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BANACH FIXED POINT THEOREM

Want to find 𝐱𝐱∗ that solves

�𝐅𝐅 𝐱𝐱 = 𝐱𝐱

A simple iteration

𝐱𝐱k+1 = �𝐅𝐅 𝐱𝐱k
Banach Fixed Point Theorem

𝐱𝐱k converges to 𝐱𝐱∗ geometrically fast (linearly) if �𝐅𝐅 (. ) is a contraction

Contraction: For all 𝐱𝐱 and 𝐲𝐲,    �𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ≤ γ 𝐱𝐱 − 𝐲𝐲

Works for any norm

𝐱𝐱

𝐲𝐲

�𝐅𝐅 𝐱𝐱

�𝐅𝐅 𝐲𝐲



BANACH FIXED POINT THEOREM

Want to find 𝐱𝐱∗ that solves

�𝐅𝐅 𝐱𝐱 = 𝐱𝐱

A simple iteration

𝐱𝐱k+1 = �𝐅𝐅 𝐱𝐱k
Banach Fixed Point Theorem

𝐱𝐱k converges to 𝐱𝐱∗ geometrically fast (linearly) if �𝐅𝐅 ⋅ is a pseudo-contraction

Pseudo-Contraction: For all 𝐱𝐱,    �𝐅𝐅 𝐱𝐱 − 𝐱𝐱∗ ≤ γ 𝐱𝐱 − 𝐱𝐱∗

+𝐰𝐰k

Noisy Oracle

𝐱𝐱∗ = �𝐅𝐅 𝐱𝐱∗

𝐱𝐱

�𝐅𝐅 𝐱𝐱

�𝐅𝐅 .
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STOCHASTIC APPROXIMATION

Want to find 𝐱𝐱∗ that solves

�𝐅𝐅 𝐱𝐱 = 𝐱𝐱

A simple iteration

𝐱𝐱k+1 = �𝐅𝐅 𝐱𝐱k
Stochastic Approximation[Robbins, Monro ‘51]

𝐱𝐱k+1 = 1 − 𝛼𝛼𝑘𝑘 𝐱𝐱k + 𝛼𝛼k �𝐅𝐅 𝐱𝐱k + 𝐰𝐰k
= 𝐱𝐱k + 𝛼𝛼𝑘𝑘 �𝐅𝐅 𝐱𝐱k + 𝐰𝐰k − 𝐱𝐱k

+𝐰𝐰k

Noisy Oracle

Question: How well does this work?
7



OUTLINE
•Stochastic Approximation Introduction 

•Finite Sample bounds on the mean-square error 𝔼𝔼 𝐱𝐱k − 𝐱𝐱∗ 2

• Proof Sketch - A Lyapunov function

•High Probability bounds on 𝐱𝐱k − 𝐱𝐱∗ (Exponentially decaying)

• Proof Sketch – Exponential Supermartingale and Bootstrapping 
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FIXED POINT PROBLEMS

Stochastic Approximation to solve �𝐅𝐅 𝐱𝐱 = 𝐱𝐱

𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼𝑘𝑘 �𝐅𝐅 𝐱𝐱k + 𝐰𝐰k − 𝐱𝐱k
Optimization:

min 𝑓𝑓(𝐱𝐱)

−η𝛁𝛁𝑓𝑓 𝐱𝐱 + 𝐱𝐱 = 𝐱𝐱

When 𝑓𝑓 is smooth strongly convex, �𝐅𝐅 𝐱𝐱 = −η𝛁𝛁𝑓𝑓 𝐱𝐱 + 𝐱𝐱 is contraction wrt ℓ2-norm

SGD: 𝐱𝐱k+1 = 𝐱𝐱k − αk 𝛁𝛁𝑓𝑓 𝐱𝐱k + 𝐰𝐰k
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FIXED POINT PROBLEMS

Stochastic Approximation to solve �𝐅𝐅 𝐱𝐱 = 𝐱𝐱

𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼𝑘𝑘 �𝐅𝐅 𝐱𝐱k + 𝐰𝐰k − 𝐱𝐱k
Markov Decision Processes and RL:
�𝐅𝐅 (⋅) is related to the Bellman operator.

