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What this talk is about

Recent line of work: uncoupled learning dynamics such that,
when employed by all players in a game, each player’s regret
after T repetitions grows polylogarithmically in T

However, so far these results have only been limited to certain
classes of games with structured strategy spaces

▷ Mostly normal-form games
▷ Extensive-form games via kernelized multiplicative weights

Yet, many fundamental models in economics and multiagent
systems require more general, convex strategy sets

Q: Can O(polylogT ) regret be attained in general convex and
compact strategy sets while retaining efficient strategy updates?
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What this talk is about

Q: Can O(polylogT ) regret be attained in general convex and
compact strategy sets while retaining efficient strategy updates?

We answer in the positive, and give an uncoupled learning
algorithm with O(logT ) per-player regret in general convex
games

▷ In adversarial settings: usual O(
√
T ) regret bound

Per-iteration complexity:

▷ O(log logT ) with access to local proximal oracle
▷ O(polyT ) with access to only a linear optimization oracle

In special cases where prior results apply, our algorithm
improves over the state-of-the-art regret bounds in terms of
the dependence on either the number of iterations or
dimension of the strategy sets
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History and Context



Regret minimization

Celebrated framework that has been central in the
development of online learning and multiagent systems

Idea: a player is “learning” how to play the game when
looking back they do not strongly wish they had played
differently

Why care about regret minimization?

At least three different scenarios

1 Natural notion of performance if the learning is truly online

▷ Good news: no-regret algorithms are designed for adversarial
environment

2 May be a good model for the behavior of a modeled system

3 Important connections to game-theoretic equilibria

▷ Convergence to coarse correlated equilibrium in multi-player
general-sum games

▷ Approximation error is tied to maximum individual regret
▷ Special case: Nash equilibrium in 2-player 0-sum games
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Equilibrium finding and self play

Why care about regret minimization?

1 Natural notion of performance if the learning is truly online

2 May be a good model for the behavior of a modeled system

3 Important connections to game-theoretic equilibria

Idea: players train against each other in self play

Current state-of-the-art for large games

Remarkable practical success: primary component in recent
landmark results in AI

Self-play learning is far from fully unpredictable/adversarial setting
online learning has historically focused on...

Q: What performance guarantees can be obtained for self-play in
general games?
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Prior work

What performance guarantees can be obtained for self-play in
general games?

Question first formulated by Daskalakis et al. [2011] for
two-player zero-sum matrix games

Since then: considerable interest in extending guarantees to
more general setting

Chiang et al. [2012] and Rakhlin and Sridharan [2013]
pioneered the framework of optimism

Syrgkanis et al. [2015] crystallized the RVU property and
established dynamics with O(T 1/4) per-player regret in
convex games

Chen and Peng [2020] improves to O(T 1/6) but only in
two-player games
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Prior work (cont’d)

Daskalakis et al. [2021] shows that in matrix games one can
achieve O(log4 T ) by using the OMWU algorithm

▷ Exponential improvement over the guarantees obtained using
traditional techniques within the no-regret framework!

Farina et al. [2022] show that in certain classes of polyhedral
games (including extensive-form games) one can run OMWU
on the (exponentially many) vertices in polynomial time
thanks to a kernel trick (→ Kernelized OMWU)

Anagnostides et al. [2022] extendes the technique of
Daskalakis et al. [2021] to swap regret in matrix games

Piliouras et al. [2022] proposes learning dynamics that
guarantee O(logT ) regret for a subsequence of iterates in
matrix games

This paper: O(logT ) regret for general convex games
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Comparison table

Method Applies to Regret bound Cost per iteration

OFTRL / OMD
[Syrgkanis et al., 2015]

General convex set O(
√
nRT 1/4) Regularizer- & oracle- dependent

OMWU
[Daskalakis et al., 2021]

Simplex ∆d O(n log d log4 T ) O(d)

Clairvoyant MWU
[Piliouras et al., 2022]

Simplex ∆d O(n log d logT )
▲! subsequence only!

