Constant regret in Exchangeable Action Models: Overbooking, Bin Packing & Beyond

Daniel Freund (MIT)

Agenda

Define exchangeable action MDPs as a problem framework

Characterize sets of assumptions under which O(1) loss is achievable Types of objective/constraints Types of information structures Amount of adaptivity / computation required

8

₩

Algorithmic and analytical ideas

臣 Takeaways

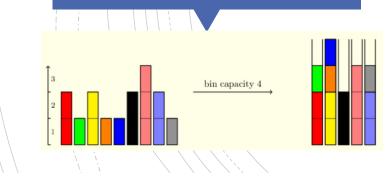
Define exchangeable actions

- Exogenous arrivals $\theta_1, \dots, \theta_T \in \Theta$, where $|\Theta| = k$
- In period *t*, observe θ_t & take an irrevocable action: $a_{\theta_t j} \in \mathcal{A}(\theta_t), where |\mathcal{A}(\theta_t)| = \ell$
- Denote by $x_{\theta j}$ the number of times we take $a_{\theta j}$
- Then our objective is to maximize (minimize) $f(\vec{x})$

for some known function $f(\cdot)$

We'll make assumptions on $f(\cdot)$ and on the arrivals. First, just consider what's captured

Bin packing



- We have bins of a given size
 - e.g., all bins have size 10
- $\theta_1, \dots, \theta_T \in \Theta$, are items of sizes w_1, \dots, w_k

e.g., suppose $w_{\theta} \in \{1,3,4,5,8\}$

- In period t, observe w_t & place it into bin of type j, where b_{θ,j} ≥ 1 denotes # of θ that fit into bin type j
- e.g., j indexes the possible configurations of items in a bin: (1,1,8), (1,4,5), (5,5)... And $b_{5,(5,5)} = 2$
- Denote by $x_{\theta j}$ the number of times we take $a_{\theta j}$
- e.g., how many size-1 items did we put in (1,1,8) bins
- Then our objective is to minimize

The ceiling is a boring technical detail

 $f(\vec{x}) = \sum_{i} \max_{\theta} [x_{\theta j} / b_{\theta,j}]$

Network revenue management

- We have some resources $\vec{B} \in \mathbb{N}^m$
- $\theta_1, \dots, \theta_T \in \Theta$, are types with values & resource reqs

e.g., v_1, \ldots, v_k and $\overrightarrow{r_1}, \ldots, \overrightarrow{r_k} \in \mathbb{N}^m$, *R* matrix of $\overrightarrow{r_i}$

• In period t, observe θ_t & either accept or reject

i.e., $a_{\theta j} \in \{accept, reject\}$

- We want to maximize the accepted values w/o violating resource constraints
- Denote by x_{θ} the number of times we accept θ

Then our objective is to maximize

$$f(\vec{x}) = \sum_{\theta} v_{\theta} x_{\theta} - v_{max} \left| \left((R \cdot \vec{x}) - B \right)^{+} \right|$$

Choice between m servers

• Arrivals $\theta_1, \ldots, \theta_T \in \Theta$

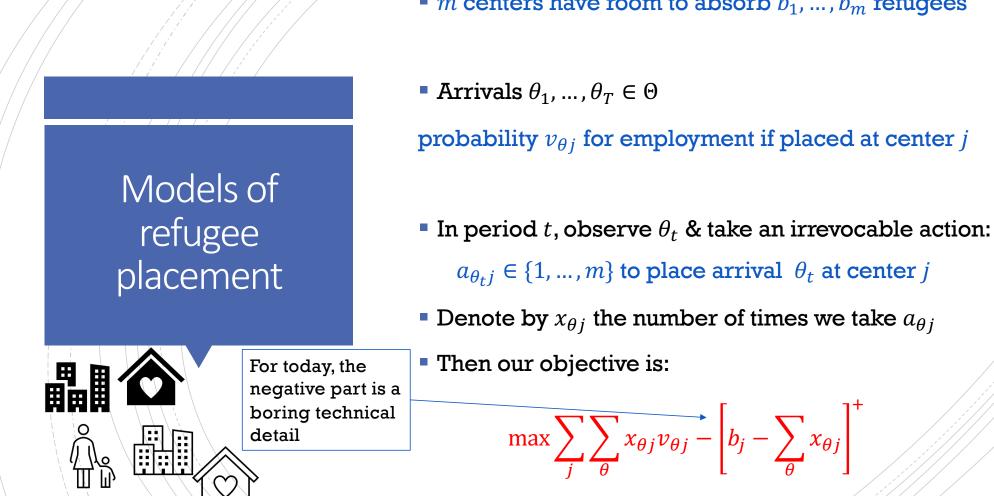
Job θ to be processed

- In period t, observe θ_t & take an irrevocable action: $a_{\theta_t j} \in \{1, ..., m\}$ to process job θ_t at j
- Denote by $x_{\theta j}$ the number of times we take $a_{\theta j}$
- Then our objective is:

Cost to process all jobs where servers have (i) a fixed cost per job $c_{\theta j}$ & (ii) a minimum average cost per job m_j

$$\min\sum_{j} \max\left\{\sum_{\theta} x_{\theta j} c_{\theta j}, \sum_{\theta} x_{\theta j} m_{j}\right\}$$

Models of



• *m* centers have room to absorb $b_1, ..., b_m$ refugees

probability $v_{\theta j}$ for employment if placed at center j

Not captured

• Unknown objective: $unknown f(\cdot)$ (bandits / pricing)

 Time-sensitive actions: (Weina's talks!) $f(\cdot)$ depends not just on \vec{x}

Overbooking:

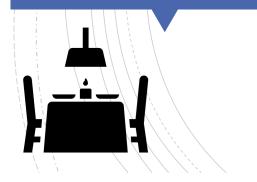
don't quite know $f(\cdot)$

• High-level:

- arrivals of type θ have value v_{θ} if accepted
- arrivals of type heta are no-shows with prob. $1-q_{ heta}$
- no-shows pay but do not consume resources

(incentivizes us to admit more arrivals than there are resources for)

- If more than B (capacity) people show up, we pay a penalty of c per person we'll need to bump
- When we admit a type, we don't know whether they'll show up!
- So, we don't know $f(\cdot) \leftarrow$ it's random!



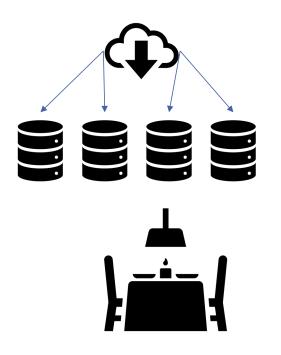
If I knew all the arrivals, who should I accept?

(by arrivals I only mean their type, not whether they will show up; if I knew that, I'd accept everyone who won't show up... silly benchmark)

$$\max_{\theta} \sum_{\theta} v_{\theta} x_{\theta} - c \cdot \mathbb{E}\left[\left(\sum_{\theta} X_{\theta} - B\right)^{+}\right]$$

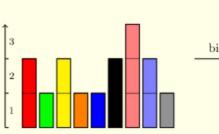
where $X_{\theta} \sim Bin(x_{\theta}, q_{\theta})$

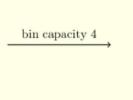
• Pretend our objective is $\mathbb{E}[f(\vec{x})]$ and we'll be able to compare ourselves with the best clairvoyant who knows the arrivals but not the no-show-realizations

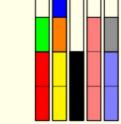


THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

D Springer







Many examples of exchangeable actions!

We'll keep it general!

Clairvoyant optimum:

Benchmark

 $OPT = \max f(\vec{x})$

$$s.t. \forall \theta: \sum_{j} x_{\theta j} = N_{\theta}[T]$$
$$x_{\theta j} \ge 0$$

where $N_{\theta}[\tau] = \sum_{t=1,...,\tau} \mathbb{I}_{\{\theta_t = \theta\}}$

Desired performance: Constant regret

• Denote an algorithm's objective by $ALG(\theta_1, ..., \theta_T)$

$$\mathbb{E}[OPT - ALG(\theta_1, \dots, \theta_T)] \le M \in O(1)$$

 Meaning we want to bound the performance loss of an algorithm independent of T

It's somewhat trivial in most/all our settings to achieve $\tilde{O}(\sqrt{T})$ loss; so the name of the game is to obtain something better/constant!

 $(T^{\frac{1}{2}+\epsilon} for some \epsilon > 0$ works, but we don't want to carry the ϵ) T1: Known time-horizon *T* Fairly standard in many settings

Possible assumptions on *T*

T2: T is a priori unknown but revealed at \hat{T} with $T - \hat{T} \in \Omega(T^{\frac{3}{4}})$

Slight variation of an adversarial end point; unknown, but there's a heads-up when a few periods are left.

Example: we've been running an open-ended marketing campaign since mid-August and we're told today (10/10) that it will end on 10/15

Example 2: there's an unknown number of batches, with $\Omega(T^{\frac{3}{4}})$ arrivals, last one is announced as such.

Possible assumptions on arrivals

- A1: iid with unknown $p_{\theta} \ge p_{min} \forall \theta$
- A2: independent with known $p_{\theta}(t) \ge p_{min} \forall \theta, t$
- A3: iid with known $p_{\theta} \ge p_{min} \ \forall \theta$
- A4: We have a single sample of *T* arrivals & we know that it's drawn from a distribution with certain density/concentration properties

O1:

Possible assumptions on

 $\frac{L}{2}$ -Lipschitz-continuous $|f(\vec{x}) - f(\vec{y})| \le |\vec{x} - \vec{y}|L/2$ Genuinely innocent! O2: Stability of optimal solution **Denote by** $S(\vec{N})$ the set of optimal solutions under \vec{N} $\forall \vec{N}, \vec{N}': \forall \vec{x} \in S(\vec{N}) \exists \vec{y} \in S(\vec{N}'): |\vec{x} - \vec{y}| \le \delta |\vec{N} - \vec{N}'|$ Looks weird, but always fulfilled when $f(\cdot)$ is linear (key challenge for overbooking is not having this) **O**3: Homogeneous ($f(\lambda \vec{x}) = \lambda f(\vec{x})$) Needed under T2! E.g., a marketing campaign with a fixed budget per customer **O4**: Existence of unique opt Only required in special cases or for being able to compute an offline optimal solution

ALGORITHMIC

Pick the right combination of the above & there exists an algorithm ALG such that

 $\mathbb{E}[OPT - ALG(\theta_1, \dots, \theta_T)] < M \in O(1)$

for some constant M that depends on all above, except for T

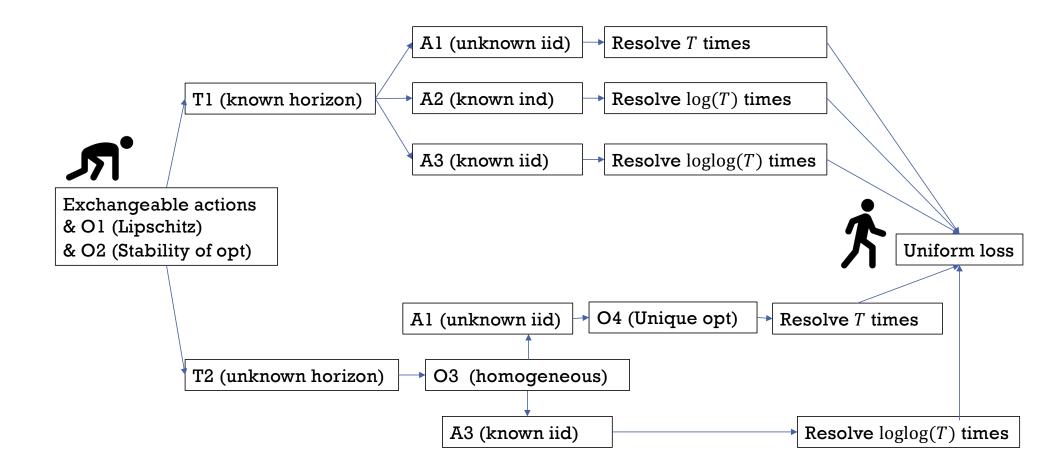
IMPOSSIBILITY

Informal results

Drop one from the right combination of the above & no algorithm achieves

 $\mathbb{E}[OPT - ALG(\theta_1, \dots, \theta_T)] < M \in O(1)$

for any constant M independent of T



Suppose in each period we accept/reject an arrival Each arrival has iid probability $\frac{1}{2}$ to be type 1 or 2 Our objective is to maximize, over known horizon *T*

 $\max\{x_1, x_2\} \\ s. t. \ x_1 + x_2 \le \frac{T}{2}$

Lipschitz, exchangeable actions, iid... no O2! Clairvoyant is guaranteed $\frac{T}{2}$; any ALG gets at most $\frac{T}{2} - \Omega(\sqrt{T})$ in exp

Necessity of assumption O2 (stability of opt)

 Type 1
 1
 1
 1

 Type 2
 流
 流
 流
 流

 Type 3
 六
 六
 六
 六

 Type 4
 二
 二
 二
 二

Alternative to O2: Overbooking problem

→ Accept ■ Would want to maximize

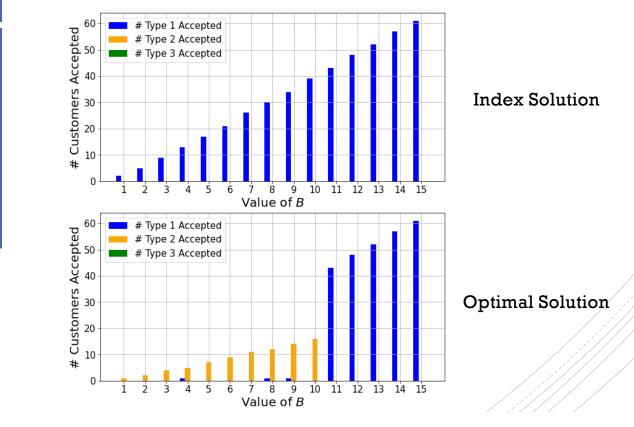
 \rightarrow Accept \rightarrow Reject \rightarrow Reject

$\sum_{\theta} v_{\theta} x_{\theta} - c \cdot \mathbb{E}\left[\left(\sum_{\theta} X_{\theta} - B\right)^{+}\right]$

where $X_{\theta} \sim Bin(x_{\theta}, q_{\theta})$ subject to $x_{\theta} \leq N_{\theta}[T]$

- Change of optimal solution when perturbing $N_{\theta}[T]$ (Bound for O2)
- Index solution: order types by $\frac{v_1}{q_1} > \frac{v_2}{q_2} > \cdots > \frac{v_k}{q_k}$
- Accept lower-indexed types first