TD learning, Q learning and their variants can be modeled as SA

The underlying norm is weighted ℓ𝑝𝑝 (for TD) and ℓ∞ (for Q learning)

More details in Part II
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FIXED POINT PROBLEMS

Stochastic Approximation to solve �𝐅𝐅 𝐱𝐱 = 𝐱𝐱

𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼𝑘𝑘 �𝐅𝐅 𝐱𝐱k + 𝐰𝐰k − 𝐱𝐱k

Linear Equations:
𝐀𝐀𝐱𝐱 = 𝐛𝐛

𝐈𝐈 + η𝐀𝐀 𝐱𝐱 − 𝜼𝜼𝐛𝐛 = 𝐱𝐱

When 𝐀𝐀 is Hurwitz (Re λi < 0), �𝐅𝐅 𝐱𝐱 = 𝐈𝐈 + η𝐀𝐀 𝐱𝐱 − 𝜼𝜼𝐛𝐛 is contraction wrt weighted  
ℓ2-norm

Linear SA: 𝐱𝐱k+1 = 𝐱𝐱k + αk 𝐀𝐀𝐱𝐱k − 𝐛𝐛k
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MARKOVIAN STOCHASTIC APPROXIMATION
Want to find 𝐱𝐱∗ that solves

�𝐅𝐅 𝐱𝐱 = 𝔼𝔼𝐘𝐘∼𝝁𝝁 𝐅𝐅(𝐱𝐱,𝐘𝐘) = 𝐱𝐱

Markovian Stochastic Approximation

𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼k 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝐤𝐤 + 𝐰𝐰k − 𝐱𝐱k

(Main) Assumptions

• 𝐘𝐘𝐤𝐤 is a finite state Ergodic Markov chain with stationary distribution 𝝁𝝁
• 𝐘𝐘𝐤𝐤 is geometrically mixing

• Noise 𝐰𝐰k - iid or martingale difference, mean zero, 𝐰𝐰k ≤ 𝐵𝐵 𝐱𝐱k + 1

• �𝐅𝐅 . is a contraction w.r.t arbitrary norm �𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ≤ γ 𝐱𝐱 − 𝐲𝐲

13

𝐱𝐱k+1 = 𝐱𝐱k + αk 𝐀𝐀k𝐱𝐱k − 𝐛𝐛

Multiplicative Noise Additive Noise
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FIXED STEP SIZE

Markovian Stochastic Approximation          𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝐤𝐤 + 𝐰𝐰k − 𝐱𝐱k

�𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ∞ ≤ γ 𝐱𝐱 − 𝐲𝐲 ∞

ℓ∞-norm 
contraction

Theorem[Chen, M, Shakkottai, Shanmugam ‘21]: If the step-size 𝛼𝛼 is small enough,

𝔼𝔼 𝐱𝐱k − 𝐱𝐱∗ ∞
2 ≤ c1 1 − c2𝛼𝛼 k−log 𝛼𝛼−1 + c3𝛼𝛼 log𝛼𝛼−1

𝐱𝐱∗
𝐱𝐱k

𝐱𝐱0 − 𝐱𝐱∗ ∞
2 1 − γ

2

log d



FIXED STEP SIZE

Markovian Stochastic Approximation          𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝐤𝐤 + 𝐰𝐰k − 𝐱𝐱k

�𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ∞ ≤ γ 𝐱𝐱 − 𝐲𝐲 ∞

ℓ∞-norm 
contraction

Theorem[Chen, M, Shakkottai, Shanmugam ‘21]: If the step-size 𝛼𝛼 is small enough,

𝔼𝔼 𝐱𝐱k − 𝐱𝐱∗ ∞
2 ≤ c1 1 − c2𝛼𝛼 k−log 𝛼𝛼−1 + c3𝛼𝛼 log𝛼𝛼−1

𝐱𝐱∗
𝐱𝐱k

log d

• Given a target error 𝜖𝜖, one can pick small enough 
step size so that eventually the error is 𝜖𝜖.
• Sample complexity of �𝑂𝑂 1

𝜖𝜖2



DIMINISHING STEP SIZES

Markovian Stochastic Approximation          𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼𝑘𝑘 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝐤𝐤 + 𝐰𝐰k − 𝐱𝐱k

�𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ∞ ≤ γ 𝐱𝐱 − 𝐲𝐲 ∞

Theorem[Chen, M, Shakkottai, Shanmugam ‘21]:

𝔼𝔼 𝐱𝐱k − 𝐱𝐱∗ ∞
2 ≤

𝑐𝑐4
ln 𝑘𝑘
𝑘𝑘𝜉𝜉

𝜉𝜉 ∈ (0,1)

𝑐𝑐5
ln 𝑘𝑘 2

𝑘𝑘𝛼𝛼𝑐𝑐2
𝜉𝜉 = 1,𝛼𝛼𝑐𝑐2 ≤ 1

𝑐𝑐6
ln 𝑘𝑘
𝑘𝑘

𝜉𝜉 = 1,𝛼𝛼𝑐𝑐2 > 1

𝛼𝛼𝑘𝑘~𝛼𝛼/𝑘𝑘𝜉𝜉

�̂�𝑐6
log d

1 − 𝛾𝛾 3
ln𝑘𝑘

k

1 − γ
2

𝐱𝐱0 − 𝐱𝐱∗ ∞
2
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DIMINISHING STEP SIZES

Markovian Stochastic Approximation          𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼𝑘𝑘 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝐤𝐤 + 𝐰𝐰k − 𝐱𝐱k

�𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ∞ ≤ γ 𝐱𝐱 − 𝐲𝐲 ∞

Theorem[Chen, M, Shakkottai, Shanmugam ‘21]:

𝔼𝔼 𝐱𝐱k − 𝐱𝐱∗ ∞
2 ≤

𝑐𝑐4
ln 𝑘𝑘
𝑘𝑘𝜉𝜉

𝜉𝜉 ∈ (0,1)

𝑐𝑐5
ln 𝑘𝑘 2

𝑘𝑘𝛼𝛼𝑐𝑐2
𝜉𝜉 = 1,𝛼𝛼𝑐𝑐2 ≤ 1

𝑐𝑐6
ln 𝑘𝑘
𝑘𝑘

𝜉𝜉 = 1,𝛼𝛼𝑐𝑐2 > 1

𝛼𝛼𝑘𝑘~𝛼𝛼/𝑘𝑘𝜉𝜉

�̂�𝑐6
log d

1 − 𝛾𝛾 3
ln𝑘𝑘

k

1 − γ
2 18

• This leads to a sample complexity of �𝑂𝑂 1
𝜖𝜖2

• With continual improvement beyond this.
• Algorithm does not depend on 𝜖𝜖



SA mode Operator Context Literature

No Mult noise . 2-contraction SGD [Bottou et al 18]

Mult noise 
with 

boundedness
. ∞-contraction Q-learning [Beck, Srikant 12,13] (poly d)

(Need iterates to be bounded)

Linear Hurwitz TD-learning
[Srikant, Ying 19] (Markov Noise), 

[Lakshminarayanan and Szepesvari 18] 
(iid noise)

Markovian 
and Mult

noise

Any norm 
contraction

SGD 
Q-learning
TD-learning

Off-policy TD

Our work
Also recovers all prior results

RELATED WORK
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STOCHASTIC APPROXIMATION: INTUITION
Stochastic Approximation          𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼k 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝑘𝑘 + 𝐰𝐰k − 𝐱𝐱k

• ODE Method [Borkar ‘09]:
• Stochastic Approximation converges asymptotically if the ODE is globally asymptotically stable (gas)

• Show gas using a Lyapunov function, M 𝐱𝐱 = 𝐱𝐱 ∞
2 :  

dM(𝐱𝐱−𝐱𝐱∗)
dt

≤ −γM(𝐱𝐱 − 𝐱𝐱∗)

• Want: Error bounds on original SA. We do not use the ODE method. 

• Challenge: We need to handle error terms
𝐱𝐱k+1 − 𝐱𝐱k = 𝛼𝛼k �𝐅𝐅 𝐱𝐱𝑘𝑘 − 𝐱𝐱k + 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝑘𝑘 − �𝐅𝐅 𝐱𝐱𝑘𝑘 + 𝐰𝐰k

Stochastic Approximation
𝐱𝐱k+1−𝐱𝐱k

𝛼𝛼k
= 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝑘𝑘 + 𝐰𝐰k − 𝐱𝐱k

ODE
�̇�𝐱 = �𝐅𝐅 𝐱𝐱 − 𝐱𝐱

21
Discretization Error Markovian Error Additive Noise ErrorODE Term

Control the 
Errors



ODE VS STOCHASTIC APPROXIMATION
Stochastic Approximation

𝐱𝐱k+1 − 𝐱𝐱k = 𝛼𝛼k 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝑘𝑘 + 𝐰𝐰k − 𝐱𝐱k
ODE

