.$

[▷ OFTRL]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Strictly concave nonsmooth problem

How fast can we compute the proximal step for a generic \mathcal{X} ?

Complications:

1 Gradients of the log regularizer diverge

Algorithm: Log-Regularized Lifted Optimistic FTRL (LRL-OFTRL)

Data: Learning rate
$$\eta$$

1 Set $\tilde{\boldsymbol{U}}^{(1)}, \boldsymbol{u}^{(0)} \leftarrow \boldsymbol{0} \in \mathbb{R}^{d+1}$
2 for $t = 1, 2, \dots, T$ do
3 Set $\begin{bmatrix} \lambda^{(t)} \\ \boldsymbol{y}^{(t)} \end{bmatrix} \leftarrow \underset{(\lambda, \boldsymbol{y}) \in \tilde{\mathcal{X}}}{\operatorname{arg\,max}} \left\{ \eta \left\langle \tilde{\boldsymbol{U}}^{(t)} + \tilde{\boldsymbol{u}}^{(t-1)}, \begin{bmatrix} \lambda \\ \boldsymbol{y} \end{bmatrix} \right\rangle + \log \lambda + \sum_{r=1}^{d} \log \boldsymbol{y}[r] \right\}$ [> OFTRL

Strictly concave nonsmooth problem

How fast can we compute the proximal step for a generic \mathcal{X} ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Complications:

- 1 Gradients of the log regularizer diverge
- 2 Log regularizer is *not* a barrier function

Algorithm: Log-Regularized Lifted Optimistic FTRL (LRL-OFTRL)

Data: Learning rate
$$\eta$$

1 Set $\tilde{\boldsymbol{U}}^{(1)}, \boldsymbol{u}^{(0)} \leftarrow \boldsymbol{0} \in \mathbb{R}^{d+1}$
2 for $t = 1, 2, \dots, T$ do
3 $\left[\text{Set } \begin{bmatrix} \lambda^{(t)} \\ \boldsymbol{y}^{(t)} \end{bmatrix} \leftarrow \underset{(\lambda, y) \in \tilde{\mathcal{X}}}{\operatorname{arg max}} \left\{ \eta \left\langle \tilde{\boldsymbol{U}}^{(t)} + \tilde{\boldsymbol{u}}^{(t-1)}, \begin{bmatrix} \lambda \\ \boldsymbol{y} \end{bmatrix} \right\rangle + \log \lambda + \sum_{r=1}^{d} \log \boldsymbol{y}[r] \right\} \right] \quad [\triangleright \text{ OFTRL}$

Strictly concave **nonsmooth** problem

How fast can we compute the proximal step for a generic \mathcal{X} ?

Complications:

- 1 Gradients of the log regularizer diverge
- 2 Log regularizer is *not* a barrier function
- What happens to the guarantees if the solutions are only approximated? A Additive apx guarantees not enough

We cannot seek additive error guarantees

- We cannot seek additive error guarantees
- Instead, we seek relative (i.e., multiplicative) error guarantees

$$1 - \epsilon^{(t)} \le \frac{\lambda^{(t)}}{\lambda^{(t)}_{\star}} \le 1 + \epsilon^{(t)}, \qquad 1 - \epsilon^{(t)} \le \frac{\mathbf{y}^{(t)}[r]}{\mathbf{y}^{(t)}_{\star}[r]} \le 1 + \epsilon^{(t)}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

where $\epsilon^{(t)}$ is the approximation error

- We cannot seek additive error guarantees
- Instead, we seek relative (i.e., multiplicative) error guarantees

$$1 - \epsilon^{(t)} \le \frac{\lambda^{(t)}}{\lambda^{(t)}_{\star}} \le 1 + \epsilon^{(t)}, \qquad 1 - \epsilon^{(t)} \le \frac{\mathbf{y}^{(t)}[r]}{\mathbf{y}^{(t)}_{\star}[r]} \le 1 + \epsilon^{(t)}$$

where $\epsilon^{(t)}$ is the approximation error

• As long as $e^{(t)} = O(1/T)$, regret degradation is O(1)

- We cannot seek additive error guarantees
- Instead, we seek relative (i.e., multiplicative) error guarantees

$$1 - \epsilon^{(t)} \le \frac{\lambda^{(t)}}{\lambda^{(t)}_{\star}} \le 1 + \epsilon^{(t)}, \qquad 1 - \epsilon^{(t)} \le \frac{\mathbf{y}^{(t)}[r]}{\mathbf{y}^{(t)}_{\star}[r]} \le 1 + \epsilon^{(t)}$$

where $\epsilon^{(t)}$ is the approximation error

• As long as $e^{(t)} = O(1/T)$, regret degradation is O(1)

