Stochastic Bin Packing with Time-Varying Item Sizes

Joint work with Yige Hong (CMU) and Qiaomin Xie (UW-Madison)

Weina Wang
Carnegie Mellon University

• Each arriving item needs to be assigned to a bin

- Each arriving item needs to be assigned to a bin
- Infinite # bins

- Each arriving item needs to be assigned to a bin
- Infinite # bins
- Each bin has a capacity M

- Each arriving job needs to be assigned to a bin
- Infinite # bins
- Each bin has a capacity M

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

Goal: minimize minimize [# active servers]

- Each arriving job needs to be assigned to a server
- Infinite # servers
- ullet Each server has a resource capacity M

Traditional job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

ement

M

Goal: minimize E [# active servers] job assigning policy

Prior work: algorithms with asymptotic optimality

[Stolyar and Zhong 2013, 2015], [Stolyar 2017], [Stolyar and Zhong 2021], ...

jobs

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

A new job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

Goal: minimize job assigning policy **E** [# active servers]

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

A new job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

minimize **E** [# active servers] job assigning policy

Goal:

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

A new job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

minimize E [# active servers] job assigning policy

Goal:

- Each arriving job needs to be assigned to a server
- Infinite # servers
- Each server has a resource capacity M

A new job model:

- Each job has a fixed resource requirement
- Each job departs after a random time

jobs servers

M

Goal: minimize minimize [# active servers]

subject to

cost (resource contention) ≤ budget

Reserve resources based on peak requirement

- Reserve resources based on peak requirement
 - low resource utilization on a server

- Reserve resources based on peak requirement
 - low resource utilization on a server
 - larger # active servers

- Reserve resources based on peak requirement
 - low resource utilization on a server
 - larger # active servers
- Overcommit resources on a server

- Reserve resources based on peak requirement
 - low resource utilization on a server
 - larger # active servers
- Overcommit resources on a server
 - possible resource contention

- Reserve resources based on peak requirement
 - low resource utilization on a server
 - larger # active servers
- Overcommit resources on a server
 - possible resource contention

Our formulation captures:

 Resource requirement of a job evolves over time following a Markov chain

Weina Wang (CMU)

- Resource requirement of a job evolves over time following a Markov chain
- Initial job type follows an initial distribution

- Resource requirement of a job evolves over time following a Markov chain
- Initial job type follows an initial distribution
- MCs of jobs are independent of each other, and they are exogenous (not affected by resource contention)

- Resource requirement of a job evolves over time following a Markov chain
- Initial job type follows an initial distribution
- MCs of jobs are independent of each other, and they are exogenous (not affected by resource contention)
- Jobs arrive following a Poisson process

Example MC

servers

state: # jobs of each type on each server

state space is large!

state: # jobs of each type on each server

state space is large!

state: # jobs of each type on each server

state space is large!

state: # jobs of each type on each server

Server-by-server evaluation:

state space is large!

state: # jobs of each type on each server

- Server-by-server evaluation:
 - How to evaluate each server?

state space is large!

state: # jobs of each type on each server

- Server-by-server evaluation:
 - How to evaluate each server?
 - How to relate to E[# active servers]?

Policies in the ∞-server system

Policies in a single-server system

- Use $\overline{\sigma}$ to tell how to evaluate each server
- Performance of σ is related to properties of $\overline{\sigma}$

Policies in the ∞-server system achievability

Policies in a single-server system

- Use $\overline{\sigma}$ to tell how to evaluate each server
- Performance of σ is related to properties of $\overline{\sigma}$

- Use $\overline{\sigma}$ to tell how to evaluate each server
- Performance of σ is related to properties of $\overline{\sigma}$

 Allows us to obtain lower bound on E[# active servers]

Policies in the ∞-server system

Policies in a single-server system

Single-server system

Policies in the ∞-server system

Policies in a single-server system

Policies in the ∞-server system

Policies in a single-server system

A policy decides when to request what types of jobs to:
maximize throughput
subject to cost (resource contention) ≤ budget

