Constant regret in Exchangeable Action Models:

Overbooking, Bin Packing \& Beyond

Daniel Freund (MIT)

My fantastic collaborators

Agenda

Define exchangeable action MDPs as a problem framework
:1. Characterize sets of assumptions under which $\mathrm{O}(1)$ loss is achievable

Types of objective/constraints
Types of information structures
Amount of adaptivity / computation required

Algorithmic and analytical ideas

Takeaways

- Exogenous arrivals $\theta_{1}, \ldots, \theta_{T} \in \Theta$, where $|\Theta|=k$
- In period t, observe $\theta_{t} \&$ take an irrevocable action:

Define

exchangeable actions

$$
a_{\theta_{t} j} \in \mathcal{A}\left(\theta_{t}\right), \text { where }\left|\mathcal{A}\left(\theta_{t}\right)\right|=\ell
$$

- Denote by $x_{\theta j}$ the number of times we take $a_{\theta j}$
- Then our objective is to maximize (minimize)

$$
f(\vec{x})
$$

for some known function $f(\cdot)$

We'll make assumptions on $f(\cdot)$ and on the arrivals.
First, just consider what's captured

- We have bins of a given size
e.g., all bins have size 10
- $\theta_{1}, \ldots, \theta_{T} \in \Theta$, are items of sizes w_{1}, \ldots, w_{k}

$$
\text { e.g., suppose } w_{\theta} \in\{1,3,4,5,8\}
$$

- In period t, observe w_{t} \& place it into bin of type j, where $b_{\theta, j} \geq 1$ denotes $\#$ of θ that fit into bin type j

Bin packing

e.g., j indexes the possible configurations of items in
a bin: $(1,1,8),(1,4,5),(5,5) \ldots$ And $b_{5,(5,5)}=2$

- Denote by $x_{\theta j}$ the number of times we take $a_{\theta j}$
e.g., how many size-l items did we put in ($1,1,8$) bins
- Then our objective is to minimize

The ceiling is a boring technical detail

$$
f(\vec{x})=\sum_{j} \max _{\theta}\left[x_{\theta j} / b_{\theta, j}\right]
$$

- We have some resources $\vec{B} \in \mathbb{N}^{m}$
- $\theta_{1}, \ldots, \theta_{T} \in \Theta$, are types with values $\&$ resource reqs

$$
\text { e.g., } v_{1}, \ldots, v_{k} \text { and } \overrightarrow{r_{1}}, \ldots, \overrightarrow{r_{k}} \in \mathbb{N}^{m}, R \text { matrix of } \overrightarrow{r_{j}}
$$

- In period t, observe $\theta_{t} \&$ either accept or reject

$$
\text { i.e., } a_{\theta j} \in\{\text { accept,reject }\}
$$

- We want to maximize the accepted values w/o violating resource constraints
- Denote by x_{θ} the number of times we accept θ

$$
\begin{array}{|l|l}
\begin{array}{l}
\text { For today, the } \\
\text { negative part is a } \\
\text { boring technical } \\
\text { detail }
\end{array} & f(\vec{x})=\sum_{\theta} v_{\theta} x_{\theta}-v_{\max }
\end{array}\left|((R \cdot \vec{x})-B)^{+}\right|
$$

- Choice between m servers
- Arrivals $\theta_{1}, \ldots, \theta_{T} \in \Theta$

Job θ to be processed

- In period t, observe $\theta_{t} \&$ take an irrevocable action:

$$
a_{\theta_{t} j} \in\{1, \ldots, m\} \text { to process job } \theta_{t} \text { at } j
$$

- Denote by $x_{\theta j}$ the number of times we take $a_{\theta j}$
- Then our objective is:

Cost to process all jobs where servers have (i) a fixed cost per job $c_{\theta j} \&(i i)$ a minimum average cost per job m_{j}

$$
\min \sum_{j} \max \left\{\sum_{\theta} x_{\theta j} c_{\theta j}, \sum_{\theta} x_{\theta j} m_{j}\right\}
$$

- m centers have room to absorb b_{1}, \ldots, b_{m} refugees
- Arrivals $\theta_{1}, \ldots, \theta_{T} \in \Theta$
probability $v_{\theta j}$ for employment if placed at center j

