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Define 
exchangeable 

actions

§ Exogenous arrivals 𝜃!, … , 𝜃" ∈ Θ, where |Θ| = 𝑘

§ In period 𝑡, observe 𝜃# & take an irrevocable action:
𝑎$!% ∈ 𝒜 𝜃# , 𝑤ℎ𝑒𝑟𝑒 𝒜 𝜃# = ℓ

§ Denote by 𝑥$% the number of times we take 𝑎$%

§ Then our objective is to maximize (minimize)
𝑓(�⃗�)

for some known function 𝑓(⋅)

We’ll make assumptions on 𝑓(⋅) and on the arrivals. 

First, just consider what’s captured 



Bin packing

§ We have bins of a given size

e.g., all bins have size 10

§ 𝜃!, … , 𝜃" ∈ Θ, are items of sizes 𝑤!, … ,𝑤&

e.g., suppose 𝑤$ ∈ {1,3,4,5,8}

§ In period 𝑡, observe 𝑤# & place it into bin of type 𝑗, 
where  𝑏$,% ≥ 1 denotes # of 𝜃 that fit into bin type 𝑗

e.g., 𝑗 indexes the possible configurations of items in 
a bin: (1,1,8), (1,4,5), (5,5)… And 𝑏(, (,( = 2

§ Denote by 𝑥$% the number of times we take 𝑎$%

e.g., how many size-1 items did we put in (1,1,8) bins

§ Then our objective is to minimize

𝑓 �⃗� =B
%

max
$
⌈ 𝑥$%/𝑏$,%⌉

The ceiling 
is a boring 
technical 
detail



Network 
revenue 

management

§ We have some resources 𝐵 ∈ ℕ)

§ 𝜃!, … , 𝜃" ∈ Θ, are types with values & resource reqs

e.g., 𝑣!, … , 𝑣& 𝑎𝑛𝑑 𝑟!, … , 𝑟& ∈ ℕ), 𝑅 matrix of 𝑟%

§ In period 𝑡, observe 𝜃# & either accept or reject

i.e., 𝑎$% ∈ {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡}

§ We want to maximize the accepted values w/o 
violating resource constraints

§ Denote by 𝑥$ the number of times we accept 𝜃

§ Then our objective is to maximize

𝑓 �⃗� =B
$

𝑣$ 𝑥$ − 𝑣)*+ R 𝑅 ⋅ �⃗� − 𝐵
,
R
!

For today, the 
negative part is a 
boring technical 
detail



Models of 
job assignment

§ Choice between 𝑚 servers

§ Arrivals 𝜃!, … , 𝜃" ∈ Θ

Job 𝜃 to be processed

§ In period 𝑡, observe 𝜃# & take an irrevocable action:

𝑎$!% ∈ {1, … ,𝑚} to process job 𝜃# at 𝑗

§ Denote by 𝑥$% the number of times we take 𝑎$%

§ Then our objective is:

Cost to process all jobs where servers have (i) a fixed cost 

per job 𝑐$% & (ii) a minimum average cost per job 𝑚%

min2
%

max 2
$

𝑥$%𝑐$% ,2
$

𝑥$%𝑚%



Models of 
refugee 

placement

§ 𝑚 centers have room to absorb 𝑏!, … , 𝑏) refugees

§ Arrivals 𝜃!, … , 𝜃" ∈ Θ

probability 𝑣$% for employment if placed at center 𝑗

§ In period 𝑡, observe 𝜃# & take an irrevocable action:

𝑎$!% ∈ {1,… ,𝑚} to place arrival  𝜃# at center 𝑗

§ Denote by 𝑥$% the number of times we take 𝑎$%

§ Then our objective is:

maxB
%

B
$

𝑥$%𝑣$% − 𝑏% −B
$

𝑥$%

,

For today, the 
negative part is a 
boring technical 
detail



Not captured

§ Unknown objective: unknown 𝑓(⋅)

(bandits / pricing)

§ Time-sensitive actions: 𝑓(⋅) depends
(Weina’s talks!) not just on �⃗�

§ Overbooking: don’t quite know 𝑓(⋅)



Overbooking for 
a single 

resource

§ High-level:

§ arrivals of type 𝜃 have value 𝑣$ if accepted

§ arrivals of type 𝜃 are no-shows with prob.  1 − 𝑞$
§ no-shows pay but do not consume resources

(incentivizes us to admit more arrivals than there are resources for)

§ If more than 𝐵 (capacity) people show up, we pay a 
penalty of 𝑐 per person we’ll need to bump

§ When we admit a type, we don’t know whether 
they’ll show up!