�̇�𝐱 = �𝐅𝐅 𝐱𝐱 − 𝐱𝐱

Smoothness: M 𝐲𝐲 ≤ M 𝐱𝐱 + 𝛻𝛻M 𝐱𝐱 , 𝐲𝐲 − 𝐱𝐱 + L
2
𝐲𝐲 − 𝐱𝐱 ∞

𝟐𝟐

Approximation: M 𝐱𝐱 ≤ 𝐱𝐱 ∞
𝟐𝟐 ≤ cM 𝐱𝐱

BAD NEWS
Lyapunov function 

M 𝐱𝐱 = 𝐱𝐱 ∞
2 is not 

smooth

M 𝐱𝐱k+1 − 𝐱𝐱∗ − M 𝐱𝐱k − 𝐱𝐱∗ ≤ −𝛾𝛾𝛼𝛼𝑘𝑘M 𝐱𝐱k − 𝐱𝐱∗ +𝑜𝑜 𝛼𝛼𝑘𝑘

dM(𝐱𝐱 − 𝐱𝐱∗)
dt ≤ −γM(𝐱𝐱 − 𝐱𝐱∗)

22

ODE
SA

M(𝐱𝐱 − 𝐱𝐱∗)



THE LYAPUNOV FUNCTION

Smoothness: M 𝐲𝐲 ≤ M 𝐱𝐱 + 𝛻𝛻M 𝐱𝐱 , 𝐲𝐲 − 𝐱𝐱 + L
2
𝐲𝐲 − 𝐱𝐱 ∞

𝟐𝟐

Approximation: M 𝐱𝐱 ≤ 𝐱𝐱 ∞
2 ≤ cM 𝐱𝐱

M 𝐱𝐱 =   𝐱𝐱 ∞
2 □ 1

𝜇𝜇
g 𝐱𝐱 = min

𝐮𝐮
𝐮𝐮 ∞

2 + 1
𝜇𝜇

g 𝐱𝐱 − 𝐮𝐮

Moreau Envelope 
𝐱𝐱 ∞

2 □ 1
2𝜇𝜇

𝐱𝐱 𝟐𝟐
2

23



HANDLING THE ERRORS

𝐱𝐱k+1 − 𝐱𝐱k = 𝛼𝛼k �𝐅𝐅 𝐱𝐱𝐤𝐤 − 𝐱𝐱k + 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝑘𝑘 − �𝐅𝐅 𝐱𝐱𝑘𝑘 + 𝐰𝐰k

Due to smoothness, we are good, if we have a handle on error terms
Markovian Error:
• 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝑘𝑘 is not same as its steady-state �𝐅𝐅 𝐱𝐱𝑘𝑘
• The key term turns out to be a cross term

• For linear SA this was used in [Srikant, Ying ‘19] [Bertsikas, Tsitsiklis ‘96]

24
Discretization Error Markovian Error Additive Noise ErrorODE Term

Mixing time

= 𝔼𝔼 𝔼𝔼 �𝐱𝐱k,𝐅𝐅 𝐱𝐱k,𝐘𝐘k − �𝐅𝐅 𝐱𝐱k 𝐱𝐱k−𝜏𝜏,𝐘𝐘k−𝜏𝜏𝔼𝔼 𝐱𝐱k,𝐅𝐅 𝐱𝐱k,𝐘𝐘k − �𝐅𝐅 𝐱𝐱k

𝐰𝐰k ≤ 𝐴𝐴( 𝐱𝐱k +1)

Fast 
mixing

Smoothness





TAIL BOUNDS
Stochastic Approximation to solve �𝐅𝐅 𝐱𝐱 = 𝐱𝐱

𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝑘𝑘 + 𝐰𝐰k − 𝐱𝐱k
Mean Square Bounds:

𝔼𝔼 𝐱𝐱k − 𝐱𝐱∗ 2 ≤ 𝑂𝑂
1
𝑘𝑘

Using Markov Inequality, we get ℙ 𝐱𝐱k − 𝐱𝐱∗ 2 ≥ 𝑂𝑂 1
𝑘𝑘
𝑧𝑧 ≤ 1

𝑧𝑧

This implies sample complexity of 𝑂𝑂 1
𝜖𝜖2

log 1
𝛿𝛿

to ensure 𝐱𝐱k − 𝐱𝐱∗ ≤ 𝜖𝜖 w.p. 1 − 𝛿𝛿

Question: Can we get exponential tail bounds of the form 
ℙ 𝐱𝐱k − 𝐱𝐱∗ 2 ≥ 𝑂𝑂 1

𝑘𝑘
𝑧𝑧 ≤ 𝑒𝑒−𝑐𝑐𝑧𝑧?

