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Multi-armed Bandits

Online decision-making under uncertainty:

Fundamental trade-off:
* Exploration: collect information to discover the best arm
* Exploitation: exploit the collected information to play the arm that

seems the best

Healthcare: Revenue management: Online advertising:
What drugs to prescribe? What price to post? Which ad to show to users?
(Arms: drugs) (Arms: prices) (Arms: ads)




Structured Multi-armed Bandits

Classical Multi-armed Bandits: Rewards of arms are independent of each other

In practice, they may NOT be independent

Healthcare: Revenue management: Online advertising:
Structure: Similar drugs Structure: Demand goes Structure: Some ads are
have similar performance down as price goes up negatively correlated

Structural information makes arms correlated!




Structural Information

Why is structural information important?
Structural information allows for transfer learning
* Information obtained by one arm can be transferred to other arms
Thompson Sampling and UCB perform poorly for structured bandits!!
* They stop playing an arm as soon as they figure out they are suboptimal
* Playing suboptimal arms can help with transfer learning
How to deal with structural information?

* Typical approach: Tailored algorithms for special structural problems: Lipschitz,

linear, etc

Our approach: Unified framework that works
for any convex structural information




Model

Finite set of arms X with an unknown reward distribution
A decision-maker needs to pull one of these arms per round
over the course of T rounds

Reward of arm x € X in round t is r with probability P (7, x)

e Pisunknown to the decision-maker
Exploitation

There is an optimal arm x*(P) that has the highest average Exploration
reward

The decision-maker would like to identify the optimal arm

with suffering a low regret

Regret, (T, P) = best reward in hindsight — total obtained reward
= Zx NT(X)A(xr P)

Nt(x) : Number of times we pull arm x in T rounds
A(x, P): The gap between expected reward of arm x and optimal arm x*(P)



What About Structural Information?

Reward distribution P belongs to a convex set P (known)

Healthcare:
Structure: Similar drugs (d, d5) P =
have similar performance

0: [Z rQ(r, dy) — z ro(r, dz)} < 5}

r

Online advertising:
Structure: Some ads are P =
negatively correlated

Q: [Z rQ(r,xp) + ErQ(r, xR)‘ < 5}

Using convex set P, we can model existing structured bandit models: Linear,

convex, Lipschitz bandits
e Existing structured bandit models only impose structures on the mean reward
of arms
* We can impose structures on the entire reward distributions




Our Contributions and Main Results

* Design a unified learning algorithm for structured bandits

 Our DUal Structure-based Algorithm (DUSA) obtains optimal regret
bound

* |t mimics the dual counterpart of the regret lower bound to incorporate
structural information

* |tis computationally efficient

* It solves a convex problem in only O(log(T)) periods

 DUSA is the first universally optimal algorithm for structured bandit that
is computationally tractable



Related Work

e Learning under particular structural assumptions
* Linear structure (Daniet al., 2008; Rusmevichientong and Tsitsiklis, 2010; Mersereau et al.,
2009; Lattimore and Szepes-vari, 2017,...)
e Lipschitz structure (Magureanu et al. 2014; Mao et al. 2018. Gupta et al. (2019),...)
e Structural information in contextual bandits (Slivkins 2011, Golrezaei et at 2020, ...)
e Structures in revenue management problems: (Keskin et al 2014, Den Boer 2015,
Agrawal etal 2017, Bubeck et al 2017, Ferreira et al 2018, Golrezaei et al 2019, Bastani et al
2021,...)
e Taking a unified approach:
e Combes et al. (2017): Their algorithm mimics regret lower bound. But, it has to solve
a semi-infinite optimization in every round
* Russo and Van Roy (2018): balance reward gain with information gain. May not

obtain the optimal regret bound



How to Design a Policy for ANY Structural
Information?

Main idea: mimic something that directly encapsulates structural information!

How about mimicking the (information-theoretic) regret lower bound?

lim Regret(T,P) = C(P)log(T)

T—oo

where

C(P) = infz n(x) A(x, P)

s.t. sufficient exploration



How to Design a Policy for ANY Structural

Information?

Main idea: mimic something that directly encapsulates structural information!

How about mimicking the (information-theoretic) regret lower bound?

lim Regret(T,P) = C(P)log(T)

T—oo

where

C(P) = infz n(x) A(x, P)

S. t.

sufficinet exploration

This condition encapsulates the
structural information!

But How?



Regret Lower Bound: Sufficient Exploration Condition

We have done enough exploration if we
can distinguish the true distribution P
from “deceitful” distributions!

Deceitful distributions (Deceit(x’, P)):
1. Belongto convexset P
2. They have the same distribution at x*(P)
3. But, deceivingly have better arm (x') to play

We have done enough exploration if

Distance, (P, Deceit(x’, P))= 1

This distance depends on structural
information (convex set P)
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How to Design a Policy for ANY Structural
Information?

Main idea: mimic something that directly encapsulates structural information!