§ So, we don’t know 𝑓(⋅)ß it’s random!



Expected 
objective

§ If I knew all the arrivals, who should I accept?

(by arrivals I only mean their type, not whether they 
will show up; if I knew that, I’d accept everyone who 
won’t show up… silly benchmark)

maxB
$

𝑣$𝑥$ − 𝑐 ⋅ 𝔼 B
$

𝑋$ −𝐵
,

where 𝑋$ ∼ 𝐵𝑖𝑛(𝑥$, 𝑞$)

§ Pretend our objective is 𝔼 𝑓 �⃗� and we’ll be able 
to compare ourselves with the best clairvoyant who 
knows the arrivals but not the no-show-realizations



Many examples of 
exchangeable actions!

We’ll keep it general!



Benchmark

Clairvoyant optimum:

𝑂𝑃𝑇 = max𝑓(�⃗�)

𝑠. 𝑡. ∀𝜃:B
%

𝑥$% = 𝑁$[𝑇]

𝑥$% ≥ 0

where 𝑁$ 𝜏 = ∑#-!,…,/ 𝕀 $!-$



Desired 
performance: 

Constant regret

§ Denote an algorithm’s objective by 𝐴𝐿𝐺(𝜃!, … , 𝜃")

𝔼 𝑂𝑃𝑇 − 𝐴𝐿𝐺 𝜃!, … , 𝜃" ≤ 𝑀 ∈ 𝑂(1)

§ Meaning we want to bound the performance loss of 
an algorithm independent of 𝑇

It’s somewhat trivial in most/all our settings to achieve !𝑂( 𝑇) loss; 
so the name of the game is to obtain something better/constant!



Possible 
assumptions on 

𝑇

T1: Known time-horizon 𝑇

Fairly standard in many settings

T2: 𝑇 is a priori unknown but revealed at l𝑇 with

𝑇 − l𝑇 ∈ Ω(𝑇
0
1)

Slight variation of an adversarial end point; unknown, 
but there’s a heads-up when a few periods are left.

Example: we’ve been running an open-ended 
marketing campaign since mid-August and we’re 
told today (10/10) that it will end on 10/15

Example 2: there’s an unknown number of batches, 

with Ω(𝑇
"
#) arrivals, last one is announced as such.

(𝑇
!
""# 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜖 > 0 works, but 

we don’t want to carry the 𝜖)



Possible 
assumptions on 

arrivals

A1: iid with unknown 𝑝$ ≥ 𝑝)23 ∀𝜃

A2: independent with known 𝑝$ 𝑡 ≥ 𝑝)23 ∀𝜃, 𝑡

A3: iid with known 𝑝$ ≥ 𝑝)23 ∀𝜃

A4: We have a single sample of 𝑇 arrivals & we 
know that it’s drawn from a distribution with 
certain density/concentration properties 



Possible 
assumptions on 

𝑓

O1: &
'

-Lipschitz-continuous

|𝑓 �⃗� − 𝑓 �⃗� | ≤ �⃗� − �⃗� 𝐿/2

Genuinely innocent!

O2: Stability of optimal solution

Denote by 𝑆(𝑁) the	set	of	optimal	solutions	under	𝑁

∀𝑁,𝑁(: ∀�⃗� ∈ 𝑆 𝑁 ∃�⃗� ∈ 𝑆 𝑁( : �⃗� − �⃗� ≤ 𝛿|𝑁 − 𝑁(|

Looks weird, but always fulfilled when 𝑓(⋅) is linear

(key challenge for overbooking is not having this)

O3: Homogeneous ( f 𝜆�⃗� = 𝜆𝑓(�⃗�) )

Needed under T2! E.g., a marketing campaign 
with a fixed budget per customer

O4: Existence of unique opt

Only required in special cases or for being 

able to compute an offline optimal solution



Informal results

ALGORITHMIC

Pick the right combination of the above & there exists an 
algorithm ALG such that 