O(d)

Kernelized OMWU
[Farina et al., 2022]

Polytope Ω = coV
with V ⊆ {0, 1}d O(n log |V| log4 T ) d × cost of kernel

LRL-OFTRL

[This talk]

General convex set
X ⊆ Rd O(nd∥X∥31 logT )

Oracle-dependent:
• O(log logT ) proximal oracle calls
• O(polyT ) linear opt. oracle calls

where:

n: number of players

T : number of iterations/repetitions of the game

R: regularizer-dependent parameter

coV: convex hull of V
∥X∥1: upper bound on maxx∈X ∥x∥1



Experimental results (log x-axis)
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Convex Games



Convex game

In an n-player convex game:

Every player i ∈ {1, . . . , n} has a nonnempty convex and compact
strategy set Xi (these include mixed strategies)

The utility function ui :×n
j=1Xj → R of player i is a continuously

differentiable function such that:

1 (concavity) ui (xi , x−i ) is concave in xi for all x−i

2 (bounded gradients) ∥∇xiui (x)∥∞ ≤ B for all x
3 (smoothness) ∇xiui is L-Lipschitz smooth:

∥∇xiui (x)−∇xiui (x
′)∥∞ ≤ L∥x − x ′∥1

for all x , x ′.
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Example: Normal-Form Games

0 −1 +1

+1 0 −1

−1 +1 0

Games like rock-paper-scissors

▷ Simultaneous action game with finite
action set Ai for each player i

Each player’s strategy set if the set of
distributions over their actions Ai

Xi = ∆(Ai )

The utility of player i is the multilinear function

ui (x) = Ea∼x [Ui (a)]

where Ui is the payoff function of the game

Gradients of ui are bounded by the maximum payoff

Smoothness of ∇ui is known total variation lemma
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Example: Extensive-Form Games

L R

A

B C D

Games played on a game tree

Poker, Go, Bridge, ...

Turns, simultaneous moves, stochastic
moves

Imperfect information

Extensive-form games are convex games:

Strategy space of each player is a sequence-form polytope
[Romanovskii, 1962, Koller et al., 1996]

Utilities are multilinear

Hence gradients are smooth and bounded similarly to
normal-form games
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Example: Splittable Routing Games

Every player has to route a flow fi from a source to a
destination in an undirected graph

Every edge is associated with a latency function ℓe(fe)
mapping the amount of flow through the edge to some latency

Strategy set of each player is all possible ways of splitting fi
into paths from source to destination

Under suitable restrictions on the latency functions, these
games satisfy our convex game definition [Syrgkanis et al.,

2015, Roughgarden and Schoppmann, 2015]
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2015, Roughgarden and Schoppmann, 2015]



Example: Cournot Competition

Games played among n firms (players)

Every firm i decides the quantity si of a good to produce from
an interval

A cost function ci assigns a production cost to the given
quantity

Price of good is determined by the joint choice of quantities
s = (s1, . . . , sn)

Utility of firm i is defined as ui (s) = sip(s)− ci (s)
Important case: concave and smooth ui [Even-Dar et al., 2009]
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Learning Setup in Convex Games



Repeated interaction

At all times t, each player outputs their strateg x (t)
i ∈ Xi

Then, everyone observes the gradient of their own utility

u(t)
i := ∇xiui (x

(t)
1 , . . . , x (t)

n )

The canonical measure of performance of each player is regret

Reg
(T )
i := max

x∗∈Xi

T∑
t=1

⟨u(t), x∗ − x (t)
i ⟩
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Our Technique — Main Insights



Outline

1 What RVU bounds enable and what they don’t

▷ O(1) social regret, but no guarantees??? on individual regret

2 What would be enough to enable O(1) social → individual
regret guarantee?

3 That will give intuition as to how we got to our dynamics
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1Stepsize- and time-independent factors are omitted
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What about individual regret?

Unfortunately, convergence to coarse-correlated equilibria in
multiplayer games is driven by the maximum individual
regret, and not by the social regret

Natural question

What do RVU bounds tell us about individual regret?

1 Regret is upper bounded by the social squared path length

Reg
(T )
i ⪅

1

η
+ ηL2

T∑
t=1

n∑
j=1

∥∥∥x (t)
j − x (t−1)

j

∥∥∥2
2 So, if the social squared path length was small...

3 On the other hand, for η = O(1) the social regret is
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Main insight
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If we knew that Reg
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i ≥ 0 for all player, then:

1 From second inequality: social path length ⪅ n, that is at
most constant wrt time T !

2 Plugging into first inequality: constant individual regret



Main insight

1 Regret is upper bounded by the social squared path length

Reg
(T )
i ⪅

1

η
+ ηL2

T∑
t=1

n∑
j=1

∥∥∥x (t)
j − x (t−1)

j

∥∥∥2
2 So, if the social squared path length was small...