 Asymptotically the clairvoyant general and the clairvoyant index solutions look "similar"



Observe: Index solutions are suboptimal

 Type 1
 1
 1
 1

 Type 2
 流
 流
 流
 流

 Type 3
 六
 六
 六
 六

 Type 4
 二
 二
 二
 二

Alternative to O2: Overbooking problem

→ Accept ■ Would want to maximize

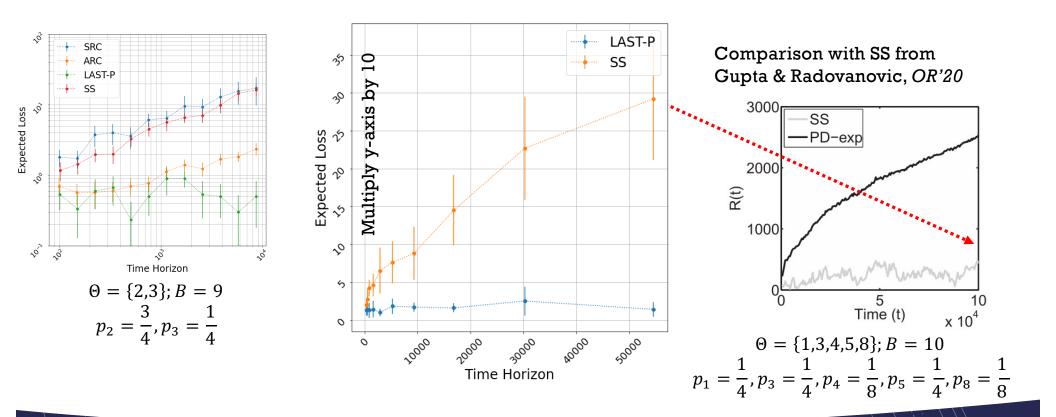
 \rightarrow Reject \rightarrow Reject

 \rightarrow Accept

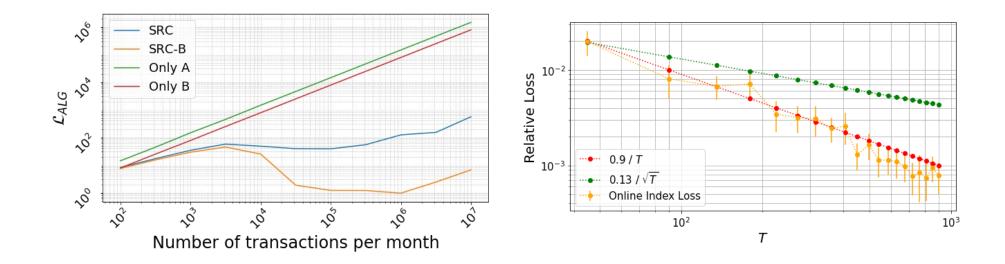
 $\sum_{\theta} v_{\theta} x_{\theta} - c \cdot \mathbb{E}\left[\left(\sum_{\theta} X_{\theta} - B\right)^{+}\right]$

where $X_{\theta} \sim Bin(x_{\theta}, q_{\theta})$ subject to $x_{\theta} \leq N_{\theta}[T]$

- Change of optimal solution when perturbing $N_{\theta}[T]$ (Bound for O2)
- Index solution: order types by $\frac{v_1}{q_1} > \frac{v_2}{q_2} > \cdots > \frac{v_k}{q_k}$
- Accept lower-indexed types first
- Can bound as O(1)
 - loss of only considering index solutions
 - change of best index solution when perturbing $N_{\theta}[T]$
 - Effectively proves O2 for a restricted set of solutions



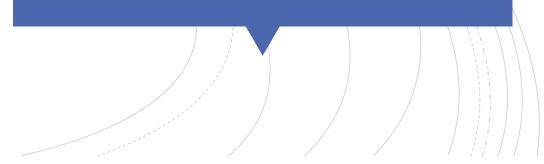
Numerical results (Bin packing)