Models of refugee placement

- In period t, observe $\theta_{t} \&$ take an irrevocable action:
$a_{\theta_{t} j} \in\{1, \ldots, m\}$ to place arrival θ_{t} at center j
- Denote by $x_{\theta j}$ the number of times we take $a_{\theta j}$

For today, the negative part is a boring technical detail

- Then our objective is:

$$
\max \sum_{j} \sum_{\theta} x_{\theta j} v_{\theta j}-\left[b_{j}-\sum_{\theta} x_{\theta j}\right]^{+}
$$

unknown $f(\cdot)$

Not captured

$f(\cdot)$ depends

- Unknown objective:
(bandits / pricing)
- Time-sensitive actions: (Weina's talks!)
- Overbooking: not just on \vec{x}
don't quite know $f(\cdot)$
- High-level:
- arrivals of type θ have value v_{θ} if accepted
- arrivals of type θ are no-shows with prob. $1-q_{\theta}$
- no-shows pay but do not consume resources
(incentivizes us to admit more arrivals than there are resources for)

Overbooking for a single resource

- If more than B (capacity) people show up, we pay a penalty of c per person we'll need to bump
- When we admit a type, we don't know whether they'll show up!
- So, we don't know $f(\cdot) \leftarrow$ it's random!
- If I knew all the arrivals, who should I accept?
(by arrivals I only mean their type, not whether they will show up; if I knew that, I'd accept everyone who won't show up... silly benchmark)

$$
\max \sum_{\theta} v_{\theta} x_{\theta}-c \cdot \mathbb{E}\left[\left(\sum_{\theta} X_{\theta}-B\right)^{+}\right]
$$

where $X_{\theta} \sim \operatorname{Bin}\left(x_{\theta}, q_{\theta}\right)$

- Pretend our objective is $\mathbb{E}[f(\vec{x})]$ and we'll be able to compare ourselves with the best clairvoyant who knows the arrivals but not the no-show-realizations

Many examples of
We'll keep it general! exchangeable actions!

Clairvoyant optimum:

Benchmark

$$
\begin{gathered}
O P T=\max f(\vec{x}) \\
\text { s.t. } \forall \theta: \sum_{j} x_{\theta j}=N_{\theta}[T] \\
x_{\theta j} \geq 0
\end{gathered}
$$

where $N_{\theta}[\tau]=\sum_{t=1, \ldots, \tau} \mathbb{I}_{\left\{\theta_{t}=\theta\right\}}$

Desired performance: Constant regret

- Denote an algorithm's objective by $\operatorname{ALG}\left(\theta_{1}, \ldots, \theta_{T}\right)$

$$
\mathbb{E}\left[O P T-A L G\left(\theta_{1}, \ldots, \theta_{T}\right)\right] \leq M \in O(1)
$$

- Meaning we want to bound the performance loss of an algorithm independent of T
$\left(T_{2}^{1}+\epsilon\right.$ for some $\epsilon>0$ works, but we don't want to carry the ϵ)

T1: Known time-horizon T
Fairly standard in many settings

T2: $\quad T$ is a priori unknown but revealed at \hat{T} with

$$
T-\hat{T} \in \Omega\left(T^{\frac{3}{4}}\right)
$$

Slight variation of an adversarial end point; unknown, but there's a heads-up when a few periods are left.

Example: we've been running an open-ended marketing campaign since mid-August and we're told today $(10 / 10)$ that it will end on $10 / 15$

Example 2: there's an unknown number of batches, with $\Omega\left(T^{\frac{3}{4}}\right)$ arrivals, last one is announced as such.

Al: \quad iid with unknown $p_{\theta} \geq p_{\min } \forall \theta$

A2: \quad independent with known $p_{\theta}(t) \geq p_{\text {min }} \forall \theta, t$

Possible

 assumptions on arrivalsA3: \quad iid with known $p_{\theta} \geq p_{\text {min }} \forall \theta$

A4: We have a single sample of T arrivals \& we know that it's drawn from a distribution with certain density/concentration properties

Ol: $\frac{L}{2}$-Lipschitz-continuous

$$
|f(\vec{x})-f(\vec{y})| \leq|\vec{x}-\vec{y}| L / 2
$$

Genuinely innocent!