- We cannot seek additive error guarantees
- Instead, we seek relative (i.e., multiplicative) error guarantees

$$1 - \epsilon^{(t)} \leq \frac{\lambda^{(t)}}{\lambda^{(t)}_{\star}} \leq 1 + \epsilon^{(t)}, \qquad 1 - \epsilon^{(t)} \leq \frac{\mathbf{y}^{(t)}[r]}{\mathbf{y}^{(t)}_{\star}[r]} \leq 1 + \epsilon^{(t)}$$

where $\epsilon^{(t)}$ is the approximation error

• As long as $e^{(t)} = O(1/T)$, regret degradation is O(1)

Newton method

We can achieve all these properties efficiently by using a modification of Newton method with **quadratic convergence**, even if $\mathcal{R}(\lambda, \mathbf{y})$ is *not* a self-concordant barrier

Proximal Newton method

Requirements

Proximal Newton algorithm requires a local proximal oracle

$$\begin{aligned} \Pi_{\tilde{\boldsymbol{w}}}(\tilde{\boldsymbol{g}}) &\coloneqq \argmin_{\tilde{\boldsymbol{x}} \in \tilde{\mathcal{X}}} \left\{ \tilde{\boldsymbol{g}}^{\top} \tilde{\boldsymbol{x}} + \frac{1}{2} (\tilde{\boldsymbol{x}} - \tilde{\boldsymbol{w}})^{\top} \nabla^{2} \mathcal{R}(\tilde{\boldsymbol{w}}) (\tilde{\boldsymbol{x}} - \tilde{\boldsymbol{w}}) \right\} \\ &= \arg\min_{\tilde{\boldsymbol{x}} \in \tilde{\mathcal{X}}} \left\{ \tilde{\boldsymbol{g}}^{\top} \tilde{\boldsymbol{x}} + \frac{1}{2} \sum_{r=1}^{d+1} \left(\frac{\tilde{\boldsymbol{x}}[r]}{\tilde{\boldsymbol{w}}[r]} - 1 \right)^{2} \right\} \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

for arbitrary centers $ilde{m{w}}\in\mathbb{R}^{d+1}_{>0}$ and gradients $ilde{m{g}}\in\mathbb{R}^{d+1}.$

Proximal Newton method

Requirements

Proximal Newton algorithm requires a local proximal oracle

$$\begin{aligned} \Pi_{\tilde{\boldsymbol{w}}}(\tilde{\boldsymbol{g}}) &\coloneqq \argmin_{\tilde{\boldsymbol{x}} \in \tilde{\mathcal{X}}} \left\{ \tilde{\boldsymbol{g}}^{\top} \tilde{\boldsymbol{x}} + \frac{1}{2} (\tilde{\boldsymbol{x}} - \tilde{\boldsymbol{w}})^{\top} \nabla^{2} \mathcal{R}(\tilde{\boldsymbol{w}}) (\tilde{\boldsymbol{x}} - \tilde{\boldsymbol{w}}) \right\} \\ &= \arg\min_{\tilde{\boldsymbol{x}} \in \tilde{\mathcal{X}}} \left\{ \tilde{\boldsymbol{g}}^{\top} \tilde{\boldsymbol{x}} + \frac{1}{2} \sum_{r=1}^{d+1} \left(\frac{\tilde{\boldsymbol{x}}[r]}{\tilde{\boldsymbol{w}}[r]} - 1 \right)^{2} \right\} \end{aligned}$$

for arbitrary centers $ilde{m{w}} \in \mathbb{R}^{d+1}_{>0}$ and gradients $ilde{m{g}} \in \mathbb{R}^{d+1}.$

In normal-form and extensive-form games, $\Pi_{\tilde{w}}(\tilde{g})$ can be implemented *exactly* in poly(d) time for any $\tilde{w} \in \mathbb{R}^{d+1}_{>0}$, $\tilde{g} \in \mathbb{R}^{d+1}$ Guarantees with local proximal oracle [Tran-Dinh et al., 2015]

Given $\epsilon > 0$, it is possible to compute $(\lambda^{(t)}, \mathbf{y}^{(t)})$ with relative ϵ approximation in $O(\log \log(1/\epsilon))$ operations and $O(\log \log(1/\epsilon))$ calls to the local proximal oracle

This explains the mentioned $O(\log \log T)$ per-iteration complexity

Guarantees with linear optimization oracle

What if we do **not** know how to construct a local proximal oracle for our set at hand \mathcal{X} ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Guarantees with linear optimization oracle

What if we do **not** know how to construct a local proximal oracle for our set at hand \mathcal{X} ?

