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Multi-armed Bandits

Online decision-making under uncertainty:

Healthcare: 
What drugs to prescribe?

(Arms: drugs)

Revenue management: 
What price to post?

(Arms: prices)

Online advertising: 
Which ad to show to users?

(Arms: ads)

Fundamental trade-off:

• Exploration: collect information to discover the best arm 

• Exploitation: exploit the collected information to play the arm that 

seems the best 



Structured Multi-armed Bandits

Classical Multi-armed Bandits: Rewards of arms are independent of each other

In practice, they may NOT be independent

Structural information makes arms correlated!  

Healthcare: 
Structure: Similar drugs 

have similar performance  

Revenue management: 
Structure: Demand goes 
down as price goes up

Online advertising: 
Structure: Some ads are 

negatively correlated



Structural Information  

Why is structural information important?

Structural information allows for transfer learning

• Information obtained by one arm can be transferred to other arms 

Thompson Sampling and UCB perform poorly for structured bandits!!

• They stop playing an arm as soon as they figure out they are suboptimal

• Playing suboptimal arms can help with transfer learning

How to deal with structural information?
• Typical approach: Tailored algorithms for special structural problems: Lipschitz, 

linear, etc

Our approach: Unified framework that works 
for any convex structural information 



Model
• Finite set of arms 𝑋 with an unknown reward distribution

• A decision-maker needs to pull one of these arms per round 

over the course of T rounds 

• Reward of arm 𝑥 ∈ 𝑋 in round t is 𝑟 with probability 𝑃 𝑟, 𝑥

• 𝑃 is unknown to the decision-maker

• There is an optimal arm 𝑥∗ 𝑃 that has the highest average 

reward

• The decision-maker would like to identify the optimal arm 

with suffering a low regret   

Exploration
Exploitation

Regret𝝅(𝑇, 𝑃) = best reward in hindsight − total obtained reward

= ∑#N$ x Δ(𝑥, 𝑃)

Δ 𝑥, 𝑃 : The gap between expected reward of arm 𝑥 and optimal arm 𝑥∗(𝑃)
N" x : Number of times we pull arm x in T rounds



What About Structural Information?

Reward distribution P belongs to a convex set 𝒫 (known)

Healthcare: 
Structure: Similar drugs (𝑑%, 𝑑&) 

have similar performance  

Online advertising: 
Structure: Some ads are 

negatively correlated

𝒫 = 𝑄: 4
'

𝑟𝑄(𝑟, 𝑑%) −4
'

𝑟𝑄(𝑟, 𝑑&) ≤ 𝛿

𝒫 = 𝑄: 4
'

𝑟𝑄(𝑟, 𝑥() +4
'

𝑟𝑄(𝑟, 𝑥)) ≤ 𝛿

Using convex set 𝒫, we can model existing structured bandit models: Linear, 
convex, Lipschitz bandits  

• Existing structured bandit models only impose structures on the mean reward 
of arms

• We can impose structures on the entire reward distributions 



Our Contributions and Main Results 

• Design a unified learning algorithm for structured bandits 

• Our  DUal Structure-based Algorithm (DUSA) obtains optimal regret 

bound 

• It mimics the dual counterpart of the regret lower bound to incorporate 

structural information   

• It is computationally efficient 

• It solves a convex problem in only 𝑂 log T periods

• DUSA is the first universally optimal algorithm for structured bandit that 
is computationally tractable 



Related Work
• Learning under particular structural assumptions

• Linear structure (Daniet al., 2008; Rusmevichientong and Tsitsiklis, 2010; Mersereau et al., 

2009; Lattimore and Szepes-vari, 2017,…)

• Lipschitz structure (Magureanu et al. 2014; Mao et al. 2018. Gupta et al. (2019),…)

• Structural information in contextual bandits (Slivkins 2011, Golrezaei et at 2020, …)

• Structures in revenue management problems: (Keskin et al 2014, Den Boer 2015, 

Agrawal etal 2017, Bubeck et al 2017, Ferreira et al 2018, Golrezaei et al 2019, Bastani et al 

2021,...)

• Taking a unified approach:

• Combes et al. (2017): Their algorithm mimics regret lower bound. But, it has to solve 

a semi-infinite optimization in every round

• Russo and Van Roy (2018): balance reward gain with information gain. May not 

obtain the optimal regret bound  



How to Design a Policy for ANY Structural 
Information? 

Main idea: mimic something that directly encapsulates structural information!  