O2: Stability of optimal solution

Denote by $S(\vec{N})$ the set of optimal solutions under \vec{N}
$\forall \vec{N}, \vec{N}^{\prime}: \forall \vec{x} \in S(\vec{N}) \exists \vec{y} \in S\left(\vec{N}^{\prime}\right):|\vec{x}-\vec{y}| \leq \delta\left|\vec{N}-\vec{N}^{\prime}\right|$
Looks weird, but always fulfilled when $f(\cdot)$ is linear
(key challenge for overbooking is not having this)
O3: \quad Homogeneous $(\mathrm{f}(\lambda \vec{x})=\lambda f(\vec{x}))$
Needed under T2! E.g., a marketing campaign with a fixed budget per customer

O4: Existence of unique opt
Only required in special cases or for being able to compute an offline optimal solution

ALGORITHMIC

Pick the right combination of the above \& there exists an algorithm $A L G$ such that

$$
\mathbb{E}\left[O P T-A L G\left(\theta_{1}, \ldots, \theta_{T}\right)\right]<M \in O(1)
$$

for some constant M that depends on all above, except for T

Informal results

IMPOSSIBILITY

Drop one from the right combination of the above \& no algorithm achieves

$$
\mathbb{E}\left[O P T-\operatorname{ALG}\left(\theta_{1}, \ldots, \theta_{T}\right)\right]<M \in O(1)
$$

for any constant M independent of T

Suppose in each period we accept/reject an arrival
Each arrival has iid probability $1 / 2$ to be type 1 or 2
Our objective is to maximize, over known horizon T
Necessity of assumption O 2 (stability of opt)
$\max \left\{x_{1}, x_{2}\right\}$
s.t. $x_{1}+x_{2} \leq \frac{T}{2}$

Lipschitz, exchangeable actions, iid... no O2!
Clairvoyant is guaranteed $\frac{T}{2}$; any ALG gets at most $\frac{T}{2}-\Omega(\sqrt{T})$ in exp

\rightarrow Accept
\rightarrow Reject
\rightarrow Reject

- Would want to maximize

$$
\sum_{\theta} v_{\theta} x_{\theta}-c \cdot \mathbb{E}\left[\left(\sum_{\theta} X_{\theta}-B\right)^{+}\right]
$$

where $X_{\theta} \sim \operatorname{Bin}\left(x_{\theta}, q_{\theta}\right)$ subject to $x_{\theta} \leq N_{\theta}[T]$

- Change of optimal solution when perturbing $N_{\theta}[T]$
(Bound for O2)

- Index solution: order types by $\frac{v_{1}}{q_{1}}>\frac{v_{2}}{q_{2}}>\cdots>\frac{v_{k}}{q_{k}}$
- Accept lower-indexed types first
- Index solutions are NOT optimal in general
- Asymptotically the clairvoyant general and the clairvoyant index solutions look "similar"
 Index Solution Index solutions are suboptimal

Type 1 －${ }^{\circ}$	\rightarrow Accept
	\rightarrow Accept
Type 3 穴 ${ }^{\text {人 }}$ 穴	\rightarrow Reject
Type 4 －$^{\circ}$	\rightarrow Reject

\square

Alternative to O2：

Overbooking problem
－Would want to maximize

$$
\sum_{\theta} v_{\theta} x_{\theta}-c \cdot \mathbb{E}\left[\left(\sum_{\theta} x_{\theta}-B\right)^{+}\right]
$$

where $X_{\theta} \sim \operatorname{Bin}\left(x_{\theta}, q_{\theta}\right)$ subject to $x_{\theta} \leq N_{\theta}[T]$
－Change of optimal solution when perturbing $N_{\theta}[T]$
（Bound for O2）

－Index solution：order types by $\frac{v_{1}}{q_{1}}>\frac{v_{2}}{q_{2}}>\cdots>\frac{v_{k}}{q_{k}}$
－Accept lower－indexed types first
－Can bound as O（1）
－loss of only considering index solutions
－change of best index solution when perturbing $N_{\theta}[T]$
－Effectively proves O2 for a restricted set of solutions

$$
\begin{gathered}
\Theta=\{2,3\} ; B=9 \\
p_{2}=\frac{3}{4}, p_{3}=\frac{1}{4}
\end{gathered}
$$