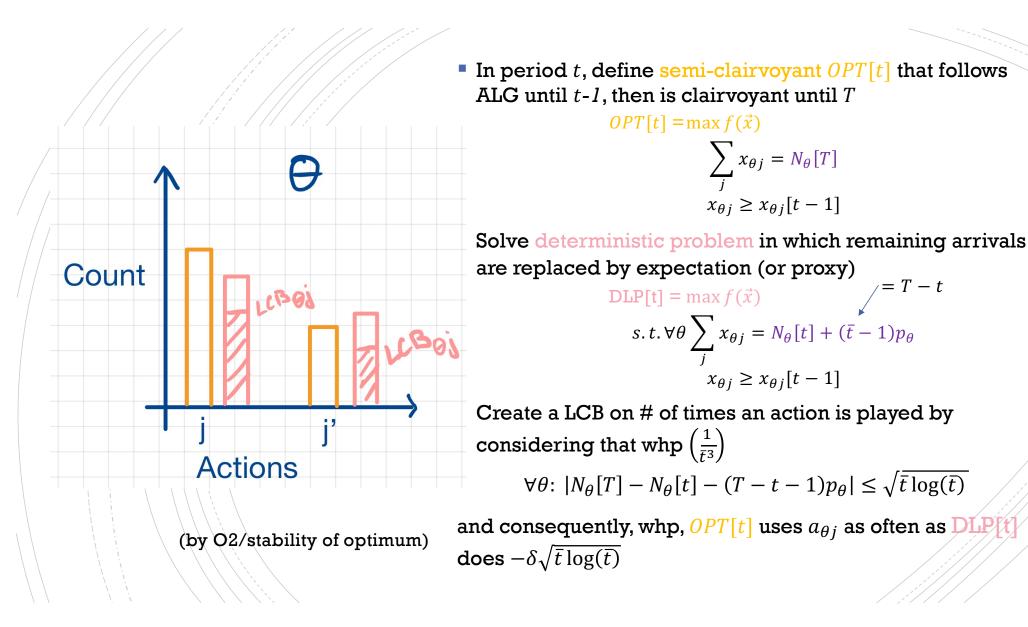


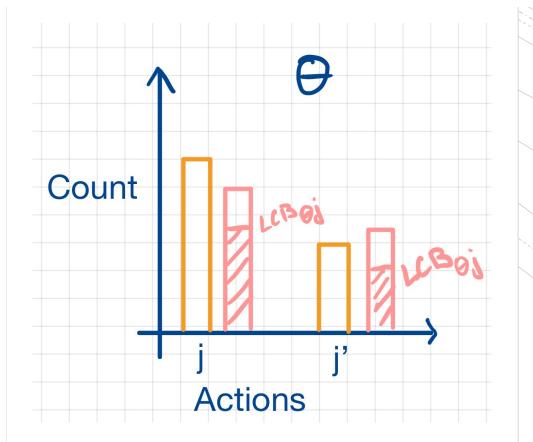
Numerical results (Load balancing & overbooking)