𝔼[𝑂𝑃𝑇 − 𝐴𝐿𝐺 𝜃$, … , 𝜃% ] < 𝑀 ∈ 𝑂(1)

for some constant 𝑀 that depends on all above, except for 𝑇

IMPOSSIBILITY

Drop one from the right combination of the above & no 

algorithm achieves
𝔼[𝑂𝑃𝑇 − 𝐴𝐿𝐺 𝜃$ , … , 𝜃% ] < 𝑀 ∈ 𝑂(1)

for any constant 𝑀 independent of 𝑇



Exchangeable actions
& O1 (Lipschitz)
& O2 (Stability of opt)

T1 (known horizon)

A1 (unknown iid)

A2 (known ind)

A3 (known iid)

Resolve 𝑇 times

Resolve log(𝑇) times

Resolve loglog(𝑇) times

Uniform loss

T2 (unknown horizon)

A1 (unknown iid)

A3 (known iid)

Resolve 𝑇 times

Resolve loglog(𝑇) times

O3  (homogeneous)

O4 (Unique opt)



Necessity of 
assumption O2
(stability of opt)

§ Suppose in each period we accept/reject an arrival

§ Each arrival has iid probability ½ to be type 1 or 2

§ Our objective is to maximize, over known horizon 𝑇

max{𝑥A, 𝑥B}

𝑠. 𝑡. 𝑥A + 𝑥B ≤
𝑇
2

§ Lipschitz, exchangeable actions, iid… no O2!

§ Clairvoyant is guaranteed 
%
&
; any ALG gets at most 

%
&
− Ω( 𝑇) in exp



Alternative to O2: 
Overbooking 

problem

§ Would want to maximize

B
$

𝑣$𝑥$ − 𝑐 ⋅ 𝔼 B
$

𝑋$ −𝐵
,

where 𝑋$ ∼ 𝐵𝑖𝑛(𝑥$, 𝑞$) subject to 𝑥$ ≤ 𝑁$[𝑇]

§ Change of optimal solution when perturbing  𝑁$[𝑇]
(Bound for O2)

§ Index solution: order types by 4$
5$
> 4%

5%
> ⋯ > 4&

5&

§ Accept lower-indexed types first



Observe:
Index solutions 
are suboptimal

§ Index solutions are NOT optimal in general

§ Asymptotically the clairvoyant general and the 
clairvoyant index solutions look “similar”

Index Solution

Optimal Solution



Alternative to O2: 
Overbooking 

problem

§ Would want to maximize

B
$

𝑣$𝑥$ − 𝑐 ⋅ 𝔼 B
$

𝑋$ −𝐵
,

where 𝑋$ ∼ 𝐵𝑖𝑛(𝑥$, 𝑞$) subject to 𝑥$ ≤ 𝑁$[𝑇]

§ Change of optimal solution when perturbing  𝑁$[𝑇]
(Bound for O2)

§ Index solution: order types by 4$
5$
> 4%

5%
> ⋯ > 4&

5&

§ Accept lower-indexed types first

§ Can bound as O(1)

§ loss of only considering index solutions

§ change of best index solution when perturbing  𝑁$[𝑇]

§ Effectively proves O2 for a restricted set of solutions



Numerical results (Bin packing)

Θ = 1,3,4,5,8 ; 𝐵 = 10

𝑝$ =
1
4
, 𝑝' =

1
4
, 𝑝( =

1
8
, 𝑝) =

1
4
, 𝑝* =

1
8

Θ = 2,3 ; 𝐵 = 9

𝑝& =
3
4
, 𝑝' =

1
4

Comparison with SS from
Gupta & Radovanovic, OR’20
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Numerical results (Load balancing & overbooking)



Algorithmic ideas



Clairvoyant lower 
confidence 

bounds

§ In period 𝑡, define semi-clairvoyant 𝑂𝑃𝑇[𝑡] that follows 
ALG until 𝑡-1, then is clairvoyant until 𝑇

§ Solve deterministic problem in which remaining arrivals 
are replaced by expectation (or proxy)