Comparison with SS from

Gupta \& Radovanovic, OR'20

$$
\begin{gathered}
\Theta=\{1,3,4,5,8\} ; B=10 \\
p_{1}=\frac{1}{4}, p_{3}=\frac{1}{4}, p_{4}=\frac{1}{8}, p_{5}=\frac{1}{4}, p_{8}=\frac{1}{8}
\end{gathered}
$$

Numerical results (Bin packing)

Numerical results (Load balancing \& overbooking)

Algorithmic ideas

- In period t, define semi-clairvoyant $O P T[t]$ that follows ALG until $t-1$, then is clairvoyant until T

$$
\begin{array}{r}
O P T[t]=\max f(\vec{x}) \\
\qquad \sum_{j} x_{\theta j}=N_{\theta}[T] \\
x_{\theta j} \geq x_{\theta j}[t-1]
\end{array}
$$

Solve deterministic problem in which remaining arrivals are replaced by expectation (or proxy)

$$
\begin{gathered}
\operatorname{DLP}[t]=\max f(\vec{x}) \\
\text { s.t. } \forall \theta \sum_{j} x_{\theta j}=N_{\theta}[t]+(\bar{t}-1) p_{\theta} \\
x_{\theta j} \geq x_{\theta j}[t-1]
\end{gathered}
$$

Create a LCB on \# of times an action is played by considering that whp $\left(\frac{1}{\bar{t}^{3}}\right)$

$$
\forall \theta:\left|N_{\theta}[T]-N_{\theta}[t]-(T-t-1) p_{\theta}\right| \leq \sqrt{\bar{t} \log (\bar{t})}
$$

(by O2/stability of optimum)
and consequently, whp, OPT[$t]$ uses $a_{\theta j}$ as often as does $-\delta \sqrt{\bar{t} \log (\bar{t})}$

Suppose the lower confidence bounds hold true for every type and every action. If some periods later, each action $a_{\theta j}$ has been taken at most $L C B_{\theta j}$ times, then semi-clairvoyant achieves the same objective after these periods as it did before (old sol'n still feasible).

Mistakes

- Say at t we find LCBs that we use until t^{\prime}
- In period t^{\prime} we resolve to obtain new LCBs
- If we resolve in periods $t_{1}=1, \ldots t_{s}=T$:

$$
\begin{gathered}
\mathbb{E}\left[O P T-A L G\left(\theta_{1}, \ldots, \theta_{T}\right)\right] \\
=\mathbb{E}[O P T[1]-O P T[T]] \\
=\mathbb{E}\left[\sum_{\tau=1, \ldots, s-1} O P T\left[t_{\tau}\right]-O P T\left[t_{\tau+1}\right]\right] \\
\leq \sum_{\tau=1, \ldots, s-1} L \cdot\left(t_{\tau+1}-t_{\tau}\right) \mathbb{P}\left[L C B s \text { wrong at } t_{\tau}\right] \\
\leq \sum_{\tau=1, \ldots, s-1} L \cdot\left(t_{\tau+1}-t_{\tau}\right)^{1} /\left(T-t_{\tau}\right)^{3} \\
\leq M
\end{gathered}
$$

Loss bound

Clairvoyant optimum:

$$
\begin{gathered}
O P T=O P T[1]=\max f(\vec{x}) \\
\text { s.t. } \forall \theta \sum_{j} x_{\theta j}=N_{\theta}[T] \\
x_{\theta j} \geq 0
\end{gathered}
$$

Stochastic policy:

$$
\begin{gathered}
\max f(\vec{x}) \\
\text { s.t. } \forall \theta \sum_{j} x_{\theta j}=\mathbb{E}\left[N_{\theta}[T]\right] \\
x_{\theta j} \geq 0
\end{gathered}
$$

Denote solution by $y_{\theta j}$; take action $a_{\theta j}$ w.p. $y_{\theta j} / \mathbb{E}\left[N_{\theta}\right]$

Observe: if $f(\cdot)$ is homogeneous (O3) we don't need to know T to obtain this policy!