Yes

26

1
z

𝑒𝑒−𝑐𝑐𝑧𝑧𝐱𝐱 k
−
𝐱𝐱∗

𝟐𝟐

𝑧𝑧

ℙ 𝐱𝐱k − 𝐱𝐱∗ 2 ≥ 𝑂𝑂 1
𝑘𝑘

log 1
𝛿𝛿

≤ 𝛿𝛿?



LIMITATION OF CONSTANT STEP SIZES
𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝑘𝑘 + 𝐰𝐰k − 𝐱𝐱k

• Stationary distribution is heavy-tailed (Higher moments don’t exist after a point) [Srikant, Ying ‘20]. 
• Large enough moments keep increasing over time and become infinite in the limit. 
• While the mean square error converges to a constant, the tail is getting worse

• Several recent works obtain sample complexity of 𝑂𝑂 1
𝜖𝜖2

log 1
𝛿𝛿

by picking constant step size as a 
function of 𝜖𝜖 and 𝛿𝛿
• [Telgarsky ’22], [Mou et al ‘22], [Li et al ‘21], …
• 𝜖𝜖 and 𝛿𝛿 have to be picked ahead of time

and the algorithm (step size) is tuned for
these (So cannot change mind later)

• No improvement if it is run longer
• The tail (beyond 𝛿𝛿) can get worse the 

longer it is run
• Bound only on specific point of the tail

or a window and not the entire tail
27



THE CHALLENGE
• Linear SA to solve 𝐀𝐀𝐱𝐱 = 𝐛𝐛

𝐱𝐱k+1 = 𝐱𝐱k + αk 𝐀𝐀k𝐱𝐱k − 𝐛𝐛k
• Focus on multiplicative noise. Set b𝑘𝑘 = 0, we get product of matrices
Linear 

𝐱𝐱k+1 = 𝐱𝐱k I + αk𝐀𝐀k

• Mean Square bounds under constant step sizes: [Lakshminarayanan, Szepeswari ‘18] [Srikant, Ying ‘19]
• Tails are heavy

• Tail Bounds under constant step sizes [Durmus et al ‘21]
• Exponential tails if 𝐀𝐀k is Hurwitz for all 𝑘𝑘. (i.e., if it is contractive at all times)
• Polynomial tails otherwise

We get exponential tails with diminishing step sizes and do it for general contractive SA

The matrix I + αk𝐀𝐀k is not a contraction. It is a contraction only in expectation. 
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𝔼𝔼 𝐀𝐀k is Hurwitz and 
𝔼𝔼 I + αk𝐀𝐀k is contraction



MARKOVIAN STOCHASTIC APPROXIMATION
Want to find 𝐱𝐱∗ that solves

�𝐅𝐅 𝐱𝐱 = 𝔼𝔼𝐘𝐘∼𝝁𝝁 𝐅𝐅(𝐱𝐱,𝐘𝐘) = 𝐱𝐱

Stochastic Approximation

𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼k 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝐤𝐤 + 𝐰𝐰k − 𝐱𝐱k

(Main) Assumptions

• 𝐘𝐘𝐤𝐤 is an Ergodic Markov chain with stationary distribution 𝝁𝝁

• 𝐘𝐘𝐤𝐤 is geometrically mixing

• Noise 𝐰𝐰k - iid or martingale difference, mean zero, 𝐰𝐰k ≤ 𝐵𝐵 𝐱𝐱k + 1

• �𝐅𝐅 . is a contraction w.r.t arbitrary norm �𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ≤ γ 𝐱𝐱 − 𝐲𝐲
29