§ Create a LCB on # of times an action is played by 

considering that whp !
#̅+

∀𝜃: 𝑁$ 𝑇 − 𝑁$ 𝑡 − 𝑇 − 𝑡 − 1 𝑝$ ≤ ̅𝑡 log ̅𝑡

and consequently, whp, 𝑂𝑃𝑇[𝑡] uses 𝑎$% as often as DLP[t]
does −𝛿 ̅𝑡 log ̅𝑡

𝑂𝑃𝑇[𝑡] =max 𝑓(�⃗�)

U
,

𝑥-, = 𝑁- 𝑇

𝑥-, ≥ 𝑥-,[𝑡 − 1]

DLP[t] = max 𝑓(�⃗�)

𝑠. 𝑡. ∀𝜃U
,

𝑥-, = 𝑁- 𝑡 + ̅𝑡 − 1 𝑝-

𝑥-, ≥ 𝑥-,[𝑡 − 1]

(by O2/stability of optimum)

= 𝑇 − 𝑡



Mistakes

Suppose the lower confidence bounds hold true for 
every type and every action. If some periods later, each 
action 𝑎-, has been taken at most 𝐿𝐶𝐵-, times, then 
semi-clairvoyant achieves the same objective after 
these periods as it did before (old sol’n still feasible).



Loss bound

§ Say at 𝑡 we find LCBs that we use until 𝑡′

§ In period 𝑡′ we resolve to obtain new LCBs

§ If we resolve in periods 𝑡! = 1,…𝑡6 = 𝑇:

𝔼 𝑂𝑃𝑇 − 𝐴𝐿𝐺 𝜃!, … , 𝜃"
= 𝔼 𝑂𝑃𝑇[1] − 𝑂𝑃𝑇[𝑇]

= 𝔼[ B
/-!,..,68!

𝑂𝑃𝑇 𝑡/ −𝑂𝑃𝑇 𝑡/,! ]

≤ B
/-!,..,68!

𝐿 ⋅ (𝑡/,! − 𝑡/)ℙ[𝐿𝐶𝐵𝑠 𝑤𝑟𝑜𝑛𝑔 𝑎𝑡 𝑡/]

≤ B
/-!,..,68!

𝐿 ⋅ (𝑡/,! − 𝑡/) u1 𝑇 − 𝑡/ 0

≤ 𝑀



First path to 
uniform loss

§ Requires us to see that after each resolving we have 
actions until a sublinear number of periods is left

§ Resolve with ̅𝑡: = 𝑇 − 𝑡 periods left

§ Budget of actions for type 𝜃 is equal to at least

̅𝑡𝑝$ − 𝛿ℓ ̅𝑡 log ̅𝑡

§ Will need to resolve after that many type 𝜃 arrivals

§ Whp we won’t need to resolve until 

< ̅𝑡0/1 periods left

Exchangeable actions
& O1 (Lipschitz)
& O2 (Stability of opt)

T1 (known horizon)

A3 (known iid)

Resolve loglog(𝑇) times

Uniform loss



Unknown 
horizon

(known iid dist)

Clairvoyant optimum:
𝑂𝑃𝑇 = 𝑂𝑃𝑇[1] = max𝑓(�⃗�)

𝑠. 𝑡. ∀𝜃B
%

𝑥$% = 𝑁$[𝑇]

𝑥$% ≥ 0

Stochastic policy:
max𝑓(�⃗�)

𝑠. 𝑡. ∀𝜃B
%

𝑥$% = 𝔼[𝑁$[𝑇]]

𝑥$% ≥ 0

Denote solution by 𝑦$%; take action 𝑎^_w.p.𝑦$%/𝔼[𝑁$]

Denote 𝑝$% = 𝑝$𝑦$%/𝔼[𝑁$] (prob. of playing 𝑎$% )Observe: if 𝑓(⋅) is homogeneous (O3) we 
don’t need to know 𝑇 to obtain this policy!



Stochastic policy 
upper confidence 

bounds

§ How often does 𝑂𝑃𝑇[1] take action 𝑎$%?