Veese. 24 40 n

Algorithmic ideas



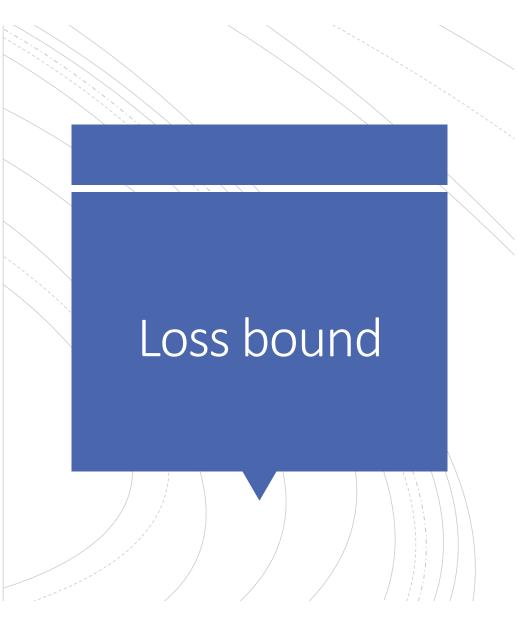


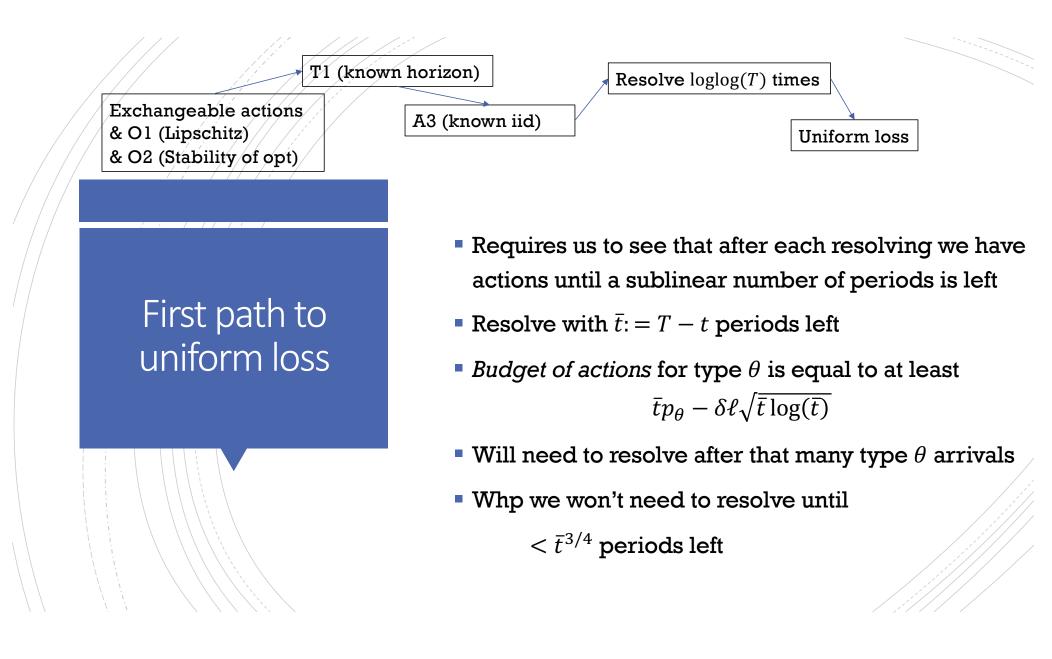


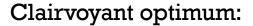
Suppose the lower confidence bounds hold true for every type and every action. If some periods later, each action $a_{\theta j}$ has been taken at most $LCB_{\theta j}$ times, then semi-clairvoyant achieves the same objective after these periods as it did before (old sol'n still feasible).

Mistakes

• Say at t we find LCBs that we use until t'• In period t' we resolve to obtain new LCBs • If we resolve in periods $t_1 = 1, ..., t_s = T$: $\mathbb{E}[OPT - ALG(\theta_1, \dots, \theta_T)]$ $= \mathbb{E}[OPT[1] - OPT[T]]$ $= \mathbb{E}\left[\sum_{\tau \in T} OPT[t_{\tau}] - OPT[t_{\tau+1}]\right]$ $\leq \sum L \cdot (t_{\tau+1} - t_{\tau}) \mathbb{P}[LCBs \ wrong \ at \ t_{\tau}]$ $\tau = 1...s - 1$ $\leq \sum_{\tau=1,\dots,S-1} L \cdot (t_{\tau+1} - t_{\tau})^{1} / (T - t_{\tau})^{3}$ < M







 $OPT = OPT[1] = \max f(\vec{x})$

$$s.t. \forall \theta \sum_{j} x_{\theta j} = N_{\theta}[T]$$
$$x_{\theta j} \ge 0$$

Stochastic policy:

 $\max f(\vec{x})$

$$s.t. \forall \theta \sum_{j} x_{\theta j} = \mathbb{E}[N_{\theta}[T]]$$
$$x_{\theta j} \ge 0$$

Observe: if $f(\cdot)$ is homogeneous (O3) we don't need to know T to obtain this policy!

Denote solution by $y_{\theta j}$; take action $a_{\theta j}$ w.p. $y_{\theta j} / \mathbb{E}[N_{\theta}]$

Denote $p_{\theta j} = p_{\theta} y_{\theta j} / \mathbb{E}[N_{\theta}]$ (prob. of playing $a_{\theta j}$)

Unknown horizon (known iid dist)

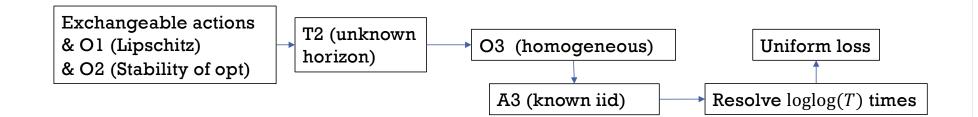
Stochastic policy upper confidence bounds

- How often does OPT[1] take action $a_{\theta i}$?
- The DLP uses action $a_{\theta j}$ exactly $Tp_{\theta j}$ times
- With high probability (whp) $\forall \theta | N_{\theta} - \mathbb{E}[N_{\theta}] | \leq \sqrt{T log(T)}$

If so, then there exists OPT[1] that uses action $a_{\theta j}$ at least (LCB) $Tp_{\theta j} - \delta \sqrt{Tlog(T)}$ times (by O2/stability of optimum)

• The stochastic policy that follows DLP takes $a_{\theta i}$

 $\begin{array}{l} Bin(p_{\theta j}, T - T^{3/4}) \text{ in the first } T - T^{3/4} \text{ periods} \\ \hline \textbf{(UCB)} \quad Bin(p_{\theta j}, T - T^{3/4}) \leq \left(T - T^{\frac{3}{4}}\right) p_{\theta j} + \sqrt{Tlog(T)} \text{ whp} \\ \text{Large } T, \text{ constant } p_{\theta j}, \delta \quad < Tp_{\theta j} - \delta \sqrt{Tlog(T)} = \textbf{(LCB)} \text{ for } OPT[1] \end{array}$



2nd path to uniform loss

Caveats for unknown distribution

- Want to just use empirical estimates so far
- Careful: We don't have good LCBs for actions! $Tp_{\theta j} - \delta \sqrt{Tlog(T)}$
 - Especially true in initial periods
 - Especially true when we don't know T
- Advantage:
 - Stochastic policy initially makes no mistakes whp
 - > may compare ourselves to stochastic policy instead

$s.t. \forall \theta \sum_{j} x_{\theta j} = N_{\theta}[t] \qquad s.t. \forall \theta \sum_{j} x_{\theta j} = \mathbb{E}[N_{\theta}[t]]$ $x_{\theta j} \ge x_{\theta j}[t] \qquad x_{\theta j} \ge 0$