𝛼𝛼𝑘𝑘 =
𝛼𝛼

𝑘𝑘 + ℎ

• 𝐘𝐘𝐤𝐤 is an iid process with stationary distribution 𝝁𝝁

• With bounded support

• 𝐘𝐘𝐤𝐤 is such that 𝔼𝔼 𝐅𝐅 𝐱𝐱,𝐘𝐘k+1 |𝓕𝓕𝑘𝑘 = �𝐅𝐅 𝐱𝐱

• 𝐅𝐅 𝐱𝐱,𝐘𝐘k − �𝐅𝐅 𝐲𝐲 ≤ 𝐵𝐵1( 𝐱𝐱k +1)



MARKOVIAN STOCHASTIC APPROXIMATION
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�𝐅𝐅 𝐱𝐱 = 𝔼𝔼𝐘𝐘∼𝝁𝝁 𝐅𝐅(𝐱𝐱,𝐘𝐘) = 𝐱𝐱

Stochastic Approximation

𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼k 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝐤𝐤 + 𝐰𝐰k − 𝐱𝐱k

(Main) Assumptions

• 𝐘𝐘𝐤𝐤 is an Ergodic Markov chain with stationary distribution 𝝁𝝁

• 𝐘𝐘𝐤𝐤 is geometrically mixing

• Noise 𝐰𝐰k - iid or martingale difference, mean zero, 𝐰𝐰k ≤ 𝐵𝐵 𝐱𝐱k + 1

• �𝐅𝐅 . is a contraction w.r.t arbitrary norm �𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ≤ γ 𝐱𝐱 − 𝐲𝐲
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𝛼𝛼𝑘𝑘 =
𝛼𝛼

𝑘𝑘 + ℎ

• 𝐘𝐘𝐤𝐤 is an iid process with stationary distribution 𝝁𝝁

• With bounded support

𝐱𝐱k+1 = 𝐱𝐱k + αk 𝐀𝐀k𝐱𝐱k − 𝐛𝐛
If 𝐀𝐀k is Gaussian, then, the MGF does 

not exist for 𝑘𝑘 ≥ 3



EXPONENTIAL TAILS

𝐱𝐱k+1 = 𝐱𝐱k +
𝛼𝛼

𝑘𝑘 + ℎ
𝐅𝐅 𝐱𝐱k,𝐘𝐘𝐤𝐤 + 𝐰𝐰k − 𝐱𝐱k

General Norm Contraction: �𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ≤ γ 𝐱𝐱 − 𝐲𝐲

Why does the bound go up in the beginning?

Theorem[Zubeldia, Chen, Maguluri ‘22]: If 𝛼𝛼 is large enough, for a given 𝑘𝑘, w.p. 1 − 𝛿𝛿 ,

𝐱𝐱k − 𝐱𝐱∗ 2 ≤
𝑐𝑐
𝑘𝑘

1 + log
1
𝛿𝛿

𝑖𝑖𝑓𝑓 𝑘𝑘 ≥ 𝑂𝑂 log
1
𝛿𝛿

𝑘𝑘𝛽𝛽 otherwise

�𝑂𝑂 1
𝜖𝜖2

log 1
𝛿𝛿

sample complexity
Don’t need to fix 𝜖𝜖 and 𝛿𝛿 ahead



WHY DOES THE ERROR GO UP?
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Need enough samples for averaging to 
kick in to make sure the product of 

matrices becomes contractive. 



ERROR GOES UP INDEED
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Theorem[Zubeldia, Chen, Maguluri ‘22]: If 𝛼𝛼 is large enough, for a given 𝑘𝑘, w.p. 1 − 𝛿𝛿 ,