§ The DLP uses action 𝑎$% exactly 𝑇𝑝$% times

§ With high probability (whp) 

∀𝜃|𝑁$ − 𝔼[𝑁$]| ≤ 𝑇𝑙𝑜𝑔(𝑇)

If so, then there exists 𝑂𝑃𝑇[1] that uses action 𝑎'( at least

(LCB) 𝑇𝑝'( − 𝛿 𝑇𝑙𝑜𝑔(𝑇) times (by O2/stability of optimum)

§ The stochastic policy that follows DLP takes 𝑎'(

𝐵𝑖𝑛 𝑝'( , 𝑇 − 𝑇)/+ in the first 𝑇 − 𝑇)/+ periods

𝐵𝑖𝑛 𝑝$%, 𝑇 − 𝑇0/1 ≤ 𝑇 − 𝑇
0
1 𝑝$% + 𝑇𝑙𝑜𝑔 𝑇

< 𝑇𝑝$% − 𝛿 𝑇𝑙𝑜𝑔(𝑇) =

whp

Large 𝑇, constant 𝑝-, , 𝛿

(UCB)

(LCB) for 𝑂𝑃𝑇[1]



2nd path to uniform loss

Exchangeable actions
& O1 (Lipschitz)
& O2 (Stability of opt)

Uniform loss
T2 (unknown 
horizon)

A3 (known iid) Resolve loglog(𝑇) times

O3  (homogeneous)



Caveats for 
unknown 

distribution

§ Want to just use empirical estimates so far

§ Careful: We don’t have good LCBs for actions!

𝑇𝑝$% − 𝛿 𝑇𝑙𝑜𝑔(𝑇)

§ Especially true in initial periods

§ Especially true when we don’t know 𝑇

§ Advantage: 

§ Stochastic policy initially makes no mistakes whp

Ømay compare ourselves to stochastic policy instead



Algorithm for 
unknown 

distributions

§ Difference between solutions for !𝐷𝐿𝑃 𝑡 & 𝐷𝐿𝑃:

§ With probability 1 − 1/𝑡' we have (good event)

| c𝑥-,[𝑡] − 𝑥-,[𝑡]| ≤
𝛿

𝑡 log(𝑡)

§ Threshold to avoid  taking 𝑎$% with 𝑥$% = 0:

̂𝑦$%[𝑡] = 0 𝑖𝑓 �𝑥$%[𝑡] <
:

# ;<= #
(& scale other actions up)

§ Randomize based on d𝑦

§ May make mistakes if either

§ Good event not true (errors are summable) or

§ We scale an action (that DLP takes)  up by too much

g𝐷𝐿𝑃 𝑡 = max 𝑓(�⃗�)

𝑠. 𝑡. ∀𝜃U
,

𝑥-, = 𝑁- 𝑡

𝑥-, ≥ 𝑥-,[𝑡]

𝐷𝐿𝑃 = max 𝑓(�⃗�)

𝑠. 𝑡. ∀𝜃U
,

𝑥-, = 𝔼[𝑁-[𝑡]]

𝑥-, ≥ 0

Technical subtlety here requires O4 
(unique solution for DLP):
Problem arises If the ``optimal’’ offline 
solution varies too much across periods…



3rd path to uniform loss

Exchangeable actions
& O1 (Lipschitz)
& O2 (Stability of opt)

Uniform loss

T2 (unknown horizon)

A1 (unknown iid) Resolve 𝑇 times

O3  (homogeneous)

O4 (Unique Opt)



Necessity of 
heads-up
(T2)

§ Bin-packing with bins of size 3

§ Items are, with prob. ½, of size 1 or 2

Possible configurations are (1,1,1) and (1,2)

§ Horizon of length 𝑇 or 
%
&

(with no heads-up)

§ With constant probability the following both occur

§ 𝑁$[𝑇/2] ≥
%
(
+ 𝑇

§ 𝑁$ 𝑇 ≤ %
&
− 𝑇

§ 𝑜( 𝑇) loss at time T/2 requires creating Ω 𝑇 bins of 

configuration (1,1,1) whereas 𝑜( 𝑇) loss at time T requires 

having created 𝑜( 𝑇) such bins

§ Similar result applies to geometric horizon length



Necessity of 
𝑝&'(

(A1/A2/A3)