 $DLP = \max f(\vec{x})$

- Difference between solutions for DLP[t] & DLP:
 - With probability $1 1/t^2$ we have (good event)

$$\hat{x}_{\theta j}[t] - x_{\theta j}[t]| \le \frac{\delta}{\sqrt{t \log(t)}}$$

• Threshold to avoid taking $a_{\theta j}$ with $x_{\theta j} = 0$:

 $\hat{y}_{\theta j}[t] = 0 \ if \ \hat{x}_{\theta j}[t] < \frac{\delta}{\sqrt{t \log(t)}}$ (& scale other actions up)

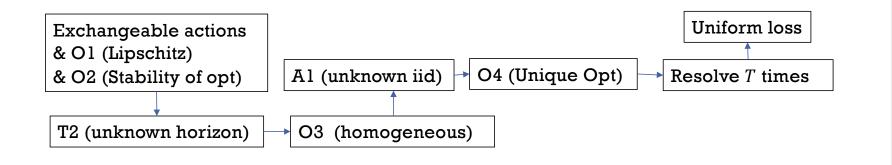
Randomize based on \hat{y}

 $\widehat{DLP}[t] = \max f(\vec{x})$

- May make mistakes if either
 - Good event not true (errors are summable) or
 - We scale an action (that DLP takes) up by too much

Algorithm for unknown distributions

Technical subtlety here requires O4 (unique solution for DLP): Problem arises If the ``optimal'' offline solution varies too much across periods...



3rd path to uniform loss

Necessity of heads-up (T2) Bin-packing with bins of size 3 Items are, with prob. ½, of size 1 or 2 Possible configurations are (1,1,1) and (1,2)

Horizon of length T or $\frac{T}{2}$ (with no heads-up) With constant probability the following **both** occur $N_1[T/2] \ge \frac{T}{4} + \sqrt{T}$ $N_1[T] \le \frac{T}{2} - \sqrt{T}$

 $o(\sqrt{T})$ loss at time T/2 requires creating $\Omega(\sqrt{T})$ bins of configuration (1,1,1) whereas $o(\sqrt{T})$ loss at time T requires having created $o(\sqrt{T})$ such bins

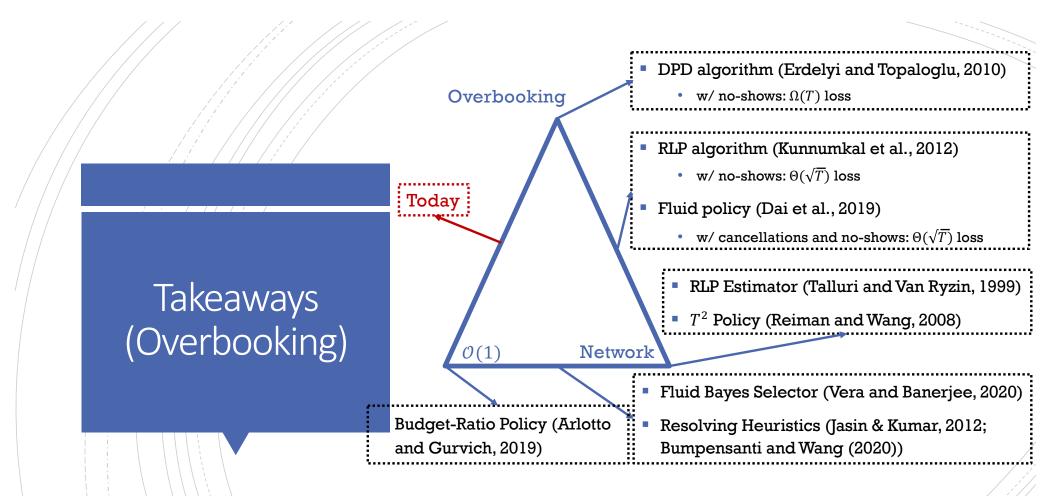
Similar result applies to geometric horizon length

Necessity of p_{min} (A1/A2/A3)

Multi-secretary with budget $\frac{T}{2}$ iid arrival types $v_3 = 3$ has probability $\frac{1}{2} - \frac{1}{T^{\frac{3}{4}}}$ (mean $\frac{T}{2} - T^{1/4}$) $v_2 = 2$ has probability $\frac{1}{T^{\frac{3}{4}}}$ (mean $T^{1/4}$) $v_1 = 1$ has probability $\frac{1}{2}$ (mean $\frac{T}{2}$)

After $\frac{T}{2}$ (whp) one has either accepted at least $T^{\frac{1}{4}}/8$ arrivals of type 2 or rejected most $T^{\frac{1}{4}}/8$ of type 2 Berry-Esseen: constant probability to have at least $\frac{T}{2}$ type-3 over entire horizon at most $\frac{T}{2} - T^{\frac{1}{2}}$ type-3 over entire horizon Even with full knowledge of the first $\frac{T}{2}$ arrivals do not

know, whether to accept 0 or all type-2 arrivals



Based on Overbooking with bounded Loss with Kamessi Zhao (EC'21, MOR'22)

