Optimal Learning for Structured Bandits

Negin Golrezaei (MIT) Joint work with Bart Van Parys (MIT)

Structure of Constraints in Sequential Decision-Making, Simons Institute for the Theory of Computing, Oct. 13, 2022.

Minor Revision at Management Science

Multi-armed Bandits

Online decision-making under uncertainty:

- **Exploration**: collect information to discover the best arm
- **Exploitation**: exploit the collected information to play the arm that seems the best

Structured Multi-armed Bandits

Classical Multi-armed Bandits: Rewards of arms are independent of each other

In practice, they may NOT be independent

Structural information makes arms correlated!

Structural Information

Why is structural information important?

Structural information allows for transfer learning

• Information obtained by one arm can be transferred to other arms

Thompson Sampling and UCB perform poorly for structured bandits!!

- They stop playing an arm as soon as they figure out they are suboptimal
- Playing suboptimal arms can help with transfer learning

How to deal with structural information?

 Typical approach: Tailored algorithms for special structural problems: Lipschitz, linear, etc

Model

- Finite set of arms *X* with an unknown reward distribution
- A decision-maker needs to pull one of these arms per round over the course of T rounds
- Reward of arm $x \in X$ in round t is r with probability P(r, x)
 - *P* is unknown to the decision-maker
- There is an optimal arm x*(P) that has the highest average reward

Exploitation Exploration

Regret_{π}(*T*, *P*) = best reward in hindsight – total obtained reward

 $= \sum_{x} N_{T}(x) \Delta(x, P)$

 $N_T(x)$: Number of times we pull arm x in T rounds $\Delta(x, P)$: The gap between expected reward of arm x and optimal arm $x^*(P)$

What About Structural Information?

Reward distribution P belongs to a convex set \mathcal{P} (known)

Healthcare: Structure: Similar drugs (d_1, d_2) have similar performance

$$\mathcal{P} = \left\{ Q: \left| \sum_{r} rQ(r, \mathbf{d}_{1}) - \sum_{r} rQ(r, \mathbf{d}_{2}) \right| \le \delta \right\}$$

Online advertising: Structure: Some ads are negatively correlated $\mathcal{P} = \left\{ Q: \left[\sum_{r} rQ(r, \mathbf{x}_{D}) + \sum_{r} rQ(r, \mathbf{x}_{R}) \right] \le \delta \right\}$

Using convex set \mathcal{P} , we can model existing structured bandit models: Linear, convex, Lipschitz bandits

- Existing structured bandit models only impose structures on the mean reward of arms
- We can impose structures on the entire reward distributions

Our Contributions and Main Results

- Design a unified learning algorithm for structured bandits
- Our DUal Structure-based Algorithm (DUSA) obtains optimal regret bound
- It mimics the dual counterpart of the regret lower bound to incorporate structural information
- It is computationally efficient
 - It solves a convex problem in only $O(\log(T))$ periods
- DUSA is the first universally optimal algorithm for structured bandit that is computationally tractable

Related Work

- Learning under particular structural assumptions
 - Linear structure (Daniet al., 2008; Rusmevichientong and Tsitsiklis, 2010; Mersereau et al., 2009; Lattimore and Szepes-vari, 2017,...)
 - Lipschitz structure (Magureanu et al. 2014; Mao et al. 2018. Gupta et al. (2019),...)
 - Structural information in contextual bandits (Slivkins 2011, Golrezaei et at 2020, ...)
 - Structures in revenue management problems: (Keskin et al 2014, Den Boer 2015, Agrawal etal 2017, Bubeck et al 2017, Ferreira et al 2018, Golrezaei et al 2019, Bastani et al 2021,...)
- Taking a **unified** approach:
 - Combes et al. (2017): Their algorithm mimics regret lower bound. But, it has to solve a semi-infinite optimization in every round
 - Russo and Van Roy (2018): balance reward gain with information gain. May not obtain the optimal regret bound

How to Design a Policy for <u>ANY</u> Structural Information?

Main idea: mimic something that directly encapsulates structural information!