𝐱𝐱k − 𝐱𝐱∗ 2 ≤
𝑐𝑐
𝑘𝑘

1 + log
1
𝛿𝛿

𝑖𝑖𝑓𝑓 𝑘𝑘 ≥ 𝑂𝑂 log
1
𝛿𝛿

𝑘𝑘𝛽𝛽 otherwise

ANY TIME CONCENTRATION

𝐱𝐱k+1 = 𝐱𝐱k +
𝛼𝛼

𝑘𝑘 + ℎ
𝐅𝐅 𝐱𝐱k,𝐘𝐘𝐤𝐤 + 𝐰𝐰k − 𝐱𝐱k

General Norm Contraction: �𝐅𝐅 𝐱𝐱 − �𝐅𝐅 𝐲𝐲 ≤ γ 𝐱𝐱 − 𝐲𝐲

Theorem[Zubeldia, Chen, Maguluri ‘22]: If 𝛼𝛼 is large enough, for a given 𝑘𝑘,  

ℙ 𝐱𝐱k − 𝐱𝐱∗ 𝟐𝟐 ≤
𝑐𝑐
𝑘𝑘

1 + log
1
𝛿𝛿

+ log
𝑘𝑘 + ℎ
𝐾𝐾 + ℎ

𝑖𝑖𝑓𝑓 𝑘𝑘 ≥ 𝑂𝑂 log
1
𝛿𝛿

𝑘𝑘𝛽𝛽 otherwise

for all 𝑘𝑘 ≥ 𝐾𝐾 ≥ 1 − 𝛿𝛿

𝐾𝐾



ANY TIME CONCENTRATION
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With a small blowup factor of 
log 𝑘𝑘+ℎ

𝐾𝐾+ℎ
, we have bound that is 

uniform over time



ANY TIME CONCENTRATION
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With a small blowup factor of 
log 𝑘𝑘+ℎ

𝐾𝐾+ℎ
, we have bound that is 

uniform over time



• Under boundedness
• Either due to iterates being in compact set such as constrained optimization [Duchi et al ‘12], [Lan ‘20]
• Or iterates are bounded due to other structural properties such as in Q Learning, [Evan-Dar et al ‘17], [Li 

et al ‘21], [Qu et al ‘20] or other related settings [Prashanth et al ‘21] [Thoppe et al ‘19], [Chandak ‘22]

• Constant Step Size that is picked as a function of 𝜖𝜖 and 𝛿𝛿 by obtaining a bound on just one point 
(or a window) of the tail
• [Telgarsky ’22], [Mou et al ‘22], [Li et al ‘21]

• Result needs a bound on the iterates at some time 𝑛𝑛0
• [Thuppe et al ‘19], [Dalal ‘18]

• Our results in contrast, hold for potentially unbounded iterates, with diminishing step sizes and 
we bound the entire tail, without assuming any future bound.
• Moreover, we allow for general norm contractions and we get anytime concentration.

RELATED WORK
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• Step 1 - Bounded Case
• Develop a proof framework based on Moreau envelope Lyapunov function to get exponential 

tails at a given time 𝑘𝑘 (assuming the iterates are bounded). 

• Step 2 - Anytime concentration
• Generalize the result from Step 1 to get anytime concentration using Supermartingales and 

Ville’s (Doob’s) maximal inequality. 

• Step 3 - Bootstrapping
• Finally consider the real case of unbounded iterates, and use the previous two steps to 

inductively bootstrap from the worst case upper bound. 

PROOF SKETCH
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RECALL
Stochastic Approximation to solve �𝐅𝐅 𝐱𝐱 = 𝐱𝐱

𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼 𝐅𝐅 𝐱𝐱k,𝐘𝐘𝑘𝑘 + 𝐰𝐰k − 𝐱𝐱k
Mean Square Bounds:

𝔼𝔼 𝐱𝐱k − 𝐱𝐱∗ 2 ≤ 𝑂𝑂
1
𝑘𝑘

Obtained using M 𝐱𝐱 as yapunov function

Using Markov Inequality, we get ℙ 𝐱𝐱k − 𝐱𝐱∗ 2 ≥ 𝑂𝑂 1
𝑘𝑘
𝑧𝑧 ≤ 1

𝑧𝑧

Question: Can we get exponential tail bounds of the form 
ℙ 𝐱𝐱k − 𝐱𝐱∗ 2 ≥ 𝑂𝑂 1

𝑘𝑘
𝑧𝑧 ≤ 𝑒𝑒−𝑐𝑐𝑧𝑧?

40

1
z

𝑒𝑒−𝑐𝑐𝑧𝑧𝐱𝐱 k
−
𝐱𝐱∗

𝟐𝟐

𝑧𝑧



• Use 𝑒𝑒M 𝐱𝐱 as Lyapunov function to bound 𝔼𝔼 𝑒𝑒M 𝐱𝐱 and obtain tail bounds.
• Doesn’t work – we don’t get a recursion

• Use 𝑒𝑒
𝑘𝑘M 𝐱𝐱
ℬ as Lyapunov function to bound 𝔼𝔼 𝑒𝑒

𝑘𝑘M 𝐱𝐱𝑘𝑘
𝓑𝓑

• ℬ is the bound we assume on the iterates
• Common Trick: Incorporate the rate into the Lyapunov function
• It works – We get a recursion (In the bounded case). Solving it, we get

• Applying Markov inequality, we get the exponential tail bounds.