Linear optimization oracle

$$\mathcal{L}_{\mathcal{X}}(\boldsymbol{u})\coloneqq rg\max_{\boldsymbol{x}\in\mathcal{X}}\langle \boldsymbol{x}, \boldsymbol{u}
angle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Guarantees with linear optimization oracle

What if we do **not** know how to construct a local proximal oracle for our set at hand \mathcal{X} ?

Linear optimization oracle

$$\mathcal{L}_{\mathcal{X}}(\boldsymbol{u})\coloneqq rg\max_{\boldsymbol{x}\in\mathcal{X}}\langle \boldsymbol{x}, \boldsymbol{u}
angle.$$

Frank-Wolfe Newton [Liu et al., 2020]

Given any $\epsilon > 0$, it is possible to compute $(\lambda^{(t)}, \mathbf{y}^{(t)})$ with relative ϵ approximation in $O(\text{poly}(1/\epsilon))$ operations and $O(\text{poly}(1/\epsilon))$ calls to the linear optimization oracle

Zooming Out

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

We developed LRL-OFTRL, an uncoupled no-regret learning algorithm

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- We developed LRL-OFTRL, an uncoupled no-regret learning algorithm
- When all players in a general convex game employ LRL-OFTRL, the regret of each player grows only as O(log T)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- We developed LRL-OFTRL, an uncoupled no-regret learning algorithm
- When all players in a general convex game employ LRL-OFTRL, the regret of each player grows only as O(log T)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3 This significantly extends and strengthens the scope of all prior work

- We developed LRL-OFTRL, an uncoupled no-regret learning algorithm
- When all players in a general convex game employ LRL-OFTRL, the regret of each player grows only as O(log T)
- 3 This significantly extends and strengthens the scope of all prior work
- 4 Further, our uncoupled no-regret learning dynamics can be efficiently implemented using, for example, a proximal oracle for the underlying feasible set

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In the special case of normal-form games, LRL-OFTRL's dependence on the dimension is linear as opposed to logarithmic as in Daskalakis et al. [2021]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- In the special case of normal-form games, LRL-OFTRL's dependence on the dimension is linear as opposed to logarithmic as in Daskalakis et al. [2021]
- 2 Can entropic regularization (which induces OMWU) be incorporated into our framework?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- In the special case of normal-form games, LRL-OFTRL's dependence on the dimension is linear as opposed to logarithmic as in Daskalakis et al. [2021]
- 2 Can entropic regularization (which induces OMWU) be incorporated into our framework?
- 3 Explore having access to different types of oracles
 - For example, is it possible to use a separation oracle for the underlying set of strategies? If so, the ellipsoid algorithm would be the obvious candidate en route to implementing LRL-OFTRL

- In the special case of normal-form games, LRL-OFTRL's dependence on the dimension is linear as opposed to logarithmic as in Daskalakis et al. [2021]
- 2 Can entropic regularization (which induces OMWU) be incorporated into our framework?
- 3 Explore having access to different types of oracles
 - For example, is it possible to use a separation oracle for the underlying set of strategies? If so, the ellipsoid algorithm would be the obvious candidate en route to implementing LRL-OFTRL

Is O(log T) per-player regret tight?

- In the special case of normal-form games, LRL-OFTRL's dependence on the dimension is linear as opposed to logarithmic as in Daskalakis et al. [2021]
- 2 Can entropic regularization (which induces OMWU) be incorporated into our framework?
- 3 Explore having access to different types of oracles
 - For example, is it possible to use a separation oracle for the underlying set of strategies? If so, the ellipsoid algorithm would be the obvious candidate en route to implementing LRL-OFTRL
- Is O(log T) per-player regret tight?
- 5 What can be said about swap regret (in normal-form games) and Φ-regret (in extensive-form games)?
 - ▷ We are doing some work in that direction

Thank you!

Question? Also, feel free to reach out at gfarina@{cs.cmu.edu | meta.com}

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