How about mimicking the (information-theoretic) regret lower bound?

lim
*→,

Regret- T, P ≥ 𝐶 𝑃 log(𝑇)

where 

𝐶 𝑃 = inf4
#

𝜂 𝑥 Δ(𝑥, 𝑃)

𝑠. 𝑡. sufNicient exploration



How to Design a Policy for ANY Structural 
Information? 

Main idea: mimic something that directly encapsulates structural information!  

How about mimicking the (information-theoretic) regret lower bound?

lim
*→,

Regret- T, P ≥ 𝐶 𝑃 log(𝑇)

where 

𝐶 𝑃 = inf4
#

𝜂 𝑥 Δ(𝑥, 𝑃)

𝑠. 𝑡. sufNicinet exploration This condition encapsulates the 
structural information!

But How?



Regret Lower Bound: Sufficient Exploration Condition

We have done enough exploration if  we 
can distinguish the true distribution 𝑃
from “deceitful” distributions!

Deceitful distributions (Deceit(x’, P)):
1. Belong to convex set 𝒫
2. They have the same distribution at 𝑥∗ 𝑃
3. But, deceivingly have better arm (𝑥′) to play  

We have done enough exploration if 

Distance"(P, Deceit(x’, P))≥ 1

Dec
eit

(x’
, 𝑃

)P

This distance depends on structural 
information (convex set 𝒫)



How to Design a Policy for ANY Structural 
Information? 

Main idea: mimic something that directly encapsulates structural information!  

How about mimicking the (information-theoretic) regret lower bound?

lim
*→,

Regret- T, P ≥ 𝐶 𝑃 log(𝑇)

where 

𝐶 𝑃 = inf4
#

𝜂 𝑥 Δ(𝑥, 𝑃)

𝑠. 𝑡. sufNicient explorationDistance"(P, Deceit(x’, P)) ≥ 1 ∀𝑥#
Lower bound 
contains/uses 

structural information 



Mimicking Regret Lower Bound 

The optimal solution to the lower bound problem: (𝜂 𝑃 ) 
• Mimicking the Lower Bound: Pull suboptimal arm x, 𝜂 𝑥, 𝑃 log(𝑇)

times

A big issue: the regret lower bound is NOT available! 
• The true reward distribution is NOT known

A high level idea: Compute the empirical reward distribution 𝑃$ and follow 
the empirical regret lower bound 𝐶(𝑃$)

If 𝑃9 → 𝑃, the empirical regret lower bound 
𝐶 𝑃9 → 𝐶(𝑃)



Mimicking the Regret 
Lower Bound Is not Easy!

• Solving regret lower bound is 
computationally expensive 

• One does not want to solve 
the regret lower bound in 
each round 

• If 𝑃. does not converge to 𝑃, 
the idea of mimicking regret 
lower bound does not work!



First Challenge: Converting a Semi-infinite Lower 
Bound to Its Convex Counterpart 

𝐶 𝑃 = inf4
#

𝜂 𝑥 Δ(𝑥, 𝑃)

𝑠. 𝑡. sufNicinet explorationDistance/ (P, Deceit(x’, P)) ≥ 1 ∀𝑥′

Distance/(P, Deceit(x’, P)) = min
0
∑',# 𝜂 𝑥 𝑃 𝑟, 𝑥 log(𝑃(𝑟, 𝑥)/𝑄 𝑟, 𝑥 )

s.t.    𝑄 ∈ Deceit(x’, P)

Weighted KL distance 

Let’s dualize the distance function 

Regret lower bound (semi-infinite)

𝐶 𝑃 = inf
2,3
4
#

𝜂 𝑥 Δ(𝑥, 𝑃)

𝑠. 𝑡. sufNicinet exploration
Dual/ (P, Deceit(x’, P); 𝜇) ≥ 1 ∀𝑥′

𝜇 respects the structral information

Dual counterpart (Convex)



ü Solving regret lower bound is 
computationally expensive 
ü Solve its dual instead 

• One does not want to solve 
the regret lower bound in 
each round 

• If 𝑃. does not converge to 𝑃, 
the idea of mimicking regret 
lower bound does not work!

Mimicking the Regret 
Lower Bound Is not Easy!



Second Challenge: Avoid Solving the Regret 
Lower Bound in Each Round  

• We don’t need to resolve the regret lower bound if we have already 
obtained enough information
• Don’t resolve if we can distinguish 𝑃4 from Deceit(x’, 𝑃4)

Distance/ (𝑃4, Deceit(x’, 𝑃4)) ≥ 1

Testing this can be demanding! 

• We design a simpler (one-dimensional) information test:

• Can be tested by solving a 1-dimensional convex optimization 

problem   

Dec
eit

(x’
, 𝑃 !

)𝑃.