How about mimicking the (information-theoretic) regret lower bound?

$$\lim_{T \to \infty} \operatorname{Regret}_{\pi}(T, P) \ge C(P) \log(T)$$

where

$$C(P) = \inf \sum_{x} \eta(x) \Delta(x, P)$$

s.t. sufficient exploration

How to Design a Policy for <u>ANY</u> Structural Information?

Main idea: mimic something that directly encapsulates structural information!

How about mimicking the (information-theoretic) regret lower bound?

$$\lim_{T \to \infty} \operatorname{Regret}_{\pi}(T, P) \ge C(P) \log(T)$$

where

$$C(P) = \inf \sum_{x} \eta(x) \Delta(x, P)$$

s.t. sufficinet exploration

This condition encapsulates the structural information!

But How?

Regret Lower Bound: Sufficient Exploration Condition

We have done <u>enough exploration</u> if we can <u>distinguish</u> the true distribution *P* from "deceitful" distributions!

Deceitful distributions (Deceit(x', P)):

- 1. Belong to convex set \mathcal{P}
- 2. They have the same distribution at $x^*(P)$
- 3. But, deceivingly have better arm (x') to play

We have done enough exploration if

Distance_η(P, Deceit(x', P)) ≥ 1

This distance depends on **structural information** (convex set \mathcal{P})

How to Design a Policy for <u>ANY</u> Structural Information?

Main idea: mimic something that directly encapsulates structural information!

How about mimicking the (information-theoretic) regret lower bound?

$$\lim_{T \to \infty} \operatorname{Regret}_{\pi}(T, P) \ge C(P) \log(T)$$

where

$$C(P) = \inf \sum_{x} \eta(x) \Delta(x, P)$$

s.t. $\text{Distance}_{\eta}(P, \text{Deceit}(x', P)) \ge 1 \forall x'$
Lower bound
contains/uses
structural information

Mimicking Regret Lower Bound

The optimal solution to the lower bound problem: $(\eta(P))$

Mimicking the Lower Bound: Pull suboptimal arm x, η(x, P)log(T) times

A big issue: the regret lower bound is NOT available!

The true reward distribution is NOT known

A high level idea: Compute the empirical reward distribution P_t and follow the empirical regret lower bound $C(P_t)$

If
$$P_t \to P$$
, the empirical regret lower bound
 $C(P_t) \to C(P)$

Mimicking the Regret Lower Bound Is not Easy!

- Solving regret lower bound is computationally expensive
- One does not want to solve the regret lower bound in each round
- If P_t does not converge to P, the idea of mimicking regret lower bound does not work!

First Challenge: Converting a Semi-infinite Lower Bound to Its Convex Counterpart

Regret lower bound (semi-infinite)

 $C(P) = \inf \sum_{x} \eta(x) \Delta(x, P)$ s.t. Distance_η (P, Deceit(x', P)) ≥ 1 $\forall x'$ **Dual counterpart (Convex)**

$$C(P) = \inf_{\eta,\mu} \sum_{x} \eta(x) \Delta(x, P)$$

Dual_η (P, Deceit(x', P); μ) $\geq 1 \forall x'$
s.t
 μ respects the structral information

Weighted KL distance

Distance_{η}(P, Deceit(x', P)) = $\min_{Q} \sum_{r,x} \eta(x) P(r,x) \log(P(r,x)/Q(r,x))$

s.t. $Q \in \text{Deceit}(x', P)$

Let's dualize the distance function

Mimicking the Regret Lower Bound Is not Easy!

- Solving regret lower bound is computationally expensive
 Solve its dual instead
- One does not want to solve the regret lower bound in each round
- If P_t does not converge to P, the idea of mimicking regret lower bound does not work!

Second Challenge: Avoid Solving the Regret Lower Bound in Each Round

- We don't need to resolve the regret lower bound if we have already obtained **enough information**
 - Don't resolve if we can distinguish P_t from Deceit(x', P_t)

 $Distance_{\eta} (P_t, Deceit(x', P_t)) \ge 1$

Testing this can be demanding!