Denote $p_{\theta j}=p_{\theta} y_{\theta j} / \mathbb{E}\left[N_{\theta}\right]$ (prob. of playing $a_{\theta j}$)

- How often does $O P T[1]$ take action $a_{\theta j}$?
- The DLP uses action $a_{\theta j}$ exactly $T p_{\theta j}$ times

Stochastic policy upper confidence bounds

- With high probability (whp)

$$
\forall \theta\left|N_{\theta}-\mathbb{E}\left[N_{\theta}\right]\right| \leq \sqrt{\operatorname{Tlog}(T)}
$$

If so, then there exists $O P T[1]$ that uses action $a_{\theta j}$ at least
(LCB) $T p_{\theta j}-\delta \sqrt{T l o g(T)}$ times (by O2/stability of optimum)

- The stochastic policy that follows DIP takes $a_{\theta j}$ $\operatorname{Bin}\left(p_{\theta j}, T-T^{3 / 4}\right)$ in the first $T-T^{3 / 4}$ periods
(UCB) $\operatorname{Bin}\left(p_{\theta j}, T-T^{3 / 4}\right) \leq\left(T-T^{\frac{3}{4}}\right) p_{\theta j}+\sqrt{T \log (T)}$ whp
Large T, constant $p_{\theta j}, \delta \quad<T p_{\theta j}-\delta \sqrt{T \log (T)}=(\mathbf{L C B})$ for $0 T[1]$

$2^{\text {nd }}$ path to uniform loss

- Want to just use empirical estimates so far

Caveats for unknown distribution

- Careful:We don't have good LCBs for actions!

$T p_{\theta j}-\delta \sqrt{T l o g(T)}$

- Especially true in initial periods
- Especially true when we don't know T
- Advantage:
- Stochastic policy initially makes no mistakes whp
$>$ may compare ourselves to stochastic policy instead

$$
\begin{array}{cc}
\hline \overline{\operatorname{DLP}[t]=} \max f(\vec{x}) & \text { DLP }=\max f(\vec{x}) \\
\text { s.t. } \forall \theta \sum_{j} x_{\theta j}=N_{\theta}[t] & \text { s.t. } \forall \theta \sum_{j} x_{\theta j}=\mathbb{E}\left[N_{\theta}[t]\right] \\
x_{\theta j} \geq x_{\theta j}[t] & x_{\theta j} \geq 0
\end{array}
$$

Algorithm for unknown distributions

- Difference between solutions for $\overline{D L P}[t]$ \& $D L P$:
- With probability $1-1 / t^{2}$ we have (good event)

$$
\left|\hat{x}_{\theta j}[t]-x_{\theta j}[t]\right| \leq \frac{\delta}{\sqrt{t \log (t)}}
$$

- Threshold to avoid taking $a_{\theta j}$ with $x_{\theta j}=0$:
$\hat{y}_{\theta j}[t]=0$ if $\hat{x}_{\theta j}[t]<\frac{\delta}{\sqrt{t \log (t)}}$ (\& scale other actions up)
- Randomize based on \hat{y}
- May make mistakes if either
- Good event not true (errors are summable) or
- We scale an action (that DLP takes) up by too much

$3^{\text {rd }}$ path to uniform loss

Bin-packing with bins of size 3
Items are, with prob. $1 / 2$, of size 1 or 2
Possible configurations are $(1,1,1)$ and $(1,2)$

Horizon of length T or $\frac{T}{2}$ (with no heads-up)
With constant probability the following both occur

$$
\begin{aligned}
& N_{1}[T / 2] \geq \frac{T}{4}+\sqrt{T} \\
& N_{1}[T] \leq \frac{T}{2}-\sqrt{T}
\end{aligned}
$$

$o(\sqrt{T})$ loss at time $T / 2$ requires creating $\Omega(\sqrt{T})$ bins of configuration ($1,1,1$) whereas $o(\sqrt{T})$ loss at time T requires having created $o(\sqrt{T})$ such bins
Similar result applies to geometric horizon length

Multi-secretary with budget $\frac{T}{2}$ iid arrival types

$$
\begin{array}{ll}
v_{3}=3 \text { has probability } \frac{1}{2}-\frac{1}{T^{\frac{3}{4}}} & \left(\text { mean } \frac{T}{2}-T^{1 / 4}\right) \\
v_{2}=2 \text { has probability } \frac{1}{T^{\frac{3}{4}}} & \left(\text { mean } T^{1 / 4}\right) \\
v_{1}=1 \text { has probability } \frac{1}{2} & \left(\text { mean } \frac{T}{2}\right)
\end{array}
$$