Dec
eit

(x’
, 𝑃 !

)

H

𝑃.

Hyperplane
𝐻(𝑥’, 𝑃!; 𝜇!)

Distance/ (𝑃4, 𝐻(𝑥’, 𝑃.; 𝜇.)) ≥ 1



ü Solving regret lower bound is 
computationally expensive 
ü Solve its dual instead 

ü One does not want to solve the 
regret lower bound in each 
round 
ü Design a simple 

information test

• If 𝑃. does not converge to 𝑃, the 
idea of mimicking regret lower 
bound does not work!

Mimicking the Regret 
Lower Bound Is not Easy!



Third Challenge: Ensuring 𝑃! Converges to P 

Exploration
Exploitation

We need to ensure that no arm is completely unexplored

(Explore) If min
#
𝑁. 𝑥 ≤ 𝜖𝑠., pull the least played arm

𝑥. = argmin5𝑁.(𝑥)

𝑠!: number of exploration rounds during the first t rounds



ü Solving regret lower bound is 
computationally expensive 
ü Solve its dual instead 

ü One does not want to solve the 
regret lower bound in each 
round 
ü Design a simple 

information test

ü If 𝑃. does not converge to 𝑃, the 
idea of mimicking regret lower 
bound does not work!
ü Do enough exploration

Mimicking the Regret 
Lower Bound Is not Easy!



Let’s Put Everything Together: 
DUal Structure-based Algorithm (DUSA) 

For every 𝑡 = |𝑋|: 𝑇
(Exploit) If you have collected enough information (i.e., Distance/ (𝑃4 ,
𝐻(𝑥’, 𝑃.; 𝜇.)) ≥ 1), exploit by playing the best arm given 𝑃.

(Explore) If Distance/ (𝑃4, 𝐻(𝑥’, 𝑃.; 𝜇.)) < 1

if min
#
𝑁. 𝑥 ≤ 𝜖𝑠., pull the least played arm

If not, solve the dual regret lower bound to obtain a target rate (𝜂(𝑥, 𝑃.))
and pull the most behind arm:

𝑥. = argmin5𝑁.(𝑥)

𝑥. = argmin5
𝑁.(𝑥)
𝜂 𝑥, 𝑃.

How did we use the structural information?

Here, by following 
the (dual) regret lower bound



Main Theorem: Asymptotic Optimal Regret

Theorem (Regret bound for DUSA)   

Under mild assumptions on the reward distribution P ∈ 𝒫, for any accuracy parameter   
0 < 𝜖 < %

|7|
, DUSA has the following two properties

• Optimal asymptotic regret:

• Logarithmic number of exploration rounds:

𝑙𝑖𝑚 𝑠𝑢𝑝*→,
Regret T, P
log 𝑇 ≤ 1 + 𝜖 𝐶 𝑃 + 𝑂(𝜖)

E 𝑠* = 𝑂(log(𝑇))

Because of our information test, we only solve the dual convex problem in 
𝑂(log(𝑇)) rounds  

Optimal regret bound



Proof Outline 
Regret = Regret during exploitation + Regret during exploration

Exploitation: Obtain a finite regret because of information test.
• The probability that  𝑃. is not close to 𝑃 is small
• Regret is finite when 𝑃. is close to 𝑃

Exploration: Obtain 1 + 𝜖 𝐶 𝑃 log(T) regret
• The probability that  𝑃. is not close to 𝑃 is small. Thus, our regret here is 

finite
• When 𝑃. is close to 𝑃, 𝜂 𝑃. is close to 𝜂(𝑃). Thus, 

Regret ≈ ∑,Δ 𝑥, 𝑃 𝜂 𝑥, 𝑃- log 𝑇 ≈ ∑,Δ 𝑥, 𝑃 𝜂 𝑥, 𝑃 (1 + 𝜖) log 𝑇

= 𝐶(𝑃)(1 + 𝜖)log(𝑇)



Numerical Studies for Well-known Structured  
Bandits 

25

• DUSA’s regret is comparable to the regret of algorithms that are 
tailored for a specific structured bandits 

• DUSA’s regret is more concentrated around its median 



Numerical Studies for Novel Structured Bandits 

26

• Divergence bandit: impose structures on the first and second moment 
of reward distributions  



Takeaways  

• Provide a unified framework 
to study structured bandits

• Present an algorithm called 
DUSA that obtains optimal 
regret bound for any convex 
structural information 

• DUSA is the first universally 
optimal algorithm that is 
computationally tractable 



Link to the paper: https://arxiv.org/abs/2007.07302 
Email: golrezae@mit.edu
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