3 On the other hand, for η = O(1) the social regret is

n∑
i=1

Reg
(T )
i ⪅

n

η
− 1

η

T∑
t=1

n∑
j=1

∥∥∥x (t)
j − x (t−1)

j

∥∥∥2
Main insight

If we knew that Reg
(T )
i ≥ 0 for all player, then:

1 From second inequality: social path length ⪅ n, that is at
most constant wrt time T !

2 Plugging into first inequality: constant individual regret



Main insight

1 Regret is upper bounded by the social squared path length

Reg
(T )
i ⪅

1

η
+ ηL2

T∑
t=1

n∑
j=1

∥∥∥x (t)
j − x (t−1)

j

∥∥∥2
2 So, if the social squared path length was small...

3 On the other hand, for η = O(1) the social regret is

n∑
i=1

Reg
(T )
i ⪅

n

η
− 1

η

T∑
t=1

n∑
j=1

∥∥∥x (t)
j − x (t−1)

j

∥∥∥2
Main insight

If we knew that Reg
(T )
i ≥ 0 for all player, then:

1 From second inequality: social path length ⪅ n, that is at
most constant wrt time T !

2 Plugging into first inequality: constant individual regret



Main question

(How) Can we

♦ Ensure the nonnegativity of the player regrets,

While at the same time

♦ Not losing the RVU bound?



Our Technique — Technical Details



Overview of our dynamics

Based on Optimistic FTRL, but with three important twists:

1 Lifting
▷ OFTRL operates on a lifted space X̃ ⊆ Rd+1

▷ Feedback is lifted to X̃ before iterates can be produced

2 Log regularization
▷ Proximal steps are regularized on X̃ with a log regularizer that

is not a barrier for X̃
3 Normalization

▷ Iterates are projected back from X̃ to X

Lifting
OFTRL with

log regularizer
Normalization

u(t) ũ(t) x̃ (t) x (t)
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Notation & assumptions

Let X be the strategy set of a player

Without loss of generality, X ⊆ [0,+∞)d (else shift X )
Given a vector x ∈ X , denote x [r ] its r -th coordinate

There is no coordinate r s.t. x [r ] = 0 ∀x ∈ X (or drop d)



Lifting

The lifting of X is the d + 1 dimensional set

X̃ :=

{(
λ
y

)
: λ ∈ [0, 1], y ∈ λX

}

X X̃
1

Lifting
λ



Lifted utilities

Because we will operate on the lifted strategy space X̃ , we will
need a way to lift utilities as well!

Let x (t) ∈ X be the last-output strategy

The lifted utility is defined as

ũ(t) :=

[
−⟨u(t), x (t)⟩

u(t)

]

Important observation〈
ũ(t),

[
1

x (t)

]〉
= 0
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Log regularization

The logarithmic regularizer for Rd+1 is

R(λ, y) := − log λ−
d∑

r=1

log y [r ] (λ, y) ∈ Rd+1
>0

Self-concordant function, but not a barrier for X̃



Normalization

Iterates produced on the lifted space X̃ are then renormalized
back to X :

X̃ ∋
[
λ
y

]
7→ y

λ
∈ X

X̃

1

λ

y
λ ∈ X

(λ, y) ∈ X̃



The complete algorithm

Algorithm: Log-Regularized Lifted Optimistic FTRL (LRL-OFTRL)

Lifting
OFTRL with

log regularizer
Normalization

u(t) ũ(t) (λ(t), y (t)) x (t) := y (t)

λ(t)

Data: Learning rate η

1 Set Ũ(1),u(0) ← 0 ∈ Rd+1

2 for t = 1, 2, . . . ,T do

3 Set

[
λ(t)

y (t)

]
← argmax

(λ,y)∈X̃

{
η

〈
Ũ(t) + ũ(t−1),

[
λ
y

]〉
+ log λ+

d∑
r=1

log y [r ]

}
[▷ OFTRL]

4 Play strategy x (t) :=
y (t)

λ(t)
∈ X [▷ Normalization]

5 Observe u(t) ∈ Rd

6 Set ũ(t) ←
[
−⟨u(t), x (t)⟩

u(t)

]
[▷ Lifting]

7 Set Ũ(t+1) ← Ũ(t) + ũ(t)



Regret Analysis



Lifting makes regret nonnegative

Regret on the original strategy space:

Reg(T ) := max
x∗∈X

T∑
t=1

⟨u(t), x∗ − x (t)⟩

Regret on lifted space:

R̃eg
(T )

:= max
(λ∗,y∗)∈X̃

T∑
t=1

〈
ũ(t),

[
λ∗

y∗

]
−

[
λ(t)

y (t)

]〉
What is the relationship between the two?