§ Multi-secretary with budget 
%
&

iid arrival types

§ 𝑣' = 3 has probability 
$
&
− $

%
#
$

(mean 
%
&
− 𝑇$/()

§ 𝑣& = 2 has probability
$

%
#
$

(mean 𝑇$/()

§ 𝑣$ = 1 has probability 
$
&

(mean 
%
&
)

§ After 
%
&

(whp) one has either 

§ accepted at least 𝑇
!
$/8 arrivals of type 2 

§ or rejected most  𝑇
!
$/8 of type 2

§ Berry-Esseen: constant probability to have

§ at least 
%
&

type-3 over entire horizon

§ at most 
%
&
− 𝑇

!
" type-3  over entire horizon

§ Even with full knowledge of the first 
%
&

arrivals do not     

know, whether to accept 0 or all type-2 arrivals



Takeaways
(Overbooking)

§ RLP algorithm (Kunnumkal et al., 2012)

• w/ no-shows: Θ( 𝑇) loss

§ Fluid policy (Dai et al., 2019)

• w/ cancellations and no-shows: Θ( 𝑇) loss

§ Fluid Bayes Selector (Vera and Banerjee, 2020)

§ Resolving Heuristics (Jasin & Kumar, 2012; 
Bumpensanti and Wang (2020))

Today

𝒪(1)

Overbooking

Network

§ DPD algorithm (Erdelyi and Topaloglu, 2010)
• w/ no-shows: Ω(𝑇) loss

§ RLP Estimator (Talluri and Van Ryzin, 1999)

§ 𝑇! Policy (Reiman and Wang, 2008)

§ Budget-Ratio Policy (Arlotto
and Gurvich, 2019)

ØBased on Overbooking with bounded Loss with Kamessi Zhao (EC’21, MOR’22)



Takeaways
(Bin packing)

ØBased on Good prophets know when the end is near with Sid Banerjee (SIGMETRICS’20, ??’??)

Table from  Online Bin Packing with Known T, Liu & Li, ‘21

Liu & Li (2021)

Liu & Li (2021)



Takeaways
(Modeling)

§ Heads-up for horizon end

§ In-between adversarial, stochastic, and known

§ Positive results are comparable to known horizon

§ Provable improvements vs. geometric/adversarial

§ In many applications it may be the most realistic(?)



Takeaways
(exchangeable actions lens)

§ Captures wide set of problems, but precludes

§ Many inventory problems (arrivals & departures)

§ Resource allocation with (traditional) cancellations

§ Instance-dependent for the most part

§ In some cases (overbooking): provably unavoidable

§ Though: numerically, the constants don’t kick in!

§ Prove O2 (stability) for nonlinear objectives

§ Potential alternative: near-optimal alternate solution

§ Requires ad hoc machinery (as for overbooking)



Summary

Algorithmic/analytical framework

Different sets of assumptions for O(1) loss

New guarantees
Bin packing

Single-leg RM with overbooking

(Almost) minimal set of assumptions



Instance-
independent 

Bound

§ Instance-independent: 𝑣, 𝑝 allowed to change with 𝑇

§ Any online policy incurs a loss of Ω( 𝑇) due to the 

inherent uncertainty in arrivals 

§ E.g. Suppose B = %
/
.  Moreover,
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1
6
, 𝑣$ =

1
2
, 𝑝$ = 1
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1
3
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1
𝑇
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3
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𝜆' =
1
2
, 𝑣' = 0, 𝑝' = 1

§ Do not know how many type 1 customers arrive (error 

~ Θ( 𝑇)) and are thus likely to make mistakes in type 2

• 𝑁" ≥
#
$
: no type 2 customer should be accepted

• 𝑁" ≤
#
$
− 𝑇: “almost” all type 2 customer should be accepted

Appendix

𝑇: time horizon
𝐵: capacity
𝑣%: revenue of type 𝑗
𝑝%: show up probability of type 𝑗

/𝑂𝑃𝑇'⃗ : clairvoyant general obj.

𝑂𝑃𝑇'⃗[1]: clairvoyant index obj.
𝑂𝑃𝑇'⃗[𝑡]: semi-clairvoyant index obj. at 𝑡
𝑂𝐵𝐽'⃗: online index obj.