Policies in the ∞ -server system Policies in a single-server system

• Arrival rates: $r \cdot (\lambda_L, \lambda_H)$

Policies in a single-server system

• Arrival rates: $r \cdot (\lambda_L, \lambda_H)$

 $\sigma \leftrightarrow \overline{\sigma}$ Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to +\infty$

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to +\infty$

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to +\infty$

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to + \infty$

Policy $\overline{\sigma}$

throughput
$$\cdot \overline{N} = r \cdot (\lambda_L, \lambda_H)$$

cost (resource contention) ≤ budget

convert

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to +\infty$

Policy $\overline{\sigma}$

throughput $\cdot \overline{N} = r \cdot (\lambda_L, \lambda_H)$

cost (resource contention) ≤ budget

Policy σ

$$\mathsf{E} \ [\text{\# active servers}] \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \overline{N}$$

$$\textbf{E} \ [\text{\# active servers}] \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \overline{N}$$

$$\textbf{cost (resource contention)} \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \text{budget}$$

 $\sigma \leftarrow \overline{\sigma}$

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to + \infty$

Policy $\overline{\sigma}$

throughput $\cdot \overline{N} = r \cdot (\lambda_L, \lambda_H)$

cost (resource contention) ≤ budget

convert

Policy σ

$$\textbf{E} \ [\text{\# active servers}] \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \overline{N}$$

$$\textbf{cost (resource contention)} \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \text{budget}$$

Main Result: We design a policy for the original ∞ -server system that is asymptotically optimal

Meta-algorithm: Join-the-Recently-Requesting-Server ($\overline{\sigma}$)

• For each server, run a single-server policy $\overline{\sigma}$

Meta-algorithm: Join-the-Recently-Requesting-Server ($\overline{\sigma}$)

For each server, run a single-server policy $\overline{\sigma}$

- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i

- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i

- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i

- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i
- When a job arrives, it checks tokens of its type and joins one uniformly at random

- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i
- When a job arrives, it checks tokens of its type and joins one uniformly at random

- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i
- When a job arrives, it checks tokens of its type and joins one uniformly at random

- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i
- When a job arrives, it checks tokens of its type and joins one uniformly at random
- If no tokens, go to an inactive server

Meta-algorithm: Join-the-Recently-Requesting-Server ($\overline{\sigma}$)

- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i
- When a job arrives, it checks tokens of its type and joins one uniformly at random
- If no tokens, go to an inactive server

How is the throughput related to # active servers via tokens?

Policy conversion: more details

Policy conversion: more details

Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

Policy conversion: more details

Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

Recall that we aim to show

E [# active servers]
$$\leq \left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}$$

Policy conversion: more details

Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

Recall that we aim to show

E [# active servers]
$$\leq \left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}$$

Policy conversion: more details

Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

Recall that we aim to show

E [# active servers]
$$\leq \left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}$$

Policy conversion: more details

Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

Recall that we aim to show

E [# active servers]
$$\leq \left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}$$

When the # tokens of a type $> \sqrt{r}$, remove the overflow tokens and generate virtual jobs

We can prove that **E** [# virtual jobs] = $O(r^{0.5})$

Will show that each server in the original system ≈ an independent single-server system

Will show that each server in the original system ≈ an independent single-server system

If only each token were replaced by a job immediately ...

Will show that each server in the original system ≈ an independent single-server system

Will show that each server in the original system ≈ an independent single-server system

Single-server system running policy $\overline{\sigma}$

<u>Difficulty:</u> the dynamics of a server in the original system depends on other servers through arrivals & token overflows

Idea: for each type i, consider

$$\widetilde{K}_i = \#$$
 jobs + $\#$ virtual jobs + $\#$ tokens

Will show that each server in the original system ≈ an independent single-server system

Single-server system running policy $\overline{\sigma}$

<u>Difficulty:</u> the dynamics of a server in the original system depends on other servers through arrivals & token overflows

Idea: for each type i, consider

$$K_i =$$
jobs + # virtual jobs + # tokens

Why does considering K_i help decouple servers?