		Regret	Distr.	Algorithm & Remarks
	Shor (1986)	$\Omega(\sqrt{T\log T})$	$\mathrm{Unif}[0,1]$	Lower bound
(Rin nacking)	Shor (1986); Asgeirsson (2002)	$\Theta(\sqrt{T})$	$\mathrm{Unif}[0,1]$	Best Fit; Known T
	Shor (1991)	$O(\sqrt{T\log T})$	$\mathrm{Unif}[0,1]$	Best Fit
	Rhee and Talagrand (1993a,b)	$K\sqrt{T}\log^{3/4}T$	General	Double-overflow; unspecified constant K
	Csirik et al. (2006)	$B\sqrt{T}$	Int. supp.	Sum-of-squares; bin size B
	Gupta and Radovanović (2020)	$B\sqrt{T}$	Int. supp.	Lagrangian-based; bin size B
	Banerjee and Freund (2020)	М	Int. supp.	Re-solving; Known T ; problem-dependent M
	Liu & Li (2021)	$C\sqrt{T}$	General	Adaptive; Known $T; C \leq 11$
	Liu & Li (2021)	$C\sqrt{T}$	Ran. Perm.	Adaptive; Known $T; C \leq 13$

Table from Online Bin Packing with Known T, Liu & Li, '21

> Based on Good prophets know when the end is near with Sid Banerjee (SIGMETRICS'20, ??'??)

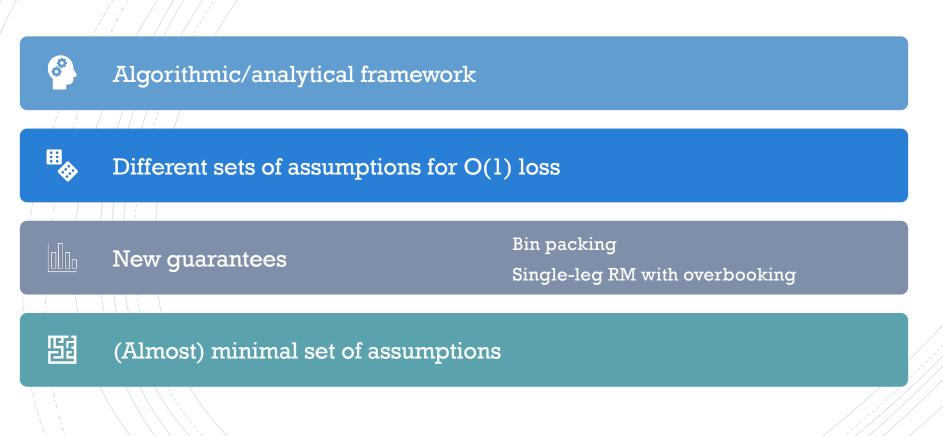
Takeaways (Modeling)

- Heads-up for horizon end
 - In-between adversarial, stochastic, and known
- Positive results are comparable to known horizon
 Provable improvements vs. geometric/adversarial
- In many applications it may be the most realistic(?)

Takeaways (exchangeable actions lens)

- Captures wide set of problems, but precludes
 - Many inventory problems (arrivals & departures)
 - Resource allocation with (traditional) cancellations
- Instance-dependent for the most part
 - In some cases (overbooking): provably unavoidable
 - Though: numerically, the constants don't kick in!
- Prove O2 (stability) for nonlinear objectives
 - Potential alternative: near-optimal alternate solution
 - Requires ad hoc machinery (as for overbooking)

Summary



T: time horizon B: capacity v_j : revenue of type j p_j : show up probability of type j

Appendix

Instanceindependent Bound

 $\overrightarrow{OPT}_{\vec{A}}$: clairvoyant general obj. $OPT_{\vec{A}}[1]$: clairvoyant index obj. $OPT_{\vec{A}}[t]$: semi-clairvoyant index obj. at t $OBJ_{\vec{A}}$: online index obj.

- Instance-independent: v, p allowed to change with T
- Any online policy incurs a loss of $\Omega(\sqrt{T})$ due to the inherent uncertainty in arrivals
- E.g. Suppose $B = \frac{T}{6}$. Moreover,

 $\lambda_1 = \frac{1}{6}, v_1 = \frac{1}{2}, p_1 = 1$ $\lambda_2 = \frac{1}{3}, v_2 = \frac{1}{\sqrt{T}}, p_2 = \frac{3}{\sqrt{T}}$ $\lambda_3 = \frac{1}{2}, v_3 = 0, p_3 = 1$

- Do not know how many type 1 customers arrive (error $\sim \Theta(\sqrt{T})$) and are thus likely to make mistakes in type 2
 - $N_1 \ge \frac{T}{6}$: no type 2 customer should be accepted
 - $N_1 \leq \frac{T}{6} \sqrt{T}$: "almost" all type 2 customer should be accepted