How about mimicking the (information-theoretic) regret lower bound?

lim Regret(T,P) = C(P)log(T)

T—oo

where

Lower bound

| X - , contains/uses
S. t. Dlstancen(P, Deceit(x’, P)) = 1Vx structural information

—

C(P) = infz n(x) A(x, P)

—




Mimicking Regret Lower Bound

The optimal solution to the lower bound problem: (n(P))
* Mimicking the Lower Bound: Pull suboptimal arm x, n(x, P)log(T)

times
A big issue: the regret lower bound is NOT available!

e The true reward distribution is NOT known

A high level idea: Compute the empirical reward distribution P; and follow
the empirical regret lower bound C(P;)

If P, —» P, the empirical regret lower bound
C(P) — C(P)




Mimicking the Regret
Lower Bound Is not Easy!

* Solving regret lower bound is
computationally expensive

* One does not want to solve
the regret lower bound in
each round

* If P, does not converge to P,
the idea of mimicking regret
lower bound does not work!




First Challenge: Converting a Semi-infinite Lower
Bound to Its Convex Counterpart

Regret lower bound (semi-infinite)

-

\_

C(P) = infz n(x) A(x, P)

~

s.t. Distance,, (P, Deceit(x’, P)) = 1 Vx'

J

Dual counterpart (Convex)

\_

-
c(P) = ;{gz n(x) A, P)

Dual,, (P, Deceit(x’, P); u) = 1 Vx'

S.t
u respects the structral informatioy

Weighted KL distance

Distance, (P, Deceit(x’, P)) = inn 2rxN(x)P(r,x)log(P(r,x)/Q(r,x))

s.t. Q € Deceit(x’, P)

Let’s dualize the distance function



Mimicking the Regret
Lower Bound Is not Easy!

v’ Solving regret lower bound is
computationally expensive

v" Solve its dual instead

* One does not want to solve
the regret lower bound in
each round

* If P, does not converge to P,
the idea of mimicking regret
lower bound does not work!




Second Challenge: Avoid Solving the Regret
Lower Bound in Each Round

« We don’t need to resolve the regret lower bound if we have already
obtained enough information

* Don’tresolve if we can distinguish P; from Deceit(x’, P;)

Distance,, (P, Deceit(x’, P;)) = 1

Testing this can be demanding!

 We design a simpler (one-dimensional) information test:

Hyperplane
H(QxX', Py; pe)

Distance,, (P, H(x', P; ) = 1

* Can be tested by solving a 1-dimensional convex optimization

problem



Mimicking the Regret
Lower Bound Is not Easy!

v’ Solving regret lower bound is
computationally expensive

v" Solve its dual instead

v" One does not want to solve the

regret lower bound in each
round

v Design a simple
information test

* If P, does not converge to P, the
idea of mimicking regret lower
bound does not work!




Third Challenge: Ensuring P, Converges to P

We need to ensure that no arm is completely unexplored

(Explore) If min N, (x) < es;, pull the least played arm
X

X; = argming N, (x)

_ . . Exploitation
S¢: number of exploration rounds during the first t rounds :
Exploration



Mimicking the Regret
Lower Bound Is not Easy!

v’ Solving regret lower bound is
computationally expensive

v" Solve its dual instead

v" One does not want to solve the
regret lower bound in each
round

v Design a simple
information test

v" If P; does not converge to P, the
idea of mimicking regret lower
bound does not work!

v Do enough exploration




Let’s Put Everything Together:
DUal Structure-based Algorithm (DUSA)

Foreveryt = |X|: T
(Exploit) If you have collected enough information (i.e., Distance, (P,
H(x’, Ps; ug)) = 1), exploit by playing the best arm given P;

(Explore) If Distance,, (P, H(x', P; ) < 1

if min N;(x) <e€s;, pull the least played arm
X
x; = argming N (x) Here, by following
the (dual) regret lower bound
If not, solve the dual regret lower bound to obtain a target rate (n(x, P;))

and pull the most behind arm:
N¢(x)

X; = argmin, ———
A A

How did we use the structural information?



Main Theorem: Asymptotic Optimal Regret

Theorem (Regret bound for DUSA)

Under mild assumptions on the reward distribution P € P, for any accuracy parameter

1
x|’
e Optimal asymptotic regret:

Regret(T, P)
log(T)

e Logarithmic number of exploration rounds:

0<e< DUSA has the following two properties

Optimal regret bound

lim supr_ e <(1+4+¢€)C(P)+ 0(e)

Elsr] = 0(log(T))

Because of our information test, we only solve the dual convex problem in
O(log(T)) rounds



Proof Outline

Regret = Regret during exploitation + Regret during exploration

Exploitation: Obtain a finite regret because of information test.
* The probability that P; is not close to P is small
* Regretis finite when P, is close to P

Exploration: Obtain (1 + €)C(P)log(T) regret
* The probability that P; is not close to P is small. Thus, our regret here is
finite
* When P is close to P,n(P;) is close to n(P). Thus,

Regret =~ Y, A(x, P)(n(x, P))log(T) ~ Y. A(x, P)(n(x, P)(1 + €)) log(T)
=C(P)(1 + e)log(T)



Normalized Cumulative Regret
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 DUSA’s regret is comparable to the regret of algorithms that are

tailored for a specific structured bandits

* DUSA’s regret is more concentrated around its median
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Numerical Studies for Novel Structured Bandits
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* Divergence bandit: impose structures on the first and second moment
of reward distributions
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Takeaways

* Provide a framework
to study structured bandits

e Present an algorithm called
DUSA that obtains optimal
regret bound for any convex
structural information

* DUSA is the first universally
algorithm that is
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