STEP 1: EXPONENTIAL TAIL BOUNDS

41

Goal:     ℙ 𝐱𝐱k − 𝐱𝐱∗ 2 ≥ 𝑂𝑂 1
𝑘𝑘
𝑧𝑧 ≤ 𝑒𝑒−𝑐𝑐𝑧𝑧ℙ 𝑘𝑘 𝐱𝐱k − 𝐱𝐱∗ 2 ≥ 𝑧𝑧 ≤ 𝑒𝑒−𝑐𝑐𝑧𝑧

𝔼𝔼 𝑒𝑒𝑘𝑘M 𝐱𝐱𝑘𝑘 ≤ 𝑐𝑐𝑒𝑒𝑜𝑜
1
𝑘𝑘 M 𝐱𝐱0



• Supermartingale - 𝔼𝔼 𝑍𝑍𝑘𝑘+1|ℱ𝑘𝑘 ≤ 𝑍𝑍𝑘𝑘
ℙ sup

𝑘𝑘≥𝐾𝐾
𝑍𝑍𝑘𝑘 > 𝑧𝑧 ≤

𝔼𝔼 𝑍𝑍𝐾𝐾
𝑧𝑧

• Ville’s (or Doob’s) maximal inequality

• Lyapunov function, 𝑒𝑒
𝑘𝑘M 𝐱𝐱𝑘𝑘

ℬ is (almost) decreasing in expectation 
• because we incorporated the rate in it
• Not quite – need to add a compensator term

• We get Anytime concentration (still assuming bounded iterates) using the 
maximal inequality
• The compensator log 𝑘𝑘

𝐾𝐾
term gives the blowup factor of log in the result

STEP 2: ANY TIME CONCENTRATION

42

𝑒𝑒
𝑘𝑘M 𝐱𝐱𝑘𝑘

𝓑𝓑 −𝑐𝑐log 𝑘𝑘 is a supermartingale



When iterates 𝐱𝐱𝑘𝑘 are not bounded, start with a worst case upper bound 𝐱𝐱𝑘𝑘 ≤ 𝑂𝑂 𝑘𝑘𝛽𝛽 for all 𝑘𝑘

STEP 3: BOOTSTRAPPING

43

Step 1 and Step 2
𝐱𝐱𝑘𝑘 ≤ ℬ for all 𝑘𝑘 𝐱𝐱𝑘𝑘 ≤ �𝑂𝑂 ℬ

𝑘𝑘
for all 𝑘𝑘 whp

Step 1 and Step 2
𝐱𝐱𝑘𝑘 ≤ �𝑂𝑂 𝑘𝑘𝛽𝛽 for all 𝑘𝑘 whp 𝐱𝐱𝑘𝑘 ≤ �𝑂𝑂 𝑘𝑘𝛽𝛽−1 for all 𝑘𝑘 whp

Step 1 and Step 2
𝐱𝐱𝑘𝑘 ≤ �𝑂𝑂 1 for all 𝑘𝑘 whp 𝐱𝐱𝑘𝑘 ≤ �𝑂𝑂 1

𝑘𝑘
for all 𝑘𝑘 whp. 

Bootstrap Inductively
Need Anytime 
Concentration



STEP 3: BOOTSTRAPPING
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STEP 3: BOOTSTRAPPING

45



STEP 3: BOOTSTRAPPING
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STEP 3: BOOTSTRAPPING
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• Stochastic Approximation of a contractive operator under general norm
• Both Additive and Multiplicative Noise

• Mean Square Convergence under Markovian Noise
• �𝑂𝑂 1

𝑘𝑘
rate of convergence and �𝑂𝑂 1

𝜖𝜖2
mean square sample complexity 

• Moreau Envelope of the norm square as the Lyapunov function

• Anytime Exponential Concentration under iid Noise
• 𝑂𝑂 1

𝑘𝑘
rate Exponential tails and 𝑂𝑂 1

𝜖𝜖2
log 1

𝛿𝛿
sample complexity

• Proof based on Exponential supermartingales and Bootstrapping

CONCLUSION
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Questions?
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