After $\frac{T}{2}$ (whp) one has either
accepted at least $T^{\frac{1}{4}} / 8$ arrivals of type 2
or rejected most $T^{\frac{1}{4}} / 8$ of type 2
Berry-Esseen: constant probability to have
at least $\frac{T}{2}$ type-3 over entire horizon
at most $\frac{T}{2}-T^{\frac{1}{2}}$ type-3 over entire horizon
Even with full knowledge of the first $\frac{T}{2}$ arrivals do not know, whether to accept 0 or all type-2 arrivals

Based on Overbooking with bounded Loss with Kamessi Zhao (EC'21, MOR'22)

Takeaways
 (Bin packing)

	Regret	Distr.	Algorithm \& Remarks
Shor (1986)	$\Omega(\sqrt{T \log T})$	Unif[0, 1]	Lower bound
Shor (1986); Asgeirsson (2002)	$\Theta(\sqrt{T})$	$\operatorname{Unif}[0,1]$	Best Fit; Known T
Shor (1991)	$O(\sqrt{T \log T})$	Unif[0, 1]	Best Fit
Rhee and Talagrand (1993a,b)	$K \sqrt{T} \log ^{3 / 4} T$	General	Double-overflow; unspecified constant K
Csirik et al. (2006)	$B \sqrt{T}$	Int. supp.	Sum-of-squares; bin size B
	$B \sqrt{T}$	Int.msupp.n	
- Banerjee and Freund (2020)		$\begin{aligned} & \text { Int. supp. } \\ & \text { General } \end{aligned}$	Re-solving; Known T; problem-dependent ${ }^{(}$ Adaptive; Known $T ; C \leq 11$
Liu \& Li (2021)	$C \sqrt{T}$	Ran. Perm.	Adaptive; Known T; $C \leq 13$

Table from Online Bin Packing with Known T, Liu \& Li, '2 1

Based on Good prophets know when the end is near with Sid Banerjee (SIGMETRICS'20, ??'??)

- Heads-up for horizon end
- In-between adversarial, stochastic, and known
- Positive results are comparable to known horizon
- Provable improvements vs. geometric/adversarial
- In many applications it may be the most realistic(?)
- Captures wide set of problems, but precludes
- Many inventory problems (arrivals \& departures)
- Resource allocation with (traditional) cancellations
- Instance-dependent for the most part
- In some cases (overbooking): provably unavoidable
- Though: numerically, the constants don't kick in!
- Prove O2 (stability) for nonlinear objectives
- Potential alternative: near-optimal alternate solution
- Requires ad hoc machinery (as for overbooking)

Summary

Algorithmic/analytical framework

:\% Different sets of assumptions for $O(1)$ loss

New guarantees

Bin packing
Single-leg RM with overbooking

㢶 (Almost) minimal set of assumptions

T: time horizon

B: capacity
v_{j} : revenue of type j
p_{j} : show up probability of type j

Appendix

Instanceindependent Bound

[^0]- Instance-independent: v, p allowed to change with T
- Any online policy incurs a loss of $\Omega(\sqrt{T})$ due to the inherent uncertainty in arrivals
- E.g. Suppose $B=\frac{T}{6}$. Moreover,

$$
\begin{gathered}
\lambda_{1}=\frac{1}{6}, v_{1}=\frac{1}{2}, p_{1}=1 \\
\lambda_{2}=\frac{1}{3}, v_{2}=\frac{1}{\sqrt{T}}, p_{2}=\frac{3}{\sqrt{T}} \\
\lambda_{3}=\frac{1}{2}, v_{3}=0, p_{3}=1
\end{gathered}
$$

- Do not know how many type 1 customers arrive (error $\sim \Theta(\sqrt{T})$) and are thus likely to make mistakes in type 2
- $N_{1} \geq \frac{T}{6}$: no type 2 customer should be accepted
- $N_{1} \leq \frac{T}{6}-\sqrt{T}$: "almost" all type 2 customer should be accepted

[^0]: $O P_{i} T_{\vec{A}}$: clairvoyant general obj.
 $O P T_{\vec{A}}$ [1]: clairvoyant index obj.
 $O P T_{\vec{A}}[t]$: semi-clairvoyant index obj. at t
 $O B J_{\vec{A}}$: online index obj