Distance_{η} (P_t , $H(x', P_t; \mu_t)$) ≥ 1

 Can be tested by solving a 1-dimensional convex optimization problem

Mimicking the Regret Lower Bound Is not Easy!

- ✓ Solving regret lower bound is computationally expensive
 - ✓ Solve its dual instead
- One does not want to solve the regret lower bound in each round
 - ✓ Design a simple information test
- If P_t does not converge to P, the idea of mimicking regret lower bound does not work!

Third Challenge: Ensuring P_t Converges to P

We need to ensure that no arm is completely unexplored

(Explore) If $\min_{x} N_t(x) \le \epsilon s_t$, pull the least played arm $x_t = \operatorname{argmin}_x N_t(x)$

 s_t : number of exploration rounds during the first t rounds

Mimicking the Regret Lower Bound Is not Easy!

- ✓ Solving regret lower bound is computationally expensive
 - ✓ Solve its dual instead
- One does not want to solve the regret lower bound in each round
 - ✓ Design a simple information test
- ✓ If P_t does not converge to P, the idea of mimicking regret lower bound does not work!
 - \checkmark Do enough exploration

Let's Put Everything Together: DUal Structure-based Algorithm (DUSA)

For every t = |X|: T

(Exploit) If you have collected enough information (i.e., Distance_{η} (P_t , $H(x', P_t; \mu_t)$) ≥ 1), exploit by playing the best arm given P_t

(**Explore**) If Distance_{η} (P_t , $H(x', P_t; \mu_t)$) < 1

if $\min_{x} N_t(x) \le \epsilon s_t$, pull the least played arm $x_t = \operatorname{argmin}_x N_t(x)$ Here, by following the (dual) regret lower bound

If not, solve the dual regret lower bound to obtain a target rate ($\eta(x, P_t)$) and pull the most behind arm:

$$x_t = \operatorname{argmin}_{\mathbf{x}} \frac{N_t(x)}{\eta(x, P_t)}$$

How did we use the structural information?

Main Theorem: Asymptotic Optimal Regret

Theorem (Regret bound for DUSA)

Under mild assumptions on the reward distribution $P \in \mathcal{P}$, for any accuracy parameter $0 < \epsilon < \frac{1}{|X|}$, DUSA has the following two properties

• Optimal asymptotic regret:

Optimal regret bound

$$\limsup_{T \to \infty} \frac{\operatorname{Regret}(T, P)}{\log(T)} \le (1 + \epsilon)C(P) + O(\epsilon)$$

• Logarithmic number of exploration rounds:

 $\mathbf{E}[s_T] = O(\log(T))$

Because of our information test, we only solve the dual convex problem in $O(\log(T))$ rounds

Proof Outline

Regret = Regret during **exploitation** + Regret during **exploration**

Exploitation: Obtain a finite regret because of information test.

- The probability that P_t is not close to P is small
- Regret is finite when P_t is close to P

Exploration: Obtain $(1 + \epsilon)C(P)\log(T)$ regret

- The probability that P_t is not close to P is small. Thus, our regret here is finite
- When P_t is close to $P, \eta(P_t)$ is close to $\eta(P)$. Thus,

Regret $\approx \sum_{x} \Delta(x, P) (\eta(x, P_t)) \log(T) \approx \sum_{x} \Delta(x, P) (\eta(x, P)(1 + \epsilon)) \log(T)$ = $C(P)(1 + \epsilon) \log(T)$

Numerical Studies for <u>Well-known</u> Structured Bandits

- DUSA's regret is comparable to the regret of algorithms that are tailored for a specific structured bandits
- DUSA's regret is more concentrated around its median

Numerical Studies for Novel Structured Bandits

• Divergence bandit: impose structures on the first and second moment of reward distributions

Takeaways

- Provide a unified framework to study structured bandits
- Present an algorithm called DUSA that obtains optimal regret bound for any convex structural information
- DUSA is the first universally optimal algorithm that is computationally tractable

Link to the paper: https://arxiv.org/abs/2007.07302 Email: golrezae@mit.edu