Will show that each server in the original system ≈ an independent single-server system

Single-server system running policy $\overline{\sigma}$

<u>Difficulty:</u> the dynamics of a server in the original system depends on other servers through arrivals & token overflows

Idea: for each type i, consider

$$K_i = \# \text{ jobs} + \# \text{ virtual jobs} + \# \text{ tokens}$$

• Arrivals & token overflows do not affect \widetilde{K}_i

Why does considering K_i help decouple servers?

Will show that each server in the original system ≈ an independent single-server system

Idea: for each type i, consider

$$\widetilde{K}_i = \#$$
 jobs + $\#$ virtual jobs + $\#$ tokens v.s. $\overline{K}_i = \#$ jobs of type i

• Arrivals & token overflows do not affect \widetilde{K}_i

Will show that each server in the original system ≈ an independent single-server system

Idea: for each type i, consider

$$\overline{K}_i = \text{\# jobs} + \text{\# virtual jobs} + \text{\# tokens} \quad \text{v.s.} \quad \overline{K}_i = \text{\# jobs of type } i$$

- Arrivals & token overflows do not affect \widetilde{K}_i
- Requests by $\overline{\sigma}$ change K_i and K_i in the same way, difference bounded by # tokens

Will show that each server in the original system ≈ an independent single-server system

Idea: for each type i, consider

$$\overline{K}_i = \text{\# jobs} + \text{\# virtual jobs} + \text{\# tokens} \quad \text{v.s.} \quad \overline{K}_i = \text{\# jobs of type } i$$

- Arrivals & token overflows do not affect \widetilde{K}_i
- Requests by $\overline{\sigma}$ change K_i and K_i in the same way, difference bounded by # tokens
- Job phase transitions in K_i and K_i differ by # tokens

Will show that each server in the original system ≈ an independent single-server system

Using Stein's method, we show

$$d_W\left(\widetilde{K}^{1:\overline{N}},\overline{K}^{1:\overline{N}}\right) = O\left(r^{0.5}\right)$$

Idea: for each type i, consider

$$\overline{K}_i = \text{\# jobs} + \text{\# virtual jobs} + \text{\# tokens} \quad \text{v.s.} \quad \overline{K}_i = \text{\# jobs of type } i$$

servers

- Arrivals & token overflows do not affect K_i
- Requests by $\overline{\sigma}$ change K_i and K_i in the same way, difference bounded by # tokens
- Job phase transitions in K_i and K_i differ by # tokens

Will show that # virtual jobs =
$$O\left(\sqrt{r}\right)$$
, and # backup servers = $O\left(\sqrt{r}\right)$

Weina Wang (CMU)

Will show that # virtual jobs = $O\left(\sqrt{r}\right)$, and # backup servers = $O\left(\sqrt{r}\right)$

An almost balanced random walk

- An almost balanced random walk
- Stationary distribution \approx uniform on $\{0, 1, ..., \sqrt{r}\}$

Will show that # virtual jobs = $O\left(\sqrt{r}\right)$, and # backup servers = $O\left(\sqrt{r}\right)$

a server requests
a type L job

The contraction of the contraction of

- An almost balanced random walk
- Stationary distribution \approx uniform on $\{0, 1, ..., \sqrt{r}\}$
- Rate of generating virtual jobs $\approx \text{ rate of sending jobs to backup servers} \\ \approx \text{ arrival rate} \Big/ \sqrt{r} = O\left(\sqrt{r}\right)$

 We considered the problem of assigning jobs to servers when jobs have time-varying resource requirements

- We considered the problem of assigning jobs to servers when jobs have time-varying resource requirements
- We designed an asymptotically optimal policy

- We considered the problem of assigning jobs to servers when jobs have time-varying resource requirements
- We designed an asymptotically optimal policy
- We proposed a policy-conversion framework that allows us to reduce the policy-design problem to that in a single-server system

- We considered the problem of assigning jobs to servers when jobs have time-varying resource requirements
- We designed an asymptotically optimal policy
- We proposed a policy-conversion framework that allows us to reduce the policy-design problem to that in a single-server system