Lifting of utilities: ũ(t) :=

[
−⟨u(t), x (t)⟩

u(t)

] Normalization:

x (t) := y (t)

λ(t)

Result

R̃eg
(T )

= max{0,Reg(T )}
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Consequences:

1 Reg(T ) ≤ R̃eg
(T )

▷ Any algorithm that guarantees small regret on the lifted space
X̃ automatically guarantees small regret on X

2 R̃eg
(T ) ≥ 0

▷ The lifted regret is always nonnegative
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What do we have at this point?

We are not done

While we have established nonnegative regret in the lifted space,
we cannot invoke the result we mentioned earlier

Utilities might not be Lipschitz continuous

The utilities are in response of the normalized x (t) = y (t)/λ(t), but
the iterates produced on the lifted space are (λ(t), y (t)).
In other words we:

have
∥∥ũ(t) − ũ(t−1)

∥∥
∗ ≤ L

∥∥∥∥∥ y (t)

λ(t)
− y (t−1)

λ(t−1)

∥∥∥∥∥
want

∥∥ũ(t) − ũ(t−1)
∥∥
∗ ≤ L

∥∥∥∥[λ(t)

y (t)

]
−
[
λ(t−1)

y (t−1)

]∥∥∥∥
If the λ’s are very small, what we have is far from what we want
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∥∥ũ(t) − ũ(t−1)
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Log regularization leads to multiplicative stability

This is where the choice of optimistic FTRL with log regularizer
comes in!

Multiplicative stability

Logarithmic regularization guarantees multiplicative stability:

1− η ⪅
λ(t+1)

λ(t)
⪅ 1 + η, 1− η ⪅

y (t+1)[r ]

y (t)[r ]
⪅ 1 + η

1 OFTRL dynamics are locally stable:[
λ(t+1) − λ(t)

y (t+1) − y (t)

]⊤
∇2R(λ(t), y (t))

[
λ(t+1) − λ(t)

y (t+1) − y (t)

]
⪅ η2

2 The Hessian of the log regularizer is

∇2R(λ, y) = diag(λ−2, y [1]−2, . . . , y [d ]−2)

3 Combining the two, we find(
λ(t+1)

λ(t)
− 1

)2
+

d∑
r=1

(
y (t+1)[r ]

y (t)[r ]
− 1

)2
⪅ η2 =⇒

∣∣∣∣y (t+1)[r ]

y (t)[r ]
− 1

∣∣∣∣ ⪅ η
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Multiplicative stability

Multiplicative stability enables us to transfer smoothness
guarantees in the lifted space to to original space

In particular, we can establish the following RVU bound

0 ≤ R̃eg
(T )

⪅
logT

η
+ η

T∑
t=1

∥∥u(t+1) − u(t)
∥∥2
∞ −

1

η

T∑
t=1

∥∥x (t+1) − x (t)
∥∥2
1

and from here conclude that

1 Bounded social square path length

T∑
t=1

∥∥x (t+1) − x (t)
∥∥2
1
⪅ logT

2 ... And in turn, bounded individual regret

Reg
(T )
i ≤ R̃eg

(T )

i ⪅ logT
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Exact regret bound

Regret bound

When player i ∈ {1, . . . , n} plays on a strategy set X ⊆ Rd with
L-Lipschitz utilities bounded by B and using learning rate

η = min

{
1

256
,

1

128nL∥X∥21

}
then the following regret bounds holds at any T :

Reg
(T )
i ≤ c logT

where

c := B∥X∥1
(
12 + 256(d + 1)max{nL∥X∥21, 2}

)



Comparison table

Method Applies to Regret bound Cost per iteration

OFTRL / OMD
[Syrgkanis et al., 2015]

General convex set O(
√
nRT 1/4) Regularizer- & oracle- dependent

OMWU
[Daskalakis et al., 2021]

Simplex ∆d O(n log d log4 T ) O(d)

Clairvoyant MWU
[Piliouras et al., 2022]

Simplex ∆d O(n log d logT )
(subsequence)

O(d)

Kernelized OMWU
[Farina et al., 2022]

Polytope Ω = coV
with V ⊆ {0, 1}d O(n log |V| log4 T ) d × cost of kernel

LRL-OFTRL

[This talk]

General convex set
X ⊆ Rd O(nd∥X∥31 logT )

Oracle-dependent:
• O(log logT ) proximal oracle calls
• O(polyT ) linear opt. oracle calls

where:

n: number of players

T : number of iterations/repetitions of the game

R: regularizer-dependent parameter

coV: convex hull of V
∥X∥1: upper bound on maxx∈X ∥x∥1



Implementation and Iteration Complexity



The proximal step

Algorithm: Log-Regularized Lifted Optimistic FTRL (LRL-OFTRL)

Data: Learning rate η

1 Set Ũ(1),u(0) ← 0 ∈ Rd+1

2 for t = 1, 2, . . . ,T do

3 Set

[
λ(t)

y (t)

]
← argmax

(λ,y)∈X̃

{
η

〈
Ũ(t) + ũ(t−1),

[
λ
y

]〉
+ log λ+

d∑
r=1

log y [r ]

}
[▷ OFTRL]

4 Play strategy x (t) :=
y (t)

λ(t)
∈ X [▷ Normalization]

5 Observe u(t) ∈ Rd

6 Set ũ(t) ←
[
−⟨u(t), x (t)⟩

u(t)

]
[▷ Lifting]

7 Set Ũ(t+1) ← Ũ(t) + ũ(t)

Strictly concave nonsmooth problem

How fast can we compute the proximal step for a generic X ?

Complications:

1 Gradients of the log regularizer diverge

2 Log regularizer is not a barrier function

3 What happens to the guarantees if the solutions are only
approximated?▲! Additive apx guarantees not enough
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What we need

We cannot seek additive error guarantees

Instead, we seek relative (i.e., multiplicative) error guarantees

1− ϵ(t) ≤ λ(t)

λ
(t)
⋆

≤ 1 + ϵ(t), 1− ϵ(t) ≤ y (t)[r ]

y (t)
⋆ [r ]

≤ 1 + ϵ(t)

where ϵ(t) is the approximation error

As long as ϵ(t) = O(1/T ), regret degradation is O(1)

Newton method

We can achieve all these properties efficiently by using a
modification of Newton method with quadratic convergence,

even if R(λ, y) is not a self-concordant barrier
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Proximal Newton method

Requirements

Proximal Newton algorithm requires a local proximal oracle

Πw̃ (g̃) := argmin
x̃ ∈ X̃

{
g̃⊤x̃ +

1

2
(x̃ − w̃)⊤∇2R(w̃)(x̃ − w̃)

}

= argmin
x̃ ∈ X̃

{
g̃⊤x̃ +

1

2

d+1∑
r=1

(
x̃ [r ]
w̃ [r ]

− 1

)2
}

for arbitrary centers w̃ ∈ Rd+1
>0 and gradients g̃ ∈ Rd+1.

In normal-form and extensive-form games, Πw̃ (g̃) can be
implemented exactly in poly(d) time for any w̃ ∈ Rd+1

>0 , g̃ ∈ Rd+1
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Guarantees with local proximal oracle [Tran-Dinh et al., 2015]

Given ϵ > 0, it is possible to compute (λ(t), y (t)) with relative ϵ
approximation in O(log log(1/ϵ)) operations and O(log log(1/ϵ))

calls to the local proximal oracle

This explains the mentioned O(log logT ) per-iteration complexity



Guarantees with linear optimization oracle

What if we do not know how to construct a local proximal oracle
for our set at hand X ?

Linear optimization oracle

LX (u) := argmax
x∈X

⟨x ,u⟩.

Frank-Wolfe Newton [Liu et al., 2020]

Given any ϵ > 0, it is possible to compute (λ(t), y (t)) with relative
ϵ approximation in O(poly(1/ϵ)) operations and O(poly(1/ϵ)) calls
to the linear optimization oracle
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Zooming Out



Important takeaway messages

1 We developed LRL-OFTRL, an uncoupled no-regret learning
algorithm

2 When all players in a general convex game employ
LRL-OFTRL, the regret of each player grows only as O(logT )

3 This significantly extends and strengthens the scope of all
prior work

4 Further, our uncoupled no-regret learning dynamics can be
efficiently implemented using, for example, a proximal oracle
for the underlying feasible set
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Some open questions

1 In the special case of normal-form games, LRL-OFTRL’s
dependence on the dimension is linear as opposed to
logarithmic as in Daskalakis et al. [2021]

2 Can entropic regularization (which induces OMWU) be
incorporated into our framework?

3 Explore having access to different types of oracles

▷ For example, is it possible to use a separation oracle for the
underlying set of strategies? If so, the ellipsoid algorithm would
be the obvious candidate en route to implementing LRL-OFTRL

4 Is O(logT ) per-player regret tight?

5 What can be said about swap regret (in normal-form games)
and Φ-regret (in extensive-form games)?

▷ We are doing some work in that direction
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Thank you!

Question? Also, feel free to reach out at

gfarina@{cs.cmu.edu | meta.com}

X̃

1

λ

y
λ ∈ X

(λ, y) ∈